

D7.9 –

Digital Twin

Platform

v1

 D7.9 Digital Twin Platform v1 1

COGITO – GA ID. 958310

COnstruction phase

dIGItal Twin mOdel

D7.9 – Digital Twin Platform v1

Dissemination Level: Public

Deliverable Type: Demonstrator

Lead Partner: UCL

Contributing Partners: Hypertech, UPM

Due date: 31-05-2022

Actual submission date: 31-05-2022

Authors

Name Beneficiary Email

Kyriakos Katsigarakis UCL k.katsigarakis@ucl.ac.uk

Georgios N. Lilis UCL g.lilis@ucl.ac.uk
Dimitrios Rovas UCL d.rovas@ucl.ac.uk
Salvador Gonzalez-Gerpe UPM salvador.gonzalez.gerpe@upm.es
Apostolos Papafragkakis Hypertech a.papafragkakis@hypertech.gr
Giorgos Giannakis Hypertech g.giannakis@hypertech.gr

Reviewers

Name Beneficiary Email

Amy Wilson UEDIN Amy.L.Wilson@ed.ac.uk
Damiano Falcioni BOC damiano.falcioni@boc-eu.com

Version History

Version Editors Date Comment

0.1 UCL 01.05.2022 ToC

0.3 UCL 10.05.2022 Draft version of sections 1,2,3,4,5

0.6 UCL, UPM, Hypertech 14.05.2022 Contributions in section 4

0.8 UEDIN, BOC 27.05.2022 Internal review

0.9 UCL 30.05.2022 Internal review comments addressed

1.0 UCL, Hypertech 31.05.2022 Submission to EC

Disclaimer

©COGITO Consortium Partners. All right reserved. COGITO is a HORIZON2020 Project supported by the European
Commission under Grant Agreement No. 958310. The document is proprietary of the COGITO consortium
members. No copying or distributing, in any form or by any means, is allowed without the prior written
agreement of the owner of the property rights. The information in this document is subject to change without
notice. Company or product names mentioned in this document may be trademarks or registered trademarks of
their respective companies. The information and views set out in this publication are those of the author(s) and
do not necessarily reflect the official opinion of the European Communities. Neither the European Union
institutions and bodies nor any person acting on their behalf may be held responsible for the use, which may be
made, of the information contained therein.

mailto:k.katsigarakis@ucl.ac.uk
mailto:g.lilis@ucl.ac.uk
mailto:d.rovas@ucl.ac.uk
mailto:salvador.gonzalez.gerpe@upm.es
mailto:a.papafragkakis@hypertech.gr
mailto:g.giannakis@hypertech.gr
mailto:Amy.L.Wilson@ed.ac.uk
mailto:damiano.falcioni@boc-eu.com

 D7.9 Digital Twin Platform v1 2

COGITO – GA ID. 958310

COnstruction phase

dIGItal Twin mOdel

Executive Summary

The COGITO Deliverable “D7.9 – Digital Twin Platform v1” documents the COGITO Digital Twin Platform and

reports the outcomes of work performed thus far in “T7.5 – Digital Twin Platform Development and Testing”. In

summary, the Digital Twin Platform (DTP) is a cloud-based and semantically enabled data integration middleware

that includes a comprehensive suite of services to guarantee scalability, reliability, and enhanced security, and it

is responsible for: a) providing authentication and authorisation to COGITO applications and users, b) handling

data from various input sources such as BIM authoring tools, project management tools, cameras, LiDAR scanners

and IoT devices, and c) responding to data requests performed by the other COGITO applications. The DTP follows

a multi-layered architecture comprising six core layers. Each layer contains a set of software components

implementing the Service-Oriented Architecture (SOA) design pattern and performing various business logic

operations to support the main objectives of the COGITO solution. The primary output of the work conducted

thus far in T7.5 is the implementation, deployment and testing of the DTP that comprises only a set of the core

software components following the Minimum Viable Product (MVP) approach. These components have been

deployed in the various layers of the DTP based on the outcomes of “T7.1 – Digital Twin Platform Design &

Interface Specification”. This document mainly focuses on presenting the current version of the DTP and its

software components along with the functionalities they provide, the technology stacks they build upon, the

interfaces they use, the usage instructions and the assumptions and restrictions.

In the first version, the DTP provides a set of core functionalities such as i) authenticating users and applications,

ii) generating the knowledge graph based on the latest version of the COGITO ontologies and, iii) responding to

data requests performed by other COGITO applications. Its usage is demonstrated and evaluated with example

files obtained during the development phase from various online sources.

 D7.9 Digital Twin Platform v1 3

COGITO – GA ID. 958310

COnstruction phase

dIGItal Twin mOdel

Table of contents

Executive Summary .. 2

Table of contents .. 3

List of Figures .. 5

List of Tables ... 6

List of Acronyms ... 7

1 Introduction .. 8

1.1 Scope and Objectives of the Deliverable ... 8

1.2 Relation to other Tasks and Deliverables... 9

1.3 Structure of the Deliverable ... 9

2 Digital Twin Platform .. 10

2.1 Software Components Classification ... 10

2.2 Deployment Environment .. 11

3 Authentication and Authorisation Infrastructure .. 14

3.1 Identity Provider... 14

3.1.1 Overview ... 14

3.1.2 Technology Stack and Implementation Tools .. 14

3.1.3 API Documentation... 15

3.1.4 Usage Walkthrough .. 16

3.1.5 Application Example ... 17

3.1.6 Licensing ... 17

3.1.7 Installation Instructions .. 17

3.1.8 Development and Integration Status ... 18

3.1.9 Requirements Coverage ... 18

3.1.10 Assumptions and Restrictions .. 18

4 Project Creation and Ontology Population .. 19

4.1 Input Data Management component .. 19

4.1.1 Prototype Overview .. 19

4.1.2 Technology Stack and Implementation Tools .. 20

4.1.3 Input, Output and API Documentation .. 20

4.1.4 Usage Walkthrough .. 23

4.1.5 Licensing ... 26

4.1.6 Installation Instructions .. 26

4.1.7 Development and Integration Status ... 26

4.1.8 Requirements Coverage ... 26

4.1.9 Assumptions and Restrictions .. 27

4.2 Knowledge Graph Generator ... 28

 D7.9 Digital Twin Platform v1 4

COGITO – GA ID. 958310

COnstruction phase

dIGItal Twin mOdel

4.2.1 Prototype Overview .. 28

4.2.2 Technology Stack and Implementation Tools .. 28

4.2.3 Input, Output and API Documentation .. 29

4.2.4 Application Example ... 30

4.2.5 Licensing ... 32

4.2.6 Installation Instructions .. 32

4.2.7 Development and Integration Status ... 32

4.2.8 Requirements Coverage ... 32

4.2.9 Assumptions and Restrictions .. 32

5 Data Processing Operations and Data Delivery .. 33

5.1 Digital Twin Runtime component .. 33

5.1.1 Prototype Overview .. 33

5.1.2 Technology Stack and Implementation Tools .. 34

5.1.3 Input, Output and API Documentation .. 35

5.1.4 Usage Walkthrough .. 37

5.1.5 Application Example ... 44

5.1.6 Licensing ... 46

5.1.7 Installation Instructions .. 46

5.1.8 Development and Integration Status ... 46

5.1.9 Requirements Coverage ... 46

5.1.10 Assumptions and Restrictions .. 47

6 Conclusions ... 48

References .. 49

 D7.9 Digital Twin Platform v1 5

COGITO – GA ID. 958310

COnstruction phase

dIGItal Twin mOdel

List of Figures

Figure 1 DTP’s overall architecture along with its software components ... 10
Figure 2 Deployment of the core software components following the MVP approach .. 11
Figure 3 Identity Provider’s user authentication process .. 14
Figure 4 Identity Provider’s user login page ... 16
Figure 5 Identity Provider’s user registration page .. 16
Figure 6 Identity Provider’s Account Management console .. 17
Figure 7 Identity Provider’s user authentication example ... 17
Figure 8 Example of a knowledge graph generated by the KGG component .. 19
Figure 9 IDM’s sub-components along with their interactions .. 20
Figure 10 View of all user’s projects ... 23
Figure 11 Creation of a new project ... 23
Figure 12 Assignment of registered users to a project .. 24
Figure 13 Creation of a new property in a project ... 24
Figure 14 Uploading the as-planned data using the IDM component ... 25
Figure 15 View of all registered users .. 25
Figure 16 Assigning a role to the user account .. 26
Figure 17 High-level Architecture of Knowledge Graph Generation ... 28
Figure 18 Generation of COGITO’s TTLs and TDs ... 30
Figure 19 Example of RDF generated by the ETL tools contained in the KGG component.................................... 31
Figure 20 Example of Thing Description generated by the Thing Manager ... 31
Figure 21 Digital Twin Runtime component’s main interactions ... 34
Figure 22 Example of DT Runtime component’s configurable module and its IFC output 34
Figure 23 View of all user’s applications .. 37
Figure 24 Creation of a new application... 38
Figure 25 Assignment of a role to the application ... 38
Figure 26 Creation of new endpoint ... 39
Figure 27 Creation of a new Data Collection .. 39
Figure 28 Uploading and annotating files in a Data Collection .. 40
Figure 29 Creation of a new MQTT channel ... 41
Figure 30 Enabling or disabling an MQTT channel ... 41
Figure 31 Creation of a new Actor .. 41
Figure 32 Creation of a new property in an Actor .. 42
Figure 33 View of all created modules ... 43
Figure 34 Creation of a new module .. 43
Figure 35 Workspace for configuring and editing modules ... 44
Figure 36 DT Runtime component’s system console ... 44
Figure 37 Part of the UC1.1 sequence diagram .. 45
Figure 38 The module UC.1.1 – Request 5 which provides the as-planned 4D BIM data...................................... 45

 D7.9 Digital Twin Platform v1 6

COGITO – GA ID. 958310

COnstruction phase

dIGItal Twin mOdel

List of Tables

Table 1 Main characteristics of DTP’s software components .. 13
Table 2 Libraries and Technologies used in the Identity Provider ... 14
Table 3 Identity Provider’s Authentication API .. 15
Table 4 Identity Provider’s Admin API .. 15
Table 5 Identity Provider’s requirements coverage ... 18
Table 6 Libraries and Technologies used in the Input Data Management component ... 20
Table 7 Input Data Management component’s REST API .. 21
Table 8 IDM component’s Requirements Coverage... 26
Table 9 Libraries and Technologies used in the Thing Manager and the Wrapper module 29
Table 10 Thing Manager’s REST API ... 29
Table 11 Thing Description Directory’s REST API ... 30
Table 12 KGG component’s Requirements Coverage .. 32
Table 13 Libraries and Technologies used in the Digital Twin Runtime component ... 35
Table 14 DT Runtime component’s REST API Endpoints .. 35
Table 15 DT Runtime component’s Requirements Coverage .. 47

 D7.9 Digital Twin Platform v1 7

COGITO – GA ID. 958310

COnstruction phase

dIGItal Twin mOdel

List of Acronyms

Term Description

AAI Authentication and Authorisation Infrastructure

AMQP Advanced Message Queueing Protocol

API Application Programming Interface

BIM Building Information Model

COGITO Construction Phase diGItal Twin mOdel

DB Database

DCC Digital Command Centre

DI Dependency Injection

DT Digital Twin

DTP Digital Twin Platform

ETL Extract, Transform and Load

GUI Graphical User Interface

IFC Industry Foundation Classes

IoT Internet of Things

JMS Java Messaging System

JSON JavaScript Object Notation

JVM Java Virtual Machine

MQTT Message Queue Telemetry Transport

MVD Model View Definition

RDF Resource Description Framework

REST Representational State Transfer

SHACL SHapes Constraint Language

SOA Service Oriented Architecture

SSE Server Sent Events

SSO Single-Sign On

STEP Standard for the Exchange of Product Data

STOMP Streaming Text-Oriented Messaging Protocol

TD WoT Thing Description

TDD Things Description Directory

VM Virtual Machine

WODM Word Order Definition and Monitoring Tool

XML Extensible Markup Language

 D7.9 Digital Twin Platform v1 8

COGITO – GA ID. 958310

COnstruction phase

dIGItal Twin mOdel

1 Introduction

This deliverable reports on the implementation of the DTP reflecting the outcomes of the work conducted

between M7 and M18 in “T7.5 – Digital Twin Platform Development and Testing”. It builds upon the detailed

architecture of “T7.1 – Digital Twin Platform Design & Interface Specification”, the overall COGITO system

architecture of “T2.4 – COGITO System Architecture Design”, and the definition of the COGITO ontology network

of “T3.2 – COGITO Data Model, Ontology Definition and Interoperability Design”. This work presents the first

version of the core software components located in the various layers of the DTP.

In summary, the DTP consists of six core layers [1]. The Authentication Layer ensures that user and application

access is restricted to specific roles and groups. The Data Ingestion Layer is responsible for loading new datasets

and orchestrating the execution of the Extract, Transform and Load (ETL) and Model Checking (MC) services for

generating the knowledge graph and populating the corresponding databases. At the same time, the Data

Persistence Layer provides a cloud-based data storage solution including graph, relational and time-series

databases. The Data Management Layer satisfies the data needs of the various COGITO applications by providing

a runtime environment, which contains a set of reusable modules performing well-defined business-logic

operations. for handling data requests and delivering the responses using the Messaging Layer. The Data Post-

Processing Layer provides software components responsible for performing data completeness checking and

handling BIM models that conform to Industry Foundation Classes (IFC) standard.

Each of the above layers contains a set of core software components performing various business logic

operations to support the main objectives of the COGITO solution.

1.1 Scope and Objectives of the Deliverable

The main scope of this deliverable is to report on the implementation of the core software components located

in the various layers of the DTP. These components are based either on existing open-source projects or have

been designed and developed from scratch. The first release of the DTP consists of the following software

components:

• Identity Provider: This component is part of the Authentication Layer and provides a fully functional

identity and access management solution based on the open-source project Keycloak. It ensures that

access is restricted to specific users and applications with the appropriate permissions.

• Input Data Management component: This component is part of the Data Ingestion Layer and is

responsible for registering external applications, configuring user roles, creating projects, and

supervising the internal business-logic operations of the DTP.

• BIM Management component: This component handles BIM models that conform to the Industry

Foundation Classes (IFC) standard. It performs various BIM related business-logic operations such as

serialising/deserialising, querying, updating, and merging IFC models.

• Knowledge Graph Generator: This component is part of the Data Ingestion Layer and is responsible for

populating COGITO’s ontologies, validating the generated knowledge graph and generating the Thing

Descriptions (TD)1. It supports the transformation of heterogeneous data such as IFC, JSON, XML and

CSV coming from various input data sources.

• Digital Twin Runtime component: This component is part of the Data Management Layer and is

responsible for creating and hosting application-driven modules used for orchestrating the data

processing operations. It ensures that the data coming from the Persistence Layer are synchronised and

harmonised before being forwarded to the other COGITO applications.

1 The TD is an entity which contains meta-data of Things, where a Thing is an abstraction of physical or virtual objects.

 D7.9 Digital Twin Platform v1 9

COGITO – GA ID. 958310

COnstruction phase

dIGItal Twin mOdel

1.2 Relation to other Tasks and Deliverables

This deliverable is the outcome of the “T7.5 – Digital Twin Platform Development and Testing”, which falls under

the activities of “WP7 – COGITO Digital Twin Platform”. There are several dependencies of this work to other

deliverables and tasks:

• The configuration of the Keycloak Identity Provider is based on the work performed in “T2.1 – Elicitation

of Stakeholder Requirements” and the corresponding deliverable “D2.1 Stakeholder requirements for

the COGITO system”.

• The development of the first release of the DTP and its core software components is based on the work

performed in “T7.1 – Digital Twin Platform Design & Interface Specification” and the corresponding

deliverable “D7.1 – Digital Twin Platform Design & Interface Specification v1”.

• The deployment and testing of the various ETL and MC components is based on the work performed in

“T7.2 – Extraction, Transformation and Loading tools (ETL) and Model-Checking” and the corresponding

deliverable “D7.3 – Extraction Transformation & Loading Tools and Model Checking v1”.

• The creation and deployment of DTP’s application-driven modules used for orchestrating the various

data processing operations is based on the work performed in “T2.4 – COGITO System Architecture

Design” and the corresponding deliverable “D2.5 – COGITO System Architecture v2”.

1.3 Structure of the Deliverable

This deliverable is organised according to the identified functional requirements of the DTP. As mentioned above,

the DTP is a cloud-based data integration middleware responsible for: i) providing an authentication and

authorisation mechanism to COGITO users and applications, ii) loading and validating information coming from

various input data sources, and iii) supervising and orchestrating data processing operations and data delivery

requests. This deliverable is structured as follows:

• Section 1 summarises the outcomes of the work conducted in “T7.1 – Digital Twin Platform Design &

Interface Specification“ and their relationships with the development activities of “T7.5 – Digital Twin

Platform Development and Testing”.

• Section 2 presents the overall architecture and the deployment of the core software components in the

different layers of the DTP.

• Section 3 presents the Identity Provider, which is part of the Authentication Layer and is responsible for

authenticating COGITO’s users and applications.

• Section 4 presents the first release of the core components contained in the Data Ingestion Layer, which

are responsible for loading data from various input data sources, managing projects, populating the

ontologies, and validating the knowledge graphs.

• Section 5 presents the DT Runtime component, which is part of the Data Management Layer and is

responsible for handling the data requests and harmonising the data before being delivered to the final

destinations.

• Section 6 presents the conclusions along with a release plan for the final version of the DTP.

 D7.9 Digital Twin Platform v1 10

COGITO – GA ID. 958310

COnstruction phase

dIGItal Twin mOdel

2 Digital Twin Platform

At this phase of the project, the development activities in “T7.5 – Digital Twin Platform Development and Testing”

follow the Minimum Viable Product (MVP) approach. The first release of the DTP provides all necessary features

to be usable by the developers and the early users of the COGITO system [2]. During the integration, they can

provide valuable feedback for developing the final release. This section describes the overall architecture and

the deployment characteristics of the core software components installed in the various layers of the DTP. Some

of these components are based on open-source projects, while others are developed from scratch.

2.1 Software Components Classification

As mentioned in the previous section, the DTP is responsible for loading the as-designed and as-built data,

populating the ontology network, validating the knowledge graphs, and handling the data requests performed

by the other COGITO applications. DTP’s architecture design is based on a multi-layered approach comprising of

six core layers. Each layer has different deployment characteristics and contains a set of software components

as shown in Figure 1.

Figure 1 DTP’s overall architecture along with its software components

 D7.9 Digital Twin Platform v1 11

COGITO – GA ID. 958310

COnstruction phase

dIGItal Twin mOdel

The software components are deployed into the DTP layers implementing various business-logic operations to

support the main objectives of the COGITO system. Based on their non-functional requirements they are

classified into three categories:

• Standalone Software Applications: This category contains software components configured to run on

one computational node. They provide static endpoints in various protocols (HTTP, TCP, WS) and

common security standards (SSL, TLS). For instance, the Identity Provider, the Input Data Management

component, the DT Runtime component, and the Message Broker are deployed in the DTP as standalone

software applications.

• Microservices: This category contains software components configured to run on multiple

computational nodes simultaneously. These components are packaged and deployed as Docker

containers in a cloud-computing infrastructure, providing flexibility, high-availability, and scalability.

They implement the Service-Oriented Architecture (SOA) design pattern to achieve asynchronous

communication through the Messaging Layer that provides an integrated communication environment

supporting various asynchronous messaging protocols. For instance, the MVD Completeness Checker,

the B-rep Generator and the IFC Optimiser are deployed in the DTP as microservices.

• Software Libraries: This category contains low-level software packages such as parsers and application-

specific algorithms used to develop other components and applications. They often provide multithread

processing operations and exchange information through Programming APIs.

2.2 Deployment Environment

Currently, only the core software components have been deployed into the DTP. Figure 2 illustrates an overview

regarding the actual implementation status.

Figure 2 Deployment of the core software components following the MVP approach

As shown in Figure 2, the software components included in the first release of the DTP are highlighted in green

and explained as follows:

 D7.9 Digital Twin Platform v1 12

COGITO – GA ID. 958310

COnstruction phase

dIGItal Twin mOdel

The Authentication Layer contains the first release of the Identity Provider that offers a central identity and

access management solution for COGITO users. It's based on the open-source project Keycloak, an industry-

standard implementation supporting various authentication protocols such as OpenID Connect and SAML 2.0.

The Messaging Layer contains the first release of the Message Broker that offers an integrated solution enabling

asynchronous bi-directional communication between DTP’s software components and other COGITO

applications. It is based on the open-source project Apache ActiveMQ Artemis2 offering a high-performance

message broker that supports multiple messaging protocols.

The Data Ingestion Layer contains the first releases of the following core software components:

• The Input Data Management component provides a Graphical User Interface (GUI) and a REST API which

offers core functionalities such as project creation, user management, and loading of the as-planned

data.

• The BIM Management component offers a Java-based API for serialising/deserialising, querying,

updating, and merging IFC data.

• The Knowledge Graph Generator includes a) the first release of the various ETL tools described in “D7.3

– Extraction, Transformation & Loading Tools and Model Checking v1” and, b) the Thing Manager,

responsible for supervising the data transformation processes, validating the knowledge graphs and

generating the Thing Descriptions.

The Data Persistence Layer contains the first releases of the following core software components:

• The File Storage System offers a REST API for storing, retrieving, and deleting files.

• The Relational Database is used for storing metadata related to projects, users, roles, connected

applications, and data collections.

• The Triplestore is used for storing the validated RDF data.

• The Thing Description Directory is used for storing the Thing Descriptions generated by the Thing

Manager.

The Data Management Layer contains the first releases of the following core software components:

• The DT Runtime component responsible for i) hosting and supervising application-driven modules

performing various data processing operations and, ii) providing configurable endpoints for the

interaction with the other COGITO tools

• The DT Library which contains a set of ready-made coding blocks allowing external developers to create

their own application-driven modules.

The Data Post-Processing Layer contains a set of components that use the asynchronous communication

channels provided by the Messaging Layer. Depending on the complexity of the input data, these components

can have higher execution times than other components. Currently, the Data Post-Processing Layer contains the

following software components:

• The MVD Checker validates IFC data in terms of completeness and semantic consistency by applying

predefined rules created by the MVD specification.

• The B-rep Generator uses the geometric information included in the IFC and generates triangulated B-

rep solids of the structural and non-structural elements.

• The IFC Optimiser performs lossless compression of an IFC to speed up loading and data processing

operations. It’s generating a new IFC with reduced file size.

In general, the DTP consists of software components that require one running instance and other software

components that can have multiple running instances simultaneously. The software components that require

one running instance are deployed on Virtual Machines (VM). In this case, the open-source server Nginx is used

as a reverse proxy server for forwarding the HTTP requests to the local destinations of the deployed standalone

2 ActiveMQ Artemis https://activemq.apache.org/

https://activemq.apache.org/

 D7.9 Digital Twin Platform v1 13

COGITO – GA ID. 958310

COnstruction phase

dIGItal Twin mOdel

applications. Currently, the Identity Provider, the Input Data Management, the File Storage System, and the DT

Runtime are behind Nginx.

On the other hand, the software components that implement the SOA design pattern are deployed as

containerised applications on a private cloud computing environment hosted on dedicated physical servers. In

this case, the running instances exchange data with the DTP through a central messaging system using local

endpoints that are not exposed to the internet. Within the first release of the DTP, the MVD Completeness

Checker, the B-rep Generator and the IFC Optimiser are deployed using the Docker technology. Table 1

summarises the main characteristics and the deployment status of the software components that have been

analysed previously.

Table 1 Main characteristics of DTP’s software components

Core Layers Software Components Type Origin Deployment Status

Authentication Layer Identity Provider
Standalone
Application

Open source Deployed

Data Ingestion Layer

Input Data Management
Standalone
Application

Developed from
scratch

Deployed

BIM Management
Software
Library

Developed from
scratch

Tested

Knowledge Graph Generator
Standalone
Application

Developed from
scratch

Tested

Data Persistence
Layer

Relational DB (data model)
Standalone
Application

Developed from
scratch

Deployed

File Storage System
Standalone
Application

Developed from
scratch

Deployed

Triplestore (server)
Standalone
Application

Open source Deployed

Thing Directory
Standalone
Application

Developed from
scratch

Tested

Timeseries DB (server)
Standalone
Application

Open source Pending

Key-Value DB (server)
Standalone
Application

Open source Pending

Data Management
Layer

DT Runtime
Standalone
Application

Developed from
scratch

Deployed

DT Library
Standalone
Application

Developed from
scratch

Tested

Data Post-Processing
Layer

MVD Checker Microservice
Partially
developed

Deployed

B-rep Generator Microservice
Partially
developed

Deployed

IFC Optimiser Microservice
Partially
developed

Deployed

Messaging Layer Message Broker
Standalone
Application

Open source Tested

 D7.9 Digital Twin Platform v1 14

COGITO – GA ID. 958310

COnstruction phase

dIGItal Twin mOdel

3 Authentication and Authorisation Infrastructure

The various COGITO applications can be classified based on their functional and non-functional requirements.

Some applications offer a Graphical User Interface (GUI) and require a system to authenticate and authorise the

COGITO users. The Authentication Layer provides an Authentication and Authorization Infrastructure (AAI),

allowing the DTP to manage the users and their roles by providing various functionalities to COGITO system, such

as registration, password recovery, authentication, and authorisation endpoints.

3.1 Identity Provider

The AAI solution of the DTP relies on the Keycloak
3
 open-source identity and access management solution.

Keycloak is an industry-standard implementation for identity and access management supporting various

protocols such as the OpenID Connect and SAML 2.0. Within COGITO, the OpenID Connect protocol is used,

offering Single Sign-On (SSO) capabilities to the COGITO applications.

3.1.1 Overview

The Identity Provider has been deployed as standalone software application behind the Nginx reverse proxy

server and offers an integrated solution for access management. The authentication process of a user is divided

into three main parts:

1. The COGITO application redirects the user to Keycloak to perform the authentication process.

2. The user provides the credentials, and if the authentication is successful, Keycloak redirects the user

back to the COGITO application.

3. The COGITO application performs a new request to the Keycloak service for retrieving the Access, ID,

and Refresh tokens.

Figure 3 Identity Provider’s user authentication process

3.1.2 Technology Stack and Implementation Tools

The Identity Provider is based on the open-source project Keycloak. The work conducted in T7.5 is related to the

installation and configuration of the service. The service is behind the Nginx reverse proxy server, which handles

the SSL encryption and forwards the HTTP requests to the local destination.

Table 2 Libraries and Technologies used in the Identity Provider

Technology Name Version License

Keycloak 16.1.1 Apache Licence 2.0

Nginx 1.20.2 BSD

Certbot 1.22 Apache Licence 2.0

3 Keycloak Identity and Access Management https://www.keycloak.org

https://www.keycloak.org/

 D7.9 Digital Twin Platform v1 15

COGITO – GA ID. 958310

COnstruction phase

dIGItal Twin mOdel

3.1.3 API Documentation

The Keycloak server is configured to provide i) an Authentication REST API responsible for granting access to

users based on their credentials and ii) an Admin REST API that allows administrator users to access the

management resources that are provided by Keycloak’s Admin Console.

3.1.3.1 Authentication REST API

Each COGITO application that requires authentication through the Identity Provider has a unique ClientID and a

Secret generated by DTP developers during the configuration of Keycloak. The endpoints and the parameters

required for preparing external applications to connect to the Keycloak server are listed in Table 3.

Table 3 Identity Provider’s Authentication API

Name Method Endpoint

OpenID Endpoint GET
https://auth.cogito-project.com/auth/realms/cogito/.well-known/openid-
configuration

Auth URL GET https://auth.cogito-project.com/auth/realms/cogito/protocol/openid-connect/auth

Access Token URL GET
https://auth.cogito-project.com/auth/realms/cogito/protocol/openid-
connect/token

The OpenID Endpoint provides the main configuration parameters of the authentication server. The response is

a JSON object which includes all available endpoints, scopes, and signing algorithms. The Auth URL is the

endpoint of the authorisation server. It is used to retrieve an authorization code which is included in the

redirected URL after a successful login. On the other hand, the Access Token URL is the endpoint of the

authentication server. It is used by COGITO application to request the Access, ID and Refresh Tokens and it uses

as parameter the authorisation code.

3.1.3.2 Admin REST API

The Identity Provider offers a fully functional Admin REST API which offer access to all features provided by the

Keycloak’s Admin Console. This API is mainly used within the Input Data Management component by the DTP

Identity Manager for retrieving the complete list of registered users and roles. This information is required for

assigning or removing roles from the registered users. The endpoints and their parameters are listed in Table 4.

Table 4 Identity Provider’s Admin API

Name Method Endpoint

Get Users GET https://auth.cogito-project.com/auth/admin/realms/cogito/users

Get Roles GET https://auth.cogito-project.com/auth/admin/realms/cogito/roles

Get User Roles GET
https://auth.cogito-project.com/auth/admin/realms/cogito/users/{user-id}/role-
mappings/realm

Assign a Role to
User

POST
https://auth.cogito-project.com/auth/admin/realms/cogito/users/{user-id}/role-
mappings/realm

Remove a Role
from a User

DELETE
https://auth.cogito-project.com/auth/admin/realms/cogito/users/{user-id}/role-
mappings/realm

 D7.9 Digital Twin Platform v1 16

COGITO – GA ID. 958310

COnstruction phase

dIGItal Twin mOdel

The requests Assign a Role to User (POST) and Remove a Role from a User (DELETE) require the list of the selected

roles as body parameter. Each user role is defined as JSON object that contains the Role Id and the Role Name.

The detailed documentation4 and the Postman collection of this API are available online.

3.1.4 Usage Walkthrough

The COGITO applications automatically redirect the unauthenticated users to the main page of the Identity

Provider. If the user has valid credentials, he/she can proceed with the authentication process using the login

page as shown in Figure 4.

Figure 4 Identity Provider’s user login page

Otherwise, a registration process is required. The Identity Provider offers a registration page for registering new

users as shown in Figure 5.

Figure 5 Identity Provider’s user registration page

After the registration process, the users still have no access to the COGITO system. The DTP Identity Manager

should assign the proper roles to grant users access to COGITO applications. Furthermore, each user has access

4 Digital Twin Platform API documentation https://api.cogito-project.com

https://api.cogito-project.com/

 D7.9 Digital Twin Platform v1 17

COGITO – GA ID. 958310

COnstruction phase

dIGItal Twin mOdel

to Keycloak’s Account Management Console, which provides access to a basic account management system as

shown in Figure 6. The URL5 of this console is open to the internet and offers an alternative way for users to

register without accessing the COGITO applications. It also provides pages for updating the users account

information and resetting their password.

Figure 6 Identity Provider’s Account Management console

3.1.5 Application Example

As shown in the example of Figure 7, the user authentication process has three steps. Initially, the COGITO

application redirects the user (1) to Keycloak to perform the authentication process. Next, the user provides the

credentials, and if the authentication is successful, Keycloak redirects (2) the user back to the COGITO application.

Finally, the COGITO application performs a new POST request to the Keycloak (3) for retrieving the Tokens.

Figure 7 Identity Provider’s user authentication example

3.1.6 Licensing

The Identity Provider is based on the open-source project Keycloak and provides an identity and access

management solution which is released under the Apache License 2.0.

3.1.7 Installation Instructions

This component is deployed as standalone software application in the Authentication Layer. It provides various

endpoints which are open to the internet. No file download, installation or maintenance is required by the

COGITO users.

5 Account Management Console https://auth.cogito-project.com/auth/realms/cogito/account/#/

https://auth.cogito-project.com/auth/realms/cogito/account/#/

 D7.9 Digital Twin Platform v1 18

COGITO – GA ID. 958310

COnstruction phase

dIGItal Twin mOdel

3.1.8 Development and Integration Status

As mentioned previously, the work performed in this component was focused mainly on installation and

configuration activities. Currently, the service is fully functional, and the configuration is aligned with the

outcomes of the “T2.1 – Elicitation of Stakeholder Requirements” and “T2.4 – COGITO System Architecture

Design”. The stakeholders identified in T2.1 have been introduced in Keycloak as different roles [3]. Furthermore,

the COGITO applications that include user authentication as a functional requirement are registered to Keycloak

as Clients.

3.1.9 Requirements Coverage

The Identity Provider covers some of DTP’s functional and non-functional requirements defined in T2.4 and the

corresponding deliverable “D2.5 – COGITO System Architecture v2”. The functional and non-functional

requirements which are related to this component are presented in Table 5. The Req-1.1 is fully covered thanks

to the central identity and access management solution. Additionally, Req-2.3 is achieved due to Nginx server

which offers SSL encryption.

Table 5 Identity Provider’s requirements coverage

Type ID Description Status

Functional Req-1.1 Authenticates COGITO users and applications Achieved

Non-Functional Req-2.3 Security Achieved

3.1.10 Assumptions and Restrictions

The first release of the Identity Provider has been deployed under certain assumptions and restrictions, listed

below:

• It has been configured to manage a single realm instance dedicated to the COGITO project. Currently,

all tests regarding the authentication mechanism have been performed using the IDM component and

Postman. The COGITO tool developers have access to the credentials of a demo client that they can use

to test the authentication and authorisation system.

• The roles and the clients are configured based on the outcomes of the T2.1 and T2.4. New roles or clients

can be added or removed during the integration phase based on the needs.

• It supports email notifications allowing users to reset their passwords. In the final release, this

functionality will include additional email notifications related to security issues.

 D7.9 Digital Twin Platform v1 19

COGITO – GA ID. 958310

COnstruction phase

dIGItal Twin mOdel

4 Project Creation and Ontology Population

One of the core functionalities of the DTP, is to load the as-planned data and to populate the corresponding

knowledge graphs and databases. Before the construction works start, the as-planned data of a project are

loaded into the DTP through the Input Data Management component. Within COGITO, the as-planned data come

from three different sources: a) BIM authoring tools such as Autodesk Revit and Autodesk Civil 3D, providing the

3D BIM model along with the 4D semantics; b) project management tools such as Microsoft Project and

Primavera P6, providing the detailed schedule of the construction works; and c) ERP solutions, providing the as-

planned resources.

When the as-planned data are available, data completeness checking, and file-size optimisation operations are

performed to ensure that the input files meet the requirements of the various transformation tools. Once the

data are ready, the Knowledge Graph Generator (KGG) can generate the complete knowledge graph which

represents a network of physical and virtual entities (i.e., workers, machinery, equipment, zones, building

elements, activities) and illustrates the relationships between them as shown in the example of Figure 8 [4].

Furthermore, it generates and stores the corresponding Thing Descriptions into the Thing Description Directory.

A Thing Description is an object which follows the WoT Thing Description specification and provides a set of

meta-data and interfaces of Things, where a Thing is an abstraction of physical or virtual entities.

Figure 8 Example of a knowledge graph generated by the KGG component

In this section, we present the first release of the components involved in the processes of project initialisation,

data loading and ontology population and validation.

4.1 Input Data Management component

The first release of the Input Data Management (IDM) component has been deployed in the Data Ingestion Layer.

It provides a web-based GUI that allows users with proper permissions to create new projects, assign users to

projects, and upload the as-planned data. Furthermore, it offers a REST API allowing other COGITO applications

to access information related to the projects, users, and roles.

4.1.1 Prototype Overview

The IDM component is deployed as a standalone application into the Data Ingestion Layer. It uses modern web

technologies to deliver a rich GUI and offers authorised access to COGITO users through the Identity Provider.

 D7.9 Digital Twin Platform v1 20

COGITO – GA ID. 958310

COnstruction phase

dIGItal Twin mOdel

The implementation of this component is based on Spring Boot technology which is built on top of the Spring

Framework. It contains an embedded version of the Apache Tomcat which hosts all required software packages.

The web application follows the Model-View-Control (MVC) approach and uses the Spring Security Framework

with the Spring Keycloak Adapter for managing the access policies of the COGITO users.

 It also provides a REST API allowing the COGITO applications to interact with the DTP for project creation, user

management and loading as-planned data. Figure 9 shows the main interactions between the IDM component

and the other entities of the DTP.

Figure 9 IDM’s sub-components along with their interactions

4.1.2 Technology Stack and Implementation Tools

The IDM component is based completely on open-source technologies. As mentioned previously, it is built on

top of the Spring Framework and is deployed as standalone application. It’s installed behind the Nginx reverse

proxy server, which handles the SSL encryption and forwards the HTTP requests to the correct destination.

Table 6 Libraries and Technologies used in the Input Data Management component

Technology Name Version License

Spring Framework 5.3.1 Apache Licence 2.0

Spring Boot 2.3.0 Apache Licence 2.0

Spring Security 5.5.0 Apache Licence 2.0

Thymeleaf 3.0.15 Apache Licence 2.0

Hibernate 5.6.9 LGPL 2.1

MySQL 8.0.24 GPLV2

Nginx 1.20.2 BSD

Certbot 1.22 Apache Licence 2.0

4.1.3 Input, Output and API Documentation

The IDM component provides a REST API enabling the COGITO applications to access data related to the projects.

This API is used by various COGITO applications such as the Digital Command Centre (DCC), the Process Modeling

and Simulation (PMS) and the Work Order Definition and Monitoring (WODM) to retrieve data related to the

available projects and their users. The endpoints along with their parameters are listed in Table 7.

 D7.9 Digital Twin Platform v1 21

COGITO – GA ID. 958310

COnstruction phase

dIGItal Twin mOdel

Table 7 Input Data Management component’s REST API

Name Method Endpoint
PP = Path Parameter

FP = Form Parameter

Get all Projects GET https://dtp.cogito-project.com/api/projects N/A

Get a Project GET
https://dtp.cogito-
project.com/api/projects/{projectId}

(PP) projectId: GUID

Get all Users of a
Project

GET
https://dtp.cogito-
project.com/api/projects/{projectId}/users

(PP) projectId: GUID

Get all Properties
of a Project

GET
https://dtp.cogito-
project.com/api/projects/{projectId}/properties

(PP) projectId: GUID

Get all Users GET https://dtp.cogito-project.com/api/users N/A

Get all Roles of a
User

GET
https://dtp.cogito-
project.com/api/users/{userId}/roles

(PP) userId: GUID

Get a User GET https://dtp.cogito-project.com/api/users/{userId} (PP) userId: GUID

Get all Projects of a
User

GET
https://dtp.cogito-
project.com/api/users/{userId}/projects

(PP) userId: GUID

The following are examples of JSON responses returned by the GET requests of IDM’s REST API. For some

requests, the responses have no body content. In this case, the HTTP status code is used: i) the "200 - OK" is

returned if the request is successful, the "404 - Not Found" is returned if the resource is unavailable and iii) the

response "400 - Bad Request" is returned if an error has occurred.

Get all Projects

[
 {
 "name": "DEMO_01",
 "id": "1cf55b98-db69-46f8-a64e-a531d512d4d3"
 },
 {
 "name": "DEMO_02",
 "id": "c69407ff-2f81-4138-85d1-21a5e9e24550"
 }
]

Get a Project

{
 "name": "DEMO_01",
 "description": "4D BIM provided by UEDIN",
 "id": "1cf55b98-db69-46f8-a64e-a531d512d4d3"
}

Get all Users of a Project

[
 {
 "firstname": "Kyriakos",
 "id": "1b20a241-c5fe-422e-8043-01461da1a2c3",
 "email": "katsigarakis@gmail.com",
 "lastname": "Katsigarakis"
 }
]

Get all Properties of a Project

[
 {
 "name": "country",
 "value": "GR"
 },
 {

 D7.9 Digital Twin Platform v1 22

COGITO – GA ID. 958310

COnstruction phase

dIGItal Twin mOdel

 "name": "datastore",
 "value": "https://his.cogito-project.com/demo_01"
 },
 {
 "name": "triplestore",
 "value": "https://triplestore.cogito-project.com/demo_01"
 }
]

Get all Users

[
 {
 "firstname": "Kyriakos",
 "id": "1b20a241-c5fe-422e-8043-01461da1a2c3",
 "email": "katsigarakis@gmail.com",
 "lastname": "Katsigarakis"
 },
 {
 "firstname": "Georgios",
 "id": "685d8e70-8f7d-4c23-97f9-69dffd52677d",
 "email": "g.lilis@ucl.ac.uk",
 "lastname": "Lilis"
 },
 {
 "firstname": "Frédéric",
 "id": "47e5af5c-832c-472c-abcb-88d3bc80efcc",
 "email": "f.bosche@ed.ac.uk",
 "lastname": "Bosché"
 },
 {
 "firstname": "Giorgos",
 "id": "4d3f182e-997a-4d63-a843-81d498d2240c",
 "email": "g.giannakis@hypertech.gr",
 "lastname": "Giannakis"
 }
]

Get all Roles of a User

[
 {
 "name": "DTP Developer",
 "id": "95f260f6-880a-4899-abfc-0777a07e2a36"
 },
 {
 "name": "DTP Project Manager",
 "id": "90080412-bd71-4397-92a0-d01415c463b7"
 }
]

Get a User

{
 "firstname": "Kyriakos",
 "id": "1b20a241-c5fe-422e-8043-01461da1a2c3",
 "email": "katsigarakis@gmail.com",
 "lastname": "Katsigarakis"
}

Get all Projects of a User

[
 {
 "name": "DEMO_01",
 "id": "1cf55b98-db69-46f8-a64e-a531d512d4d3"
 }
]

 D7.9 Digital Twin Platform v1 23

COGITO – GA ID. 958310

COnstruction phase

dIGItal Twin mOdel

4.1.4 Usage Walkthrough

As shown in Figure 10, when the COGITO users sign into the IDM component through the DTP’s Identity Provider,

they see the table of projects created in the past and some of their details, such as the project description and

creation date. On the right side of the table, the Actions column contains a button for deleting a project after

confirmation. By clicking on any project, they can see further information and perform additional actions.

Depending on their roles, users may have access to projects they created or the entire list. The role DTP Project

Manager provides access to all projects, while the role Project Manager to projects created by the active user.

Figure 10 View of all user’s projects

On the same page, the users can create a new project by clicking the “+ Project” button. As shown in Figure 11 a

modal popup window appears which allows the users to provide basic information such as the project name and

the project description. At any time, users can cancel the project creation process by clicking on the Close button.

Figure 11 Creation of a new project

Once the project is created, the users can proceed with the configuration. They need to define the project

members and, if required, add global project parameters. On the main page of a project, the users with proper

roles can assign project members by clicking the “+ User” button. As shown in Figure 12, a modal window

containing a combo box element with all registered users appears. The assignment of the selected user with the

project is done by clicking the Assign button. At any time, users can cancel the assignment process by clicking on

the Close button.

 D7.9 Digital Twin Platform v1 24

COGITO – GA ID. 958310

COnstruction phase

dIGItal Twin mOdel

Figure 12 Assignment of registered users to a project

Following the assignment process, users with proper roles can create global properties by clicking the “+

Property” button. As shown in Figure 13, a modal popup window appears allowing users to fill in the property

name and its value. In the first release of the IDM component, there are no restrictions on the creation of project

properties.

Figure 13 Creation of a new property in a project

On the same page, users can upload the as-planned data by clicking the “Browse” button as shown in Figure 14.

Currently, the as planned data consist of three different files:

1. The 3D BIM is provided in IFC, particularly in versions IFC4 or IFC4x3. The DTP has specific data

requirements described in "D7.3 - Extraction, Transformation & Loading Tools and Model Checking". For

instance, the 4D data for each element, such as the construction zone and the task identifier.

2. The construction schedule is provided in CSV or MS Project XML file format, which contains the tasks

and their properties.

3. The as-planned resources are provided in a CSV file format, containing the resource types and their

properties.

The detailed data structures of the as-planned data are presented in “D7.3 – Extraction, Transformation &

Loading Tools and Model Checking”. Upon the upload process, the IDM will store these files into DTP’s File

 D7.9 Digital Twin Platform v1 25

COGITO – GA ID. 958310

COnstruction phase

dIGItal Twin mOdel

Storage System, and it will send an internal notification to DTP’s Data Management Layer for initialising a

sequence of various data processing operations.

Figure 14 Uploading the as-planned data using the IDM component

In the left sidebar of the IDM application, the link “Users” is visible only to users who have the role of DTP Identity

Management, as shown in Figure 15. This role allows users to manage the access policies of the registered users.

Figure 15 View of all registered users

By clicking on any account, they can view its data and roles. The users with the role DTP Identity Management

can assign roles to any account by clicking the “+ Role” button. As shown in Figure 16, a modal window that

contains a combo box element with the available roles appears. It is worth mentioning that all roles are

predefined and configured directly in Keycloak. The assignment of the selected role with the user account is done

by clicking the Assign button. At any time, users can cancel the assignment process by clicking on the Close

button.

 D7.9 Digital Twin Platform v1 26

COGITO – GA ID. 958310

COnstruction phase

dIGItal Twin mOdel

Figure 16 Assigning a role to the user account

4.1.5 Licensing

The IDM is a closed source component. The lead group in charge of development of the DTP is receiving requests

for providing access to the component within the project.

4.1.6 Installation Instructions

This component is deployed as standalone software application in the Data Ingestion Layer. It provides a rich GUI

and a REST API which are open to the internet. No file download, installation or maintenance is required by the

COGITO users.

4.1.7 Development and Integration Status

As mentioned previously, the first release of the IDM component has been deployed in the Data Ingestion Layer.

Currently, the service is fully functional, and it provides all core functionalities that have been identified in “D7.1

– Digital Twin Platform Design & Interface Specification v1”. The WP7 technical partners will provide some minor

improvements in the final release of the component. For instance, a notification system will notify the users via

email when they join/leave a project or have a new role. Furthermore, there are some discussions within the

consortium for improving the GUI and the end-user experience.

4.1.8 Requirements Coverage

This component covers some of the DTP’s functional and non-functional requirements defined in T2.4 and the

corresponding deliverable “D2.5 – COGITO System Architecture v2”. The functional and non-functional

requirements related to the IDM component are presented in Table 8. The Req-1.2 is fully covered by the

embedded web-based application that enables users to create, load and manage projects, users, and files.

Additionally, the Req-2.3 and Req-2.4 are achieved due to Nginx reverse proxy server which offers SSL encryption

and load balancing capabilities.

Table 8 IDM component’s Requirements Coverage

Type ID Description Status

 D7.9 Digital Twin Platform v1 27

COGITO – GA ID. 958310

COnstruction phase

dIGItal Twin mOdel

Functional Req-1.2
Receives as-planned data (BIM models, construction schedule,
available resources)

Achieved

Non-Functional

Req-2.3 Security Achieved

Req-2.4 High availability Achieved

4.1.9 Assumptions and Restrictions

The first release of the IDM component has been deployed under certain assumptions and restrictions, listed

below:

• It has been developed from scratch following the MVP approach providing the basic functionalities

essential for creating and managing projects. The final release will provide more features and an

improved GUI.

• It supports IFC4x3, although more tests and refinements are required. It has been tested using a sample

file of a road network.

• Currently, it doesn’t support email notifications. The final release, the IDM will send emails notifying

users for new assignments to projects and roles.

 D7.9 Digital Twin Platform v1 28

COGITO – GA ID. 958310

COnstruction phase

dIGItal Twin mOdel

4.2 Knowledge Graph Generator

The Knowledge Graph Generator (KGG) component is part of the Data Ingestion Layer and oversees: i) the

execution of the various ETL tools, which are responsible for transforming COGITO’s as-planned input files to

Resource Description Framework6 (RDF) data, ii) the validation of the semantic links included in these RDF data

and, iii) the generation of the Thing Descriptions. The ETL tools included in the KGG component have been

described in “D7.3 - Extraction, Transformation & Loading Tools and Model Checking”. The first release of the

KGG contains various sub-components and ETL tools that have been packaged as containerised services using

Docker and deployed in a cloud computing environment.

In this section, we present the first release of the core KGG’s components involved in the orchestration of the

ETL tools and the generation of the Thing Descriptions.

4.2.1 Prototype Overview

The main functionalities of the KGG component are the population and validation of COGITO’s knowledge graph

and the generation of the Thing Descriptions. For this purpose, the KGG contains two core sub-components, the

Thing Manager and the Wrapper module as shown in Figure 17.

Figure 17 High-level Architecture of Knowledge Graph Generation

A quick overview of Figure 17, shows that the starting point for generating the final knowledge graph and the

Thing Descriptions is the IDM component. The users with proper roles upload the as-planned data of a project

via IDM’s GUI. Once the files are loaded and stored in the File Storage System, the IDM component performs a

request (1) to the Thing Manager for creating an empty container for the specific project. Next, the Thing

Manager sends asynchronous messages to the Wrapper module (2) via the Server-Sent Event (SSE) protocol for

invoking the various ETL tools. The Wrapper module is responsible for i) retrieving the as-planned input data files

(3) from the File Storage System, ii) if required, executing pre-processing operations on the files, iii) triggering

the executions of the various ETL tools and, iv) performing data validation operations on the generated RDF data

by applying SHACL rules. Finally, the Thing Manager stores the returned TTL files to the Triplestore (4) and

generates and stores the corresponding Thing Descriptions to the Thing Description Directory (TDD) (5).

4.2.2 Technology Stack and Implementation Tools

The Thing Manager and the Wrapper module, which are the core sub-components of the KGG, have been

developed in Python using a set of open-source technologies and libraries listed in Table 9.

6 The RDF is a general framework for representing interconnected data on the web https://www.w3.org/RDF/

https://www.w3.org/RDF/

 D7.9 Digital Twin Platform v1 29

COGITO – GA ID. 958310

COnstruction phase

dIGItal Twin mOdel

Table 9 Libraries and Technologies used in the Thing Manager and the Wrapper module

Technology Name Version License

Flask 2.1.1 BSD 3-Clause License

requests 2.27.1 MIT License

wheezy.template 3.1.0 MIT License

Flask-SSE 1.0.0 MIT License

APScheduler 3.9.1 MIT License

rdflib 6.1.1 BSD 3-Clause License

SPARQLWrapper 2.0.0 W3C® SOFTWARE NOTICE AND LICENSE

4.2.3 Input, Output and API Documentation

The Thing Manager component provides a REST API allowing other DTP components, such as the IDM and the

DT Runtime, to trigger the various generation and validation operations and to retrieve the generated RDF data

in TTL and the corresponding Thing Descriptions. The endpoints containing the project extension are relative to

the use of a project in a 1-1 relation with the project defined in the IDM component, which is the one reflected

in the ontology. In addition, this component will be of internal use for the DTP, so there will be no collision with

other endpoints that contain the term project in their definition. The endpoints provided along with their

parameters are listed in Table 10.

Table 10 Thing Manager’s REST API

Description Method Endpoint
PP = Path Parameter

FP = Form Parameter

Creates a new project, its respective
triples and thing description

POST /project/{projectId} (PP) projectId: GUID
(FP) name: Text
(FP) description: Text

Updates an existing project, its
respective triples and thing
description

PUT /project/{projectId} (PP) projectId: GUID
(FP) name: Text
(FP) description: Text

Deletes an existing project, its
respective triples and thing
description, and the thing
descriptions associated to it in
cascade mode

DELETE /project/{projectId} (PP) projectId: GUID

Retrieves the thing description of an
existing project

GET /project/{projectId} (PP) projectId: GUID

Adds files to an existing project,
creates respective triples and thing
descriptions

POST /project/{projectId}/file (PP) projectId: GUID
(FP) format_of_file: Text
(FP) type_of_file: Text
(FP) uri_of_file: Text
(FP) metatada: Text

Deletes file from project and its
respective triples and thing
descriptions

DELETE /project/{projectId}/file (PP) projectId: GUID
(FP) format_of_file: Text
(FP) type_of_file: Text
(FP) uri_of_file: Text
(FP) metatada: Text

Retrieves from KGG the respective
TTL file generated, saves it into the
triple store and generate respective
thing descriptions for specific
elements of the graph

GET /project/{projectId}/file/ttl (PP) projectId: GUID
(FP) format_of_file: Text
(FP) type_of_file: Text
(FP) name_of_file: Text

 D7.9 Digital Twin Platform v1 30

COGITO – GA ID. 958310

COnstruction phase

dIGItal Twin mOdel

The TDD is a persistence service that contains the Thing Descriptions created by the Thing Manager component.

It uses the WoT Hive implementation, compliant with the W3C Web of Things Directory standard specification.

The TDD component provides a REST API allowing other DTP components to discover, create, retrieve, update,

and delete Thing Descriptions. The endpoints provided along with their parameters are listed in Table 11.

Table 11 Thing Description Directory’s REST API

Description Method Endpoint
PP = Path Parameter

FP = Form Parameter

Provides the Thing Description of the
WoT Hive directory

GET /.well-known/wot-thing-
description

N/A

Creates an anonymous Thing Description,
provided in the body as JSON-LD framed.
The generated id is output in the
response headers

POST /api/things (body) : JSON-LD

Partially updates an existing Thing
Description, the updates must be
provided in JSON-LD framed

PATCH /api/things/{id} (PP) id: GUID

Solves a SPARQL query following the
standard. The response is formatted in
JSON. Other formats supported by the
API: XML, CSV, and TSV.

GET /api/search/sparql?{query} (PP) query: Text

Deletes an existing Thing Description DELETE /api/things/{:id} (PP) id: GUID

4.2.4 Application Example

An example of the operations performed by the KGG is illustrated in Figure 18. Initially, the IDM component

creates a project entry into the Thing Manager, which includes the project id, project name, and project

description. Next, the IDM uploads the as-planned input data files, and the Thing Manager through the Wrapper

module triggers the execution of the various ETL tools.

Figure 18 Generation of COGITO’s TTLs and TDs

The outputs of the KGG component consist of the TTL data illustrated in Figure 19, and the corresponding JSON-

LD data illustrated in Figure 20.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix data: <http://data.cogito.iot.linkeddata.es/resources/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix facility: <https://cogito.iot.linkeddata.es/def/facility#> .
@prefix process: <https://cogito.iot.linkeddata.es/def/process#> .
@prefix resource: <https://cogito.iot.linkeddata.es/def/resource#> .

data:Project_cogito:project:1
a facility:Project ;
facility:hasName "test1"^^<http://www.w3.org/2001/XMLSchema#string> ;
facility:hasDescription "test description"^^<http://www.w3.org/2001/XMLSchema#string> ;
facility:projectID "cogito:project:1"^^<http://www.w3.org/2001/XMLSchema#string> ;

 D7.9 Digital Twin Platform v1 31

COGITO – GA ID. 958310

COnstruction phase

dIGItal Twin mOdel

facility:isRelatedToProcess process:data/1789B04B-1A16-EC11-9EF0-B00CD17291CA .

data:Process_cogito:project:1_1789B04B-1A16-EC11-9EF0-B00CD17291CA
a process:Process ;
process:processID '1789B04B-1A16-EC11-9EF0-B00CD17291CA' ;
process:hasName '20210916_Planificacion_UTE_SOT.xml' ;
process:hasCreationDate '2020-07-31T09:00:00'^^<http://www.w3.org/2001/XMLSchema#dateTime>;
process:hasCost data:cost/1789B04B-1A16-EC11-9EF0-B00CD17291CA ;
process:isPlannedIn data:interval/1789B04B-1A16-EC11-9EF0-B00CD17291CA .

data:Task_cogito:project:1_1789B04B-1A16-EC11-9EF0-B00CD17291CA_0
a process:Task ;
process:taskId '1889B04B-1A16-EC11-9EF0-B00CD17291CA' ;
process:taskUid '0' ;
process:hasName 'SOT-MURCIA'^^<http://www.w3.org/2001/XMLSchema#string> ;
process:hasCreationDate ''^^<http://www.w3.org/2001/XMLSchema#dateTime> ;
process:isPlannedIn data:interval/1889B04B-1A16-EC11-9EF0-B00CD17291CA ;
process:hasPriority '500'^^<http://www.w3.org/2001/XMLSchema#integer> ;
process:hasProgress 'PT0H0M0S'^^<http://www.w3.org/2001/XMLSchema#string> ;
process:hasStatus 'PT0H0M0S'^^<http://www.w3.org/2001/XMLSchema#string> ;
process:hasCost data:cost/1889B04B-1A16-EC11-9EF0-B00CD17291CA .

...

data:ResourceType_cogito:project:1_1789B04B-1A16-EC11-9EF0-
B00CD17291CA_Truck_mounted_concrete_boom_pump_1
a resource:ResourceType ;
a resource:EquipmentType ;
resource:resourceTypeId 1 ;
resource:name 'Truck_mounted_concrete_boom_pump'^^<http://www.w3.org/2001/XMLSchema#string> ;
resource:initials 1 ;
resource:masUnit 2 ;
resource:costPerHour 2000 .

...

Figure 19 Example of RDF generated by the ETL tools contained in the KGG component

{
 "@context": "https://www.w3.org/2019/wot/td/v1",
 "id": "cogito:project:1",
 "title": "demo",
 "description":"/api/things/uuid:project:0c8c5e40-dbdf-484f-b563-dcf550f84d90"
 "securityDefinitions": {
 "nosec_sc": {"scheme":"nosec"}
 },
 "security": ["nosec_sc"],
 "properties": {
 "demo": {
 "forms": [
{
 "href": "/files/uuid:file:3741aa23-c870-4937-bfa7-2fbfec971c0a",
 "contentType": "json"
},
{
 "href": "/files/uuid:file:3741aa23-c870-4937-bfa7-2fbfec971c0b",
 "contentType": "ifc"
},
{
 "href": " /files/uuid:file:3741aa23-c870-4937-bfa7-2fbfec971c0c",
 "contentType": "xml"
},
{
 "href": "/files/uuid:file:3741aa23-c870-4937-bfa7-2fbfec971c0d",
 "contentType": "csv"
},
]
 },
 "http://openmetrics.eu/openmetrics#Space_1157": {
 "forms": [
 {
 "href":"/sparql?query=http://openmetrics.eu/openmetrics#Space_1354",

 "contentType": "ttl"
 }
]
 },
 "http://openmetrics.eu/openmetrics#Space_1354": {
 "forms": [
 {
 "href":"/sparql?query= http://openmetrics.eu/openmetrics#Space_1354",
 "contentType": "ttl"
 }
]
 },
 …
}

Figure 20 Example of Thing Description generated by the Thing Manager

 D7.9 Digital Twin Platform v1 32

COGITO – GA ID. 958310

COnstruction phase

dIGItal Twin mOdel

4.2.5 Licensing

As mentioned previously, the KGG component consists of i) the Thing Manager, which handles the requests done

by other DTP components and generates the Thing Descriptions, ii) the Wrapper module, which is called

internally by the Thing Manager and performs the requests to the ETL tools for generating and validating the RDF

data, and iii) the various ETL tools, which are responsible for transforming the raw input data files to RDF triples.

All these sub-components are open-source and licenced under the Apache Licence 2.0.

4.2.6 Installation Instructions

The installation instructions are simply to deploy a Docker container along with a configuration file indicating the

endpoints where will be allocated the WoT Thing Directory (TDD), the Triple Store and the Thing Manager. In

addition, a docker-compose file containing the execution of the containers belonging to the Thing Manager,

Wrappers, Triplestore and Thing Directory will be provided.

4.2.7 Development and Integration Status

Currently, the KGG component is partially developed. The first release of the Thing Manager and the ETL tools

have been tested and deployed in the DTP. They support the generation of the complete knowledge graph

covering the data requirements of the COGITO use cases. In the final release, the Thing Manager will support i)

the automatic validation of the knowledge graph by applying checking rules using the SHACL specification and ii)

the generation of the Thing Descriptions for all instances included in the graph.

4.2.8 Requirements Coverage

As shown in Table 12, the KGG component covers one of the functional requirements of the DTP included in

“D2.5 – COGITO System Architecture v2”. The Req-1.5 is fully covered by the KGG sub-components and the

involved ETL tools. The first release of the Thing Manager can orchestrate the data transformation processes and

to store the output RDF data in the Triplestore.

Table 12 KGG component’s Requirements Coverage

Type ID Description Status

Functional Req-1.5 Populates COGITO’s ontology Achieved

4.2.9 Assumptions and Restrictions

The operation of the Knowledge Graph Generator tool relies on the following assumptions and restrictions.

• The communication between the Wrappers and the Thing Manager must be done by means of events,

created by the Thing Manager in different channels to which the different Wrappers must be subscribed

according to their function to be performed.

• The Thing Manager configuration must always contain the endpoints required for Thing Manager

deployment on a specific port, the Triplestore endpoint and the Thing Directory endpoint.

• The information sent to the Thing Manager must always be in JSON format, if the sender is not a

Wrapper.

• In case you want to register a file corresponding to a project, you must send as information in JSON

format, the identifier of the project where you want to register the file and the URL where it is stored,

to extract the information to be transformed to RDF.

• Thing Descriptions must follow the structure defined in the W3C standard.

 D7.9 Digital Twin Platform v1 33

COGITO – GA ID. 958310

COnstruction phase

dIGItal Twin mOdel

5 Data Processing Operations and Data Delivery

Once the as-planned data are loaded to the DTP’s Data Persistence Layer and the knowledge graphs are

generated, the COGITO applications can interact with the DTP for a) providing the as-built data, which consists

of imagery and location tracking information along with their meta-data, and b) performing data requests that

require special handling due to the diversity of the various domains included in COGITO.

Within COGITO, the Data Pre-Processing tools are responsible for providing the as-built data to DTP. More

specifically this category contains the following tools:

• The IoT Data Pre-Processing tool is responsible for pre-processing raw location tracking data coming

from various IoT sensors.

• The Visual Pre-Processing tool, responsible for pre-processing raw visual data and point clouds coming

from cameras and LiDAR scanners.

On the other hand, the remaining COGITO tools are interacting with DTP’s Data Management Layer and are

classified as follows:

• The Health and Safety tools are responsible for generating hazards mitigation measures and producing

warnings notifications to the on-site workers for their proximity to hazardous areas.

• The Workflow Modeling and Simulation tools are responsible for monitoring and optimising the

construction processes.

• The Quality Control tools are responsible for comparing the as-designed and as-built data and detecting

potential defects.

• The Visualisation tools are responsible for retrieving and visualizing various data stored in the DTP, to

support on-site and off-site activities of relevant stakeholders.

The Data Management Layer manages the data requests of these tools by offering an actor-based runtime

environment and a web-based application for the configuration of the various endpoints required. This section

presents the first release of the DT Runtime component, which is responsible for orchestrating the internal data

processing operations, harmonizing their responses, and sending them to the COGITO tools.

5.1 Digital Twin Runtime component

The Digital Twin (DT) Runtime component is a lightweight data integration container for hosting configurable

modules implemented to perform various data processing operations. It is based on the open-source framework

Akka7 that offers a toolkit for simplifying the deployment of concurrent and distributed applications. In other

words, Akka is a powerful reactive high-performance framework optimised for running on the Java Virtual

Machine (JVM). Within COGITO, this implementation can handle multiple requests simultaneously performed by

the various COGITO tools and to respond through the provided REST API.

5.1.1 Prototype Overview

This component contains a set of ready-made software actors for facilitating tool developers to design and

deploy dynamic modules that can handle complex requests. An actor is an extensible program-code template

that can contain configurable parameters (user credentials, database credentials, triplestore locations) for

interacting with other components and executes its business-logic operations and forwards the response to the

next actors using framework’s embedded lightweight messaging system. Thus, the actors are created once by

the DTP developers and then reused in the various configurable modules of the DT Runtime component, as

shown in Figure 21. It is worth mentioning that the first release includes a fully functional REST API for interacting

with the other COGITO tools.

7 Akka Actor Model https://www.akka.io

https://www.akka.io/

 D7.9 Digital Twin Platform v1 34

COGITO – GA ID. 958310

COnstruction phase

dIGItal Twin mOdel

The final release of this component will contain various adapters allowing asynchronous communication through

enterprise messaging protocols such as AMQP, KAFKA and MQTT.

Figure 21 Digital Twin Runtime component’s main interactions

For instance, the generation of an IFC file from the corresponding 4D BIM model for a given time frame, has a

two-step process: first, the execution of a SPARQL query for retrieving the identifiers of the BIM elements that

are involved to active tasks, and second, the filtering of the original IFC with the identifiers returned from the

first step. The output of this module is an IFC file that contains only the BIM elements of the active tasks as shown

in Figure 22.

Figure 22 Example of DT Runtime component’s configurable module and its IFC output

5.1.2 Technology Stack and Implementation Tools

The DT Runtime component is based on open-source technologies. It is built on top of the Spring Framework and

is deployed as standalone web-based application. It has been installed and configured to run behind the Nginx

reverse proxy server, which handles the SSL encryption and forwards the HTTP requests and the web-socket

packets to the correct destination.

 D7.9 Digital Twin Platform v1 35

COGITO – GA ID. 958310

COnstruction phase

dIGItal Twin mOdel

The integration between Spring and Akka frameworks is possible through the Akka Extension mechanism. This

technology enables external Dependency Injection (DI) frameworks like Spring to manage the lifecycle of the

actor instances.

Table 13 Libraries and Technologies used in the Digital Twin Runtime component

Technology Name Version License

Spring Framework 5.3.1 Apache Licence 2.0

Spring Boot 2.3.0 Apache Licence 2.0

Spring Security 5.5.0 Apache Licence 2.0

Spring Integration 5.5.5 Apache Licence 2.0

Akka 2.6.15 Apache Licence 2.0

Apache Jena 3.13.0 Apache Licence 2.0

Thymeleaf 3.0.15 Apache Licence 2.0

Hibernate 5.6.9 LGPL 2.1

MySQL 8.0.24 GPLV2

Nginx 1.20.2 BSD

Certbot 1.22 Apache Licence 2.0

5.1.3 Input, Output and API Documentation

The DT Runtime component provides a REST API enabling the various COGITO applications to request data

fetched by actors interacting with the Data Persistence Layer. The application developers register their tools to

the DT Runtime component and configure the endpoints of each tool as defined in the “D2.5 – COGITO System

Architecture v2”. On the other hand, the lead group in charge of the development of DTP is responsible for

deploying and connecting these endpoints with the proper modules. The REST API allows the COGITO tools to

manage their data collections for each endpoint. Thus, the COGITO tools can perform requests for handling data

collections and the contained files. The endpoints provided along with their parameters are listed in Table 14.

The detailed documentation and the Postman collections of DTP’s REST APIs are available online8.

Table 14 DT Runtime component’s REST API Endpoints

Name Method REST Endpoint
PP = Path Parameter

FP = Form Parameter

Get the Application GET https://dtp.cogito-project.com/api/application N/A

Get all Endpoints of
the Application

GET
https://dtp.cogito-
project.com/api/application/endpoints

N/A

Get all Data
Collections of an
Endpoint

GET
https://dtp.cogito-
project.com/api/endpoints/{endpointId}/collections

(PP) endpointId: GUID

Get a Data
Collection

GET
https://dtp.cogito-
project.com/api/collections/{collectionId}

(PP) collectionId: GUID

Create a new Data
Collection

POST https://dtp.cogito-project.com/api/collections/create
(FP) endpointId: GUID
(FP) projectId: GUID

Update the Status
of a Data Collection

POST
https://dtp.cogito-
project.com/api/collections/{collectionId}/status

(PP) collectionId: GUID
(FP) status: Text

8 Digital Twin Platform API documentation https://api.cogito-project.com

https://api.cogito-project.com/

 D7.9 Digital Twin Platform v1 36

COGITO – GA ID. 958310

COnstruction phase

dIGItal Twin mOdel

Delete a Data
Collection

DELETE
https://dtp.cogito-
project.com/api/collections/{collectionId}/delete

(PP) collectionId: GUID

Get all Files of a
Data Collection

GET
https://dtp.cogito-
project.com/api/collections/{collectionId}/files

(PP) collectionId: GUID

Upload Files into a
Data Collection

POST
https://dtp.cogito-
project.com/api/collections/{collectionId}/upload

(PP) collectionId: GUID
(FP) files: File

Update the Type of
a File

POST https://dtp.cogito-project.com/api/files/{fileId}/type
(PP) fileId: GUID
(FP) type: Text

Delete a file DELETE https://dtp.cogito-project.com/api/files/{fileId}/delete (PP) fileId: GUID

The following are examples of JSON responses returned by the GET requests of the REST API. For some requests,

the responses have no body content. In this case, the HTTP status code is used: i) the "200 - OK" is returned if

the request is successful, the "404 - Not Found" is returned if the resource is unavailable and iii) the response

"400 - Bad Request" is returned if an error has occurred.

Get the Application

{
 "name": "Demo",
 "id": "36ea91a9-d2a8-4916-8de3-8a8ecda4dfeb"
}

Get all Endpoints of the Application

[
 {
 "name": "4D",
 "description": "4D",
 "id": "81cff0ea-1bf0-4a22-8903-ac5374c02436"
 }
]

Get all Data Collections of an Endpoint

[
 {
 "project": "1cf55b98-db69-46f8-a64e-a531d512d4d3",
 "id": "47368c01-1d50-459a-997d-f8635e3c0511",
 "creation_date": "2022-05-03 11:46:12.0",
 "status": "completed"
 },
 {
 "project": "c69407ff-2f81-4138-85d1-21a5e9e24550",
 "id": "0b781566-2dee-4120-bbd7-ec3895e67f67",
 "creation_date": "2022-05-03 12:54:14.0",
 "status": "incomplete"
 }
]

Get a Data Collection

{
 "project": "c69407ff-2f81-4138-85d1-21a5e9e24550",
 "id": "5425dc1d-a9e2-4d52-89fd-5732013b84ff",
 "creation_date": "2022-05-03 11:49:46.0",
 "status": "completed"
}

Get all Files of a Data Collection

[
 {
 "date": "2022-05-03 11:49:58.0",
 "extension": "CSV",
 "name": "rst_advanced_sample_project_MSP2010_V2",
 "id": "b4984a23-1feb-45fc-9d79-3b03436b8f68",
 "type": "CONSTRUCTION_SCHEDULE",
 "url": "https://dtp.cogito-project.com/file/b4984a23-1feb-45fc-9d79-3b03436b8f68/download"
 },
 {
 "date": "2022-05-03 11:49:55.0",
 "extension": "CSV",

 D7.9 Digital Twin Platform v1 37

COGITO – GA ID. 958310

COnstruction phase

dIGItal Twin mOdel

 "name": "resources",
 "id": "f2a52a51-8fc2-4f2f-a7d9-f3fe4968bed3",
 "type": "AS_PLANNED_RESOURCES",
 "url": "https://dtp.cogito-project.com/file/f2a52a51-8fc2-4f2f-a7d9-f3fe4968bed3/download"
 }
]

5.1.4 Usage Walkthrough

The DT Runtime component offers a GUI for configuring and managing DTP’s functional modules and their

interfaces with the other COGITO tools. Thus, the GUI consists of three main parts: i) The “Registration of COGITO

Applications” used for registering the COGITO applications and configuring their access policies, endpoints, and

notification channels, ii) The “Registration of COGITO Actors” used for configuring the meta data of the actors

and their properties, and iii) The “Deployment of COGITO Modules” used to create the data processing workflows

required by the COGITO applications. These three parts are presented in detail in the following subsections.

5.1.4.1 Registration of COGITO Applications

The users who have a developer role can sign in to the DT Runtime component through the DTP’s Identity

Provider. The “Applications” button shows the list of applications added in the past, as shown in Figure 23. On

the right side of the screen, the “Actions” column contains buttons for deleting the applications after

confirmation via a popup window. By clicking on any application name, the users can see further information

and perform additional actions. Users may have access only to their applications or the entire list, depending on

their roles. The role of the DTP Developer allows access to all applications. In contrast, various composite roles

like DCC Developer, PMS Developer, WODM Developer and others allow access to applications created by the

specific user.

Figure 23 View of all user’s applications

On the same page, users who have a developer role can add a new application by clicking the “+ Application”

button. As shown in Figure 24, a modal window appears which allows users to provide the application name and

a short description. At any time, users can cancel the application registration process by clicking on the Close

button.

 D7.9 Digital Twin Platform v1 38

COGITO – GA ID. 958310

COnstruction phase

dIGItal Twin mOdel

Figure 24 Creation of a new application

Once the application is added, the users can proceed with the configuration process. Based on COGITO's system

architecture described in D2.5, they must configure the REST endpoints and, if required, the MQTT channels.

Furthermore, the users can grant access to other users who have different roles by clicking the "+ Role" button.

As shown in Figure 25, a modal window appears that contains a combo box element with all available roles. The

assignment of the selected role to the application is done by clicking the Assign button. The users can cancel the

assignment process by clicking on the Close button.

Figure 25 Assignment of a role to the application

 D7.9 Digital Twin Platform v1 39

COGITO – GA ID. 958310

COnstruction phase

dIGItal Twin mOdel

Continuing with the configuration, users can create new endpoints by clicking the “+ Endpoint” button. As shown

in Figure 26, a modal window appears allowing the users to fill in a name and a short description. At any time,

users can cancel the endpoint creation process by clicking on the Close button.

Figure 26 Creation of new endpoint

Once the endpoint is added, the COGITO users and tools can create data collections using this GUI or the REST

API accordingly. As shown in Figure 27, a modal window appears that contains a combo box element with the

available projects. This action is identical to the request “Create a new Data Collection” of the REST API described

in the previous section.

Figure 27 Creation of a new Data Collection

Once the data collection is created, the COGITO users and tools can upload files, annotate the file types, and

update the data collection status. The annotation of the files is essential in case of the data collection contains

multiple files that have the same format and different data structures. For instance, as shown in Figure 28, the

 D7.9 Digital Twin Platform v1 40

COGITO – GA ID. 958310

COnstruction phase

dIGItal Twin mOdel

data collection contains multiple CSV files with different data structures. In this case, the type is used to

differentiate the files. Furthermore, the status parameter is used as a triggering mechanism that produces

notifications to the active data processing services of the DTP. As mentioned previously, the REST API contains

all the functionalities demonstrated here using the web-based application.

Figure 28 Uploading and annotating files in a Data Collection

The first release of the DT Runtime component can handle data streams and supports various asynchronous

messaging protocols. Currently, the web-based application allows users with proper roles to configure MQTT

connections between external applications and the DT Runtime component. This functionality is essential for

various COGITO tools. For instance, the IoT Data Pre-processing module uses this technology for streaming real-

time location tracking data into the DTP.

 D7.9 Digital Twin Platform v1 41

COGITO – GA ID. 958310

COnstruction phase

dIGItal Twin mOdel

Figure 29 Creation of a new MQTT channel

In addition, various COGITO tools such as WOEA, VisualQC, and ProActiveSafety use the publish/subscribe

messaging pattern for sending and receiving notifications through the Messaging Layer. As shown in Figure 30,

the GUI provides a button for enabling and disabling the configured channels.

Figure 30 Enabling or disabling an MQTT channel

5.1.4.2 Registration of COGITO Actors

The DT Runtime component allows users with proper roles to configure new actors through the web-based

application. These actors are reusable blocks of code with specific names and behaviours that implement

business logic operations and can be placed and interconnected into the modules. The users can create a new

actor by clicking the “+ Actor” button. As shown in Figure 31, a modal window appears allowing the users to fill

in the actor’s name and some necessary meta data such as the Java class name of the actor as well as the number

of inputs and outputs. The creation of the actor is done by clicking the Save button. At any time, the users can

cancel the creation process by clicking on the Close button.

Figure 31 Creation of a new Actor

 D7.9 Digital Twin Platform v1 42

COGITO – GA ID. 958310

COnstruction phase

dIGItal Twin mOdel

Once the actor is created, the users can proceed with the definition of the properties. Each actor can have a set

of configurable properties. The values of these properties are set during the configuration of the module.

Optionally, the DT Runtime component allows users to set default values to the properties in the modal window

as shown in Figure 32.

Figure 32 Creation of a new property in an Actor

Next, the users must provide and load the Java code that implements the business logic of the actor. For instance,

a simple actor in charge to say “Hello <receiver>!” has a code as follows.

@Component
@Scope(ConfigurableBeanFactory.SCOPE_PROTOTYPE)
public class OMActorSayHello extends OMActorBase {

 private static final Logger log = LoggerFactory.getLogger(OMActorSayHello.class);

 private String receiver;

 public OMActorSayHello(Entity entity) {
 super(entity);
 log.info("say hello actor, path=" + getSelf().path().toString());
 receiver = entity.getProperty("receiver").getValue();
 }

 @Override
 public void onReceive(Object message) throws Throwable {
 if(message instanceof String) {
 String msg = (String) message;
 if(msg.equals("launch")) {
 OMBody omBody = new OMBody();
 omBody.setBody("Hello " + receiver + "!");
 tell(omBody);
 }
 }
 }
}

The above actor is designed to accept the string “launch” as an input message. In this case, it will produce an

output string “Hello <receiver>!”. The <receiver> is an actor property that the users will provide later during the

module’s configuration. The loading of the above code into the DT Runtime component is done, through the Java

ClassLoader mechanism. This technology allows developers to load dynamically Java classes into the Java Virtual

Machine (JVM).

 D7.9 Digital Twin Platform v1 43

COGITO – GA ID. 958310

COnstruction phase

dIGItal Twin mOdel

5.1.4.3 Deployment of COGITO Modules

The users who have the DTP Developer role can sign in to the DT Runtime component through the DTP’s Identity

Provider. The “Modules” button, which is located on the left side of the screen, shows the complete list of

modules created in the past, as shown in Figure 33. On the right side of the table, the “Actions” column contains

buttons for deleting, activating, or deactivating the installed modules. On the top of the screen, there is the main

switch for starting and stopping the entire actor system, and it can be used to perform a manual restart of the

active modules. This action is needed when the users demand activation, deactivation, or module installation.

Figure 33 View of all created modules

On the same page, users can create a new module by clicking the “+ Module” button. As shown in Figure 34, a

modal window appears which allows users to provide a module name and a short description. At any time, users

can cancel the module creation process by clicking on the Close button.

Figure 34 Creation of a new module

By clicking on the “Welcome someone” module we just created, the users can view the workspace for editing

and configuring the module's logic. On the left side of the screen, there is a list of the available actors, as shown

in Figure 35. The users can drag and drop actors from the list to the empty area and define their interlinks. For

 D7.9 Digital Twin Platform v1 44

COGITO – GA ID. 958310

COnstruction phase

dIGItal Twin mOdel

instance, the actor “SayHello” presented previously has one input connected with the actor “Scheduler”, which

triggers the execution and one output connected with the actor “Logger”, which prints the content of the

messages into the system’s console. As shown in Figure 35, a modal window appears if any actor is selected,

allowing the users to fill in or edit the actor properties. The values of these properties are stored in the module

and not in the actor type. This means that if the same actor is reused in multiple modules the values of the

properties are not shared between the module instances.

Figure 35 Workspace for configuring and editing modules

Going back to the example, when the “SayHello” actor is selected using the cursor, the property “receiver” is

listed in the modal window. After filling the textbox and clicking the Save button, the module is ready for

deployment. Figure 36 shows that when the actor system is restarted, the message “Hello COGITO!” appears

periodically on the console.

Figure 36 DT Runtime component’s system console

5.1.5 Application Example

Within “UC1.1 – Efficient and detailed project workflow planning using the project’s construction schedule and

as-planned BIM model”, the PMS tool requests (5) and receives (6) from the DTP the as-planned 4D BIM of the

project, including the as-planned resources as shown in Figure 37. Although the geometric information is not

required, the response includes semantically linked information of a) building elements with their construction

zones, b) tasks with their properties and, c) as-planned resource types with their properties.

When a new project is configured, and the users upload the as-planned data to the DTP, the IDM component

triggers the Thing Manager, which manages the execution of the ETL tools and generates the knowledge graph

 D7.9 Digital Twin Platform v1 45

COGITO – GA ID. 958310

COnstruction phase

dIGItal Twin mOdel

of the project. At this stage, PMS can request the as-planned non-geometric 4D BIM data because this

information is already included in the knowledge graph.

Figure 37 Part of the UC1.1 sequence diagram

As shown in Figure 38, a dedicated application-driven module is connected to the endpoint of the DTP which is

responsible for handling the request and providing the response to PMS.

Figure 38 The module UC.1.1 – Request 5 which provides the as-planned 4D BIM data

The response is a JSON file containing data extracted from the knowledge graph using a series of SPARQL queries.

The structure of the JSON is designed to meet the input requirements of the PMS tool.

{
 "project_id": "1cf55b98-db69-46f8-a64e-a531d512d4d3",
 "elements": {
 "2RKo5Qbz5FeBxTqQLoNXq6": {
 "zone": "0hozoFnxj9leOc81mNbdT5",
 "name": "Part:239050"
 },
 "2RKo5Qbz5FeBxTqQLoNXq5": {
 "zone": "0hozoFnxj9leOc81mNbdT5",
 "name": "Part:239049"
 }
 ...
 },
 "roles": {

 "1": {
 "cost_per_hour": 2000,
 "quantity": 2,
 "name": "Truck mounted concrete boom pump",
 "type": "Equipment"
 },
 "2": {
 "cost_per_hour": 1500,
 "quantity": 4,
 "name": "Concrete mixer truck",
 "type": "Equipment"
 }
 ...
 },
 "project_name": "Project_1",
 "zones": {
 "0hozoFnxj9leOc81mNbdSu": {
 "name": "01 - Entry Level"

 D7.9 Digital Twin Platform v1 46

COGITO – GA ID. 958310

COnstruction phase

dIGItal Twin mOdel

 },
 "0hozoFnxj9leOc81mNbdT5": {
 "name": "Roof"
 },
 "0hozoFnxj9leOc81mNbdSx": {
 "name": "02 - Floor"
 },
 "0hozoFnxj9leOc81mNbdSw": {
 "name": "03 - Floor"
 }
 },
 "tasks": {
 "11": {
 "end_date": "2010-01-26T17:00:00",
 "element_list": [
 "29FKXAz_b8mfMby7Zgrevz",
 "29FKXAz_b8mfMby7Zgrh1x",
 "29FKXAz_b8mfMby7Zgren8"
],
 "name": "Emergency staircase shaft",
 "start_date": "2010-01-18T08:00:00"
 },
 "33": {
 "end_date": "2009-12-04T17:00:00",
 "element_list": [
 "01U2Ox69TF78CjGAzXHCiE",
 "01U2Ox69TF78CjGAzXHCcM",
 "01U2Ox69TF78CjGAzXHApE",
],
 "name": "Piles and Caps",
 "start_date": "2009-11-23T08:00:00"
 }
 ...
 }
}

5.1.6 Licensing

The DT Runtime is a closed-source component. On the other hand, the libraries containing the actors defined

within COGITO are open source. The COGITO developers can extend the functionalities of the DTP by configuring,

implementing, and deploying new actors. The lead group in charge of development provides access to additional

documentation and scripts to help developers implement new actors and deploy new modules.

5.1.7 Installation Instructions

This component is deployed as a standalone web-based application in a Virtual Machine (VM) and is part of the

Data Management Layer. It provides a GUI and a REST API open to the internet. No file download, installation or

maintenance is required by the users.

5.1.8 Development and Integration Status

The first release of the DT Runtime component has been deployed in the Data Management Layer. This

component provides all core functionalities that have been identified in “D7.1 – Digital Twin Platform Design &

Interface Specification v1”. In the final release, the team in charge of the development will improve the actor

system and the various messaging adapters, and it will provide a library containing the final actors implementing

the data processing operations of the COGITO system.

5.1.9 Requirements Coverage

The DT Runtime component covers most of DTP’s functional and non-functional requirements listed in “D2.5 –

COGITO System architecture v2”. The complete list of the functional and non-functional requirements related to

the DT Runtime component are presented in Table 15. The Req-1.3 and Req-1.7 are fully covered by the DT

Runtime component’s REST API, which allows the COGITO tools to upload and download files from the DTP. The

Req-1.4 is fully covered by the various messaging adapters implemented in the DT Runtime component, which

are configured via the GUI and are in charge of routing the streaming data to the active modules. The Req-1.6 is

achieved by the actor-based system, which provides data integration and a real-time execution environment

allowing developers to define complex routing scenarios using the defined actors. On the other hand, the actor-

based system used within the DT runtime component, covers all non-functional requirements. The Akka

Framework provides the Akka Cluster technology that allows the deployment of the actor system in multiple

machines offering horizontal scalability and high availability. The Akka Framework has a good performance of

~50 million messages per second on a single machine and around ~2.5 million actors per GB of heap memory.

 D7.9 Digital Twin Platform v1 47

COGITO – GA ID. 958310

COnstruction phase

dIGItal Twin mOdel

Table 15 DT Runtime component’s Requirements Coverage

Type ID Description Status

Functional

Req-1.3 Receives as-built data (video, images, and point-clouds) Achieved

Req-1.4 Handles real-time data of location tracking sensors Achieved

Req-1.6 Orchestrates the execution of the included ETL services Achieved

Req-1.7
Manages the data requests of the COGITO tools by providing
configurable API and the execution environment

Achieved

Non-Functional

Req-2.1 Scalability Achieved

Req-2.2 Responsiveness Achieved

Req-2.3 Security Achieved

Req-2.4 High availability Achieved

5.1.10 Assumptions and Restrictions

The first release of the DT Runtime component has been deployed under certain assumptions and restrictions,

listed below:

• It has been developed from scratch following the MVP approach providing the core functionalities

essential for responding to data requests performed by the other COGITO tools. The final release will

provide additional functionalities and an improved GUI.

• It currently contains modules supporting only the requests of UC1.1. In the final release, the DT Runtime

component will include modules covering the requests for all UCs of the COGITO system.

• The interconnection between the applications’ configurable endpoints and the DT Runtime component

is based on the Spring Events technology. In the final release, other technologies will be tested and

evaluated.

• It currently handles real-time location tracking data and notifications coming from MQTT brokers. The

final release will support additional protocols such as KAFKA and SSE.

 D7.9 Digital Twin Platform v1 48

COGITO – GA ID. 958310

COnstruction phase

dIGItal Twin mOdel

6 Conclusions

This demonstrator deliverable presented in detail the first release of COGITO’s DT Platform. The DTP plays a

central role in COGITO’s system as it is responsible for i) providing an authentication and authorisation

mechanism to COGITO users and applications, ii) handling input data from various external sources such as BIM

authoring tools, project management tools, cameras, LiDAR scanners and IoT devices, and iii) responding to data

requests performed by the other COGITO tools. In the first version of this deliverable, four core components of

the DTP were presented along with the functionalities they provide, the technology stacks they build upon, the

interfaces they use, the usage instructions and the assumptions and restrictions.

The DTP is based on a multi-layered architecture comprising six core layers following the “D7.1 – Digital Twin

Platform Design & Interface Specification v1”. The components presented in this demonstrator deliverable have

been deployed in the various layers of the DTP based on their functional and non-functional requirements. More

specifically, the first release of the DTP includes i) the Identity Provider contained in the Authentication Layer,

responsible for providing an identity and access management solution, ii) the Input Data Management

component contained in the Data Ingestion Layer, responsible for managing users, roles, projects and loading

the as-planned input data, iii) the Knowledge Graph Generator contained in the Data Ingestion Layer, responsible

for generating COGITO’s knowledge graphs and Thing Descriptions, and iv) The DT Runtime component

contained in the Data Management Layer, responsible for creating and hosting various application-driven

modules used in the various data processing operations.

The final version of the DTP is expected to be released along with the corresponding deliverable “D7.10 – Digital

Twin Platform v2” on M24. Thus far, the software components have been tested only with example files obtained

from various online sources. The next version of DTP’s software components will be tested on the COGITO’s pre-

validation sites in “T8.2 – COGITO ICT System Pre-Validation” and the validation sites in “T8.4 – Demonstration

of COGITO Tools and Construction Projects” with real data.

 D7.9 Digital Twin Platform v1 49

COGITO – GA ID. 958310

COnstruction phase

dIGItal Twin mOdel

References

[1] COGITO, “D7.1 - COGITO Digital Twin Platform,” 2021.

[2] COGITO, “D2.5 - COGITO System Architecture v2,” 2022.

[3] COGITO, “D2.1 - Stakeholder requirements for the COGITO system,” 2021.

[4] COGITO, “D3.3 - COGITO Data Model & Ontology Definition and Interoperability Design v2,” 2022.

This project has received funding from the European Union's Horizon 2020 research and
innovation programme under grant agreement No 958310

	Executive Summary
	Table of contents
	List of Figures
	List of Tables
	List of Acronyms
	1 Introduction
	1.1 Scope and Objectives of the Deliverable
	1.2 Relation to other Tasks and Deliverables
	1.3 Structure of the Deliverable

	2 Digital Twin Platform
	2.1 Software Components Classification
	2.2 Deployment Environment

	3 Authentication and Authorisation Infrastructure
	3.1 Identity Provider
	3.1.1 Overview
	3.1.2 Technology Stack and Implementation Tools
	3.1.3 API Documentation
	3.1.3.1 Authentication REST API
	3.1.3.2 Admin REST API

	3.1.4 Usage Walkthrough
	3.1.5 Application Example
	3.1.6 Licensing
	3.1.7 Installation Instructions
	3.1.8 Development and Integration Status
	3.1.9 Requirements Coverage
	3.1.10 Assumptions and Restrictions

	4 Project Creation and Ontology Population
	4.1 Input Data Management component
	4.1.1 Prototype Overview
	4.1.2 Technology Stack and Implementation Tools
	4.1.3 Input, Output and API Documentation
	4.1.4 Usage Walkthrough
	4.1.5 Licensing
	4.1.6 Installation Instructions
	4.1.7 Development and Integration Status
	4.1.8 Requirements Coverage
	4.1.9 Assumptions and Restrictions

	4.2 Knowledge Graph Generator
	4.2.1 Prototype Overview
	4.2.2 Technology Stack and Implementation Tools
	4.2.3 Input, Output and API Documentation
	4.2.4 Application Example
	4.2.5 Licensing
	4.2.6 Installation Instructions
	4.2.7 Development and Integration Status
	4.2.8 Requirements Coverage
	4.2.9 Assumptions and Restrictions

	5 Data Processing Operations and Data Delivery
	5.1 Digital Twin Runtime component
	5.1.1 Prototype Overview
	5.1.2 Technology Stack and Implementation Tools
	5.1.3 Input, Output and API Documentation
	5.1.4 Usage Walkthrough
	5.1.4.1 Registration of COGITO Applications
	5.1.4.2 Registration of COGITO Actors
	5.1.4.3 Deployment of COGITO Modules

	5.1.5 Application Example
	5.1.6 Licensing
	5.1.7 Installation Instructions
	5.1.8 Development and Integration Status
	5.1.9 Requirements Coverage
	5.1.10 Assumptions and Restrictions

	6 Conclusions
	References

