CONSTRUCTION PHASE
DIGITAL TWIN MODEL

cogito-project.eu

e —

¥ 1 /F]
-l ol

§ 3 .""«—Jl A
L

T

:‘\u w107

Digital Twin

i3 = V7
Y , —
VR o °
3
) R\
. \
J . P
P

Platform

- D7.9 Digital Twin Platform v1 1

D7.9 - Digital Twin Platform v1

Dissemination Level: Public
Deliverable Type: Demonstrator
Lead Partner: UCL
Contributing Partners: Hypertech, UPM
Due date: 31-05-2022
Actual submission date: 31-05-2022
Authors
Name ‘ Beneficiary ‘ Email
Kyriakos Katsigarakis UCL k.katsigarakis@ucl.ac.uk
Georgios N. Lilis UCL g.lilis@ucl.ac.uk
Dimitrios Rovas UCL d.rovas@ucl.ac.uk
Salvador Gonzalez-Gerpe UPM salvador.gonzalez.gerpe@upm.es
Apostolos Papafragkakis Hypertech a.papafragkakis@hypertech.gr
Giorgos Giannakis Hypertech g.giannakis@hypertech.gr
Reviewers
Name ‘ Beneficiary ‘ Email
Amy Wilson UEDIN Amy.L.Wilson@ed.ac.uk
Damiano Falcioni BOC damiano.falcioni@boc-eu.com

Version History

0.1 UCL 01.05.2022 ToC

0.3 UCL 10.05.2022 Draft version of sections 1,2,3,4,5
0.6 UCL, UPM, Hypertech 14.05.2022 Contributions in section 4

0.8 UEDIN, BOC 27.05.2022 Internal review

0.9 UCL 30.05.2022 Internal review comments addressed
1.0 UCL, Hypertech 31.05.2022 Submission to EC

Disclaimer

©COGITO Consortium Partners. All right reserved. COGITO is a HORIZON2020 Project supported by the European
Commission under Grant Agreement No. 958310. The document is proprietary of the COGITO consortium
members. No copying or distributing, in any form or by any means, is allowed without the prior written
agreement of the owner of the property rights. The information in this document is subject to change without
notice. Company or product names mentioned in this document may be trademarks or registered trademarks of
their respective companies. The information and views set out in this publication are those of the author(s) and
do not necessarily reflect the official opinion of the European Communities. Neither the European Union
institutions and bodies nor any person acting on their behalf may be held responsible for the use, which may be
made, of the information contained therein.

w COnstruction phase

B SRR |
diGltal Twin mOdel
COGITO

mailto:k.katsigarakis@ucl.ac.uk
mailto:g.lilis@ucl.ac.uk
mailto:d.rovas@ucl.ac.uk
mailto:salvador.gonzalez.gerpe@upm.es
mailto:a.papafragkakis@hypertech.gr
mailto:g.giannakis@hypertech.gr
mailto:Amy.L.Wilson@ed.ac.uk
mailto:damiano.falcioni@boc-eu.com

D7.9

Executive Summary

The COGITO Deliverable “D7.9 — Digital Twin Platform v1” documents the COGITO Digital Twin Platform and
reports the outcomes of work performed thus far in “T7.5 — Digital Twin Platform Development and Testing”. In
summary, the Digital Twin Platform (DTP) is a cloud-based and semantically enabled data integration middleware
that includes a comprehensive suite of services to guarantee scalability, reliability, and enhanced security, and it
is responsible for: a) providing authentication and authorisation to COGITO applications and users, b) handling
data from various input sources such as BIM authoring tools, project management tools, cameras, LiDAR scanners
and loT devices, and c) responding to data requests performed by the other COGITO applications. The DTP follows
a multi-layered architecture comprising six core layers. Each layer contains a set of software components
implementing the Service-Oriented Architecture (SOA) design pattern and performing various business logic
operations to support the main objectives of the COGITO solution. The primary output of the work conducted
thus far in T7.5 is the implementation, deployment and testing of the DTP that comprises only a set of the core
software components following the Minimum Viable Product (MVP) approach. These components have been
deployed in the various layers of the DTP based on the outcomes of “T7.1 — Digital Twin Platform Design &
Interface Specification”. This document mainly focuses on presenting the current version of the DTP and its
software components along with the functionalities they provide, the technology stacks they build upon, the
interfaces they use, the usage instructions and the assumptions and restrictions.

In the first version, the DTP provides a set of core functionalities such as i) authenticating users and applications,
ii) generating the knowledge graph based on the latest version of the COGITO ontologies and, iii) responding to
data requests performed by other COGITO applications. Its usage is demonstrated and evaluated with example
files obtained during the development phase from various online sources.

el [%T

- D7.9 Digital Twin Platform v1 3

Table of contents

EXECULIVE SUMIMIAIY oottt e et e e e e s e e e s e e s et aee e e e e e e et eeeeaaaeaeeaessssesasassnsssebesbabeaeseseaeeeaeaeaeens 2
TADIE OF CONTENTS ...ttt sttt s h e b e bt e b e ae ekt e a b e eb e e st e ehe e bt eheesbeeaeesbeeabesbeenbesbeenbesaeans 3
[o) = U TSRS 5
LISt OF TADIES ettt ettt r e r et neenn e s nae s 6
[o Yol o] 1Y ' TN 7
L INTPOTUCTION .ttt a et a e bt et s bt e bt satesbe e st e s be et e e bt en b e e b e et e eb b e bt eaeenbeenteebee bt eneenbesneen 8
1.1 Scope and Objectives of the DElIVErabIecooiiiiiiie et e 8
1.2 Relation to other Tasks and Deliverables...........ccciiiiiiiiiiiiiiiic s 9
1.3 Structure of the DelIVErable ..o e e 9

B 0 =41 | B VYT T 2] P o o o PSSRSO 10
2.1 Software Components ClassifiCationccccciieiiiii et e et e e e sab e e e eabae e eteeean 10
2.2 DePloYMENT ENVIFONMENT ...ecuiitiiiiiteeie ettt ettt b et b et ebe et e bt et eaeesbe et e sbeebesaeenbesaeenbesanens 11

3 Authentication and Authorisation INfrastruCturec..cocoiiiiiiiiiiiiii s 14
S J0 R e 1YoV o 0 1Y/ T =Y PR 14
3.1.1 OVBIVIBW ...ttt sttt ettt e b e st e bt e s aa e s bt e sar e e bt e san e e sbaesaneenbeesaneenreeeas 14
3.1.2 Technology Stack and Implementation TOOISccceeeiiieeiiie e e 14
3.13 API DOCUMENTATION ...ttt et r e s reesneesane s 15
3.14 USABE WaAlKENIOUZN ...ttt e et e e ta e e st a e e et e e e eanaeesnsaeean 16
3.1.5 F Y oY o] [Tor- Yo oI o= Ta Yo =TSRSSt 17
3.1.6 N[0l =] 0] 1 = PP PTUPUU R SORPRPPRE 17
3.1.7 INSTAllatioN INSEFUCTIONS ..couviiiiiiieie ettt ettt st st st b e et be et be e 17
3.1.8 Development and INTEEration STATUScccivieieeiiiiiieesee sttt re ettt e s e sareesaaeebeenees 18
3.1.9 ReqUIreMENTS COVEIAZE . .couiiiiiiiiiiiiiicti et s e s ra e e srae s 18
3.1.10 Assumptions and RESTIHCLIONSc.eeeiiiiiiiiiiiiieiiie ettt s 18

4 Project Creation and ONntology POPUIGLIONcceeiiiiiiiiiiiiii e e 19
4.1 Input Data Management COMPONENTuiiiiiiiiiiiiieie et et e e e e e e e e e s e s e s s e snnsnrereneee 19
411 PrOtOtYPE OVEIVIEW .. .uiiiiiieiiiieit ettt sttt e e s e e e s s s b te e e e s s ssabaeeeessssbbaaeeesesssssaeeessnnsrenes 19
4.1.2 Technology Stack and Implementation TOOISccceeieciiieciie e e 20
4.1.3 Input, Output and API DOCUMENTATIONcccvieeeiiieciee et e et e s aae e e ate e e e eaeesaeaeean 20
41.4 UYL VAV 11 o1 oY U= o SR 23
4.1.5 1= 0 1 [o= PSRRI 26
4.1.6 INSTAllatioN INSEFUCTIONS ..couviiiiiiieie ettt st st st bbb s 26
4.1.7 Development and INTEEration STAtUSccccuiiiiiiiieeciie ettt e e e are e e e be e e e eae e earaeean 26
4.1.8 REQUIrEMENTS COVEIAEE ..o iiieiciiiiiiiitttr ettt et e e e e e e e e e s e s et e e e e e eeeeeaeaeeeasesesassenensnssssssnrnnnn 26
4.1.9 AsSSUMPLIONS AN RESTIICTIONS ...eccuviiiiiiiiiectie ettt ettt e et e e e e bt e e e te e e e aeeeesbaeeeeareeesaseaeensaeaanns 27

4.2 KNOWIEdZE Graph GENEIATONciiciiieciieeectiee ettt et e e e et e e e te e e ettt e e e etaeeeeabeeeetaeesataaeeasbeseesaeesanens 28

- - COGITO - GA ID. 958310

- D7.9 Digital Twin Platform v1 4

4.2.1 PrOTOTYPE OVEIVIEW ..ottt e s e s r e e et et e e aeaaaeeeesesessssenassnsnserenees 28
4.2.2 Technology Stack and Implementation TOOIScccuieiiieeeciie e e 28
4.2.3 Input, Output and API DOCUMENTATIONccccuiiiiiiiecciee ettt et e e e ire e e b e e s be e e e eareeeaaee s 29
424 APPLICAtION EXAMPIE ..eeiiiiieeeee ettt ettt e et e et e e e stt e e e eateeeebaeeebaeeeentaeeeaaeeeaareaanns 30
4.2.5 [ol=] 1 [o= ST ST PPP O PPPPPTPRPRPIRY 32
4.2.6 INSTAllAtioON INSEFUCTIONS ..c.uvitiiiieieeit ettt ettt sb e et sbe et bt e b saeenbesaeeneas 32
4.2.7 Development and INtEZration STAtUScccieiiiiiriiiiieieteee ettt 32
4.2.8 REQUIrEMENTS COVEIAZE ..couniiiiiiiie ittt e et e s sab e e e s nn e e snnee s 32
429 AsSUMPLIONS AN RESTICTIONS ..vviieieiiiiiieciiiectee ettt et e e sre e e st e e esaee e ssaseeesbaeeenns 32

5 Data Processing Operations and Data DEIIVEIY......coccuiiiiie ettt e ire e se e e s ssaeeeseeeeenes 33
5.1 Digital TWin RUNTIME COMPONENT ...eiiuiiiiiiiie ettt e e s e e s e e e s saeestaeeensseeeensaaesnneeenn 33
5.1.1 PrOtOtYPE OVEIVIEW .. .eiiiiiiiiieeee ettt see e e e e e e e s s et e e e e s s s bareeesssssstaeeeeesnnsseeeesssnssenens 33
5.1.2 Technology Stack and Implementation TOOIScccviiiiieeeciie e e 34
5.1.3 Input, Output and API DOCUMENTATIONccccviieiiiieciiee ettt ee e e are e s te e e s be e e e areeenaee s 35
5.14 USABE WaAlKENIOUZN ...t et e e et e e s aae e e s be e e e ateeenaaeas 37
5.1.5 F oY oY ol [Tor- o] o I =T a Y o] LTRSS 44
5.1.6 |10l =] ¢] 1 = PP PP PPN 46
5.1.7 INSTAllAtioN INSEFUCTIONS ...ttt b et sb e et sbe et bt e b bt e nbesaeeees 46
5.1.8 Development and INTEEration STAtUScccviiiiiiieeciie ettt e e ete e e e be e e e eareeeeaneeas 46
5.1.9 ReqUIremMENtS COVEIAGEttt ettt e ettt e e e ettt e e e e s bbbt e e e s eanbaeeeeesnnbeeeeesaannnneen 46
5.1.10 Assumptions and RESTIHCLIONScoiiiiiiiiiiiiieiie et 47

(S @0 T ol TU] o o TP TPV P PR TOPTO PRI 48
RETEIEINCES ...ttt et a e e sa e e e e et e a e s h e e st r e r e r e 49

w COnstruction phase

B SRR |
diGltal Twin mOdel
COGITO

- D7.9 Digital Twin Platform v1 5

List of Figures

Figure 1 DTP’s overall architecture along with its software componentsccccceeeeiieeciieccciec e 10
Figure 2 Deployment of the core software components following the MVP approach.......cccccceveveviiieeinineennen, 11
Figure 3 Identity Provider’s user authentication ProCeSSiciiiiiciiieiiieeestee e e e e e et e e e eae e e 14
Figure 4 ldentity Provider’s USEr OGN PaEccueeeiuiiiieiiiee et cieeeette et e ettt e e ete e e e eate e e s tbeeeetaeeesaeeessbeseensaeeeanens 16
Figure 5 Identity Provider’s User registration Pcccveeicieeeiiieieiie sttt e st e s aee e saae e e ssbeeesaaeesnnes 16
Figure 6 Identity Provider’s Account Management CONSOIEccuiiiciiieiiiiie ettt e e e e 17
Figure 7 Identity Provider’s user authentication @Xampleceoiieiieiiie e 17
Figure 8 Example of a knowledge graph generated by the KGG component........cccocveeevieeeecieesciee e 19
Figure 9 IDM’s sub-components along with their interactions..........cccococveeeiiii e e 20
FigUre 10 VIEW Of @ll USEI'S PrOJECESeiiuiiiiitieiesttete ettt ettt ettt ettt ettt et st e st she e aesaeenbesae e beeabesbeenbesbeentesbeenes 23
Figure 11 Creation Of @ NEW PrOJECT .. .ciiiii i iieciiieesee et e etee et e et s e e e st e e e eseeeesaaeeessseeeanseeesnnaeeessseeeanseeesnnnes 23
Figure 12 Assignment of registered USErs t0 @ PrOJECTccociieeiiiieeiii ettt et e e e aae e e s ve e e e aae e eannas 24
Figure 13 Creation of @ NEW Property iN @ PrOJECE ...ei i iiriirieieeie ettt sttt sttt st sbe et saeente e e 24
Figure 14 Uploading the as-planned data using the IDM COMPONENTeeeiiiieeiiie e e e s 25
Figure 15 VieW Of all FEZISTEIEA USEI'S . ..viiieiiieeiiie ettt e ettt e et e e e et e e e eta e e e eaaeeestbeeeeasaeesasaeeesabeseensaeesnnens 25
Figure 16 Assigning a role t0 the USEr @CCOUNTcocuiiiiiiii ettt e et e st saa e e e sabeeenaaeesnnnes 26
Figure 17 High-level Architecture of Knowledge Graph GENErationcccocueeeeiieeiciiieeciie e e e e 28
Figure 18 Generation of COGITO’S TTLS @NA TS ..ecciuiiieiiieeciiieecieeeeiteeeete e e sveeeetreeeeateeesaveeeeaseeeesseeesaseseesaeesnnnns 30
Figure 19 Example of RDF generated by the ETL tools contained in the KGG component.........ccceeveeviveeenveeennnns 31
Figure 20 Example of Thing Description generated by the Thing Manager.........coceocvieeiiieecceee e 31
Figure 21 Digital Twin Runtime component’s main iNtEractionsccoceveereieeieniene et 34
Figure 22 Example of DT Runtime component’s configurable module and its IFC outpuUt.......cccceeceeevciieeeiieecnnns 34
Figure 23 View of all USEr’'s @pPliCAtiONS ...cccueiiiiiie ettt et e e et e e e e e et a e e saa e e e sateeeensaeesannes 37
Figure 24 Creation 0f @ NEW apPliCatioNc..eiiiiiieieiieteete ettt sttt b et sb et sbe e 38
Figure 25 Assignment of a role to the appliCationeeeviiiciii e 38
Figure 26 Creation of NEW ENAPOINT......c.ii ittt e e s e e e ete e e saaeeestbeeeeabeeesnaseeesabeeeensseesanees
Figure 27 Creation of a new Data Collection

Figure 28 Uploading and annotating files in @ Data ColleCtioncccvieiciieeiiie e s 40
Figure 29 Creation of @ NeW MQTT ChaNNEL.........ooiiiiiiiie ettt et e e are e e e tae e eaaes 41
Figure 30 Enabling or disabling an MQTT Channelcouiiiiiiiiiie et 41
Figure 31 Creation Of @ NEW ACTONciii i ceee ettt et e et e e et e e st e e e sateeeentaeesaeeeasseeeassaeeennseeessseeeansseesnens 41
Figure 32 Creation of @ NeW Property iN @n ACLOTccciiiiiiie e ettt ettt e e e stre e e ete e e sveeeetaeeeeaseeesabeeeetaeesnnes 42
Figure 33 View of all created modules

Figure 34 Creation 0f @ NEW MOAUIEcoiceiie e e e et s e e et e e e s ata e e sanaeeesateeeensaeeennees
Figure 35 Workspace for configuring and editing MOdUIEScocviiiiiiiiiiieiie e 44
Figure 36 DT Runtime component’s SYStEM CONSOIEccuuviiiiiieeiiie ettt e e s e et e e e naeesnes 44
Figure 37 Part of the UC1.1 SEQUENCE dI@gIami......cccuiieeiuieeiiieeeiiieeeeiteeeteeeestte e e etee e saaeeesaveeeensaeesnsaeeessseeeansaeesnnens 45
Figure 38 The module UC.1.1 — Request 5 which provides the as-planned 4D BIM data.........cccceevvveveerieeneennnen. 45

w COnstruction phase

B SRR |
diGltal Twin mOdel
COGITO

- D7.9 Digital Twin Platform v1 6

List of Tables

Table 1 Main characteristics of DTP’s software COMPONENTScccviieiiieeciie et e e e e aae e eaaee s 13
Table 2 Libraries and Technologies used in the Identity ProVidercccceeeiiieeeiiie i 14
Table 3 Identity Provider's AUtheNntiCation APloociiiiiie ettt e e e e aa e e sta e e e sateeesnaneesnnnaean 15
Table 4 Identity Provider's AdMIN APl ...ttt e e et e e e eett e e eeateeeeabeeeetaeesbseeeeabeeesnsaeesnseeean 15
Table 5 Identity Provider’s reqUir€MeENtS COVEIAZE ...uuuruuiiiriieeiiieeeiiieeireeesteeeeiteesstaeeeseteeesaaeessaeeessseessnsnessseeenn 18
Table 6 Libraries and Technologies used in the Input Data Management componentccceeecveeecveeecieeeesnnenn. 20
Table 7 Input Data Management compPonent’s REST APcoiiiiiiieiieiiienieeiteesteesieesaeesteesae e beesaeesseesbeesaeesaneas 21
Table 8 IDM component’s REQUIrEMENTS COVEIAZE . .cccuiiiiuieeriieeeiteeeireeesteeeesseeesssseeessseeessseeesssseessssesssssseesssenenn 26
Table 9 Libraries and Technologies used in the Thing Manager and the Wrapper moduleccccoeoovveeeiveeennnenn. 29
Table 10 Thing Manager’s REST APco.uoi ittt ettt sttt ettt et sae et s bt e be s bt e besbte b e estesbeenbeebeenee 29
Table 11 Thing Description DireCtory’s REST APluuieiciiiieieecceeeertee e sieeestee e e sete e eenae e e st eeessteeenaeeesnseaesnsseesnnnnens 30
Table 12 KGG component’s REqUIr€MENTS COVETAZEeeecuuieeiriieeiiieeeitieeeeteeeeitteeesteeeesareeessseaessseeesssesessssesseeens 32
Table 13 Libraries and Technologies used in the Digital Twin Runtime componentccccceeviervieenecniieeneennen. 35
Table 14 DT Runtime component’s REST APl ENAPOINTS ...ccuuieeiiiieeiie e et et et eesete e e aee e s eeessteeesnsneesnnneeas 35
Table 15 DT Runtime component’s Requirements COVEIAZEccucuieeiieeeiieeeeiteeeecreeeereeeeiaeeeesteeeesareseesaeessaeeas 47

COnstruction phase

B SRR |
diGltal Twin mOdel
COGITO

- D7.9 Digital Twin Platform v1 7

List of Acronyms

AAIl
AMQP
API
BIM
COGITO
DB
DCC
DI

DT
DTP
ETL
GUI
IFC
loT

JSON
VM
MQTT
MVD
RDF
REST
SHACL
SOA
SSE
SSO
STEP
STOMP
D
TDD
VM
WODM
XML

- - COGITO - GA ID. 958310

Authentication and Authorisation Infrastructure
Advanced Message Queueing Protocol
Application Programming Interface
Building Information Model

Construction Phase diGltal Twin mOdel
Database

Digital Command Centre

Dependency Injection

Digital Twin

Digital Twin Platform

Extract, Transform and Load

Graphical User Interface

Industry Foundation Classes

Internet of Things

Java Messaging System

JavaScript Object Notation

Java Virtual Machine

Message Queue Telemetry Transport
Model View Definition

Resource Description Framework
Representational State Transfer

SHapes Constraint Language

Service Oriented Architecture

Server Sent Events

Single-Sign On

Standard for the Exchange of Product Data
Streaming Text-Oriented Messaging Protocol
WoT Thing Description

Things Description Directory

Virtual Machine

Word Order Definition and Monitoring Tool

Extensible Markup Language

COnstruction phase
TD diGltal Twin mOdel

D7.9

1 Introduction

This deliverable reports on the implementation of the DTP reflecting the outcomes of the work conducted
between M7 and M18 in “T7.5 — Digital Twin Platform Development and Testing”. It builds upon the detailed
architecture of “T7.1 — Digital Twin Platform Design & Interface Specification”, the overall COGITO system
architecture of “T2.4 — COGITO System Architecture Design”, and the definition of the COGITO ontology network
of “T3.2 — COGITO Data Model, Ontology Definition and Interoperability Design”. This work presents the first
version of the core software components located in the various layers of the DTP.

In summary, the DTP consists of six core layers [1]. The Authentication Layer ensures that user and application
access is restricted to specific roles and groups. The Data Ingestion Layer is responsible for loading new datasets
and orchestrating the execution of the Extract, Transform and Load (ETL) and Model Checking (MC) services for
generating the knowledge graph and populating the corresponding databases. At the same time, the Data
Persistence Layer provides a cloud-based data storage solution including graph, relational and time-series
databases. The Data Management Layer satisfies the data needs of the various COGITO applications by providing
a runtime environment, which contains a set of reusable modules performing well-defined business-logic
operations. for handling data requests and delivering the responses using the Messaging Layer. The Data Post-
Processing Layer provides software components responsible for performing data completeness checking and
handling BIM models that conform to Industry Foundation Classes (IFC) standard.

Each of the above layers contains a set of core software components performing various business logic
operations to support the main objectives of the COGITO solution.

1.1 Scope and Objectives of the Deliverable

The main scope of this deliverable is to report on the implementation of the core software components located
in the various layers of the DTP. These components are based either on existing open-source projects or have
been designed and developed from scratch. The first release of the DTP consists of the following software
components:

e Identity Provider: This component is part of the Authentication Layer and provides a fully functional
identity and access management solution based on the open-source project Keycloak. It ensures that
access is restricted to specific users and applications with the appropriate permissions.

e Input Data Management component: This component is part of the Data Ingestion Layer and is
responsible for registering external applications, configuring user roles, creating projects, and
supervising the internal business-logic operations of the DTP.

e BIM Management component: This component handles BIM models that conform to the Industry
Foundation Classes (IFC) standard. It performs various BIM related business-logic operations such as
serialising/deserialising, querying, updating, and merging IFC models.

e Knowledge Graph Generator: This component is part of the Data Ingestion Layer and is responsible for
populating COGITO’s ontologies, validating the generated knowledge graph and generating the Thing
Descriptions (TD)". 1t supports the transformation of heterogeneous data such as IFC, JSON, XML and
CSV coming from various input data sources.

e Digital Twin Runtime component: This component is part of the Data Management Layer and is
responsible for creating and hosting application-driven modules used for orchestrating the data
processing operations. It ensures that the data coming from the Persistence Layer are synchronised and
harmonised before being forwarded to the other COGITO applications.

' The TDis an entity which contains meta-data of Things, where a Thing is an abstraction of physical or virtual objects.

el C%T

D7.9

1.2 Relation to other Tasks and Deliverables

This deliverable is the outcome of the “T7.5 — Digital Twin Platform Development and Testing”, which falls under
the activities of “WP7 — COGITO Digital Twin Platform”. There are several dependencies of this work to other
deliverables and tasks:

e The configuration of the Keycloak Identity Provider is based on the work performed in “T2.1 — Elicitation
of Stakeholder Requirements” and the corresponding deliverable “D2.1 Stakeholder requirements for
the COGITO system”.

e The development of the first release of the DTP and its core software components is based on the work
performed in “T7.1 — Digital Twin Platform Design & Interface Specification” and the corresponding
deliverable “D7.1 — Digital Twin Platform Design & Interface Specification v1”.

e The deployment and testing of the various ETL and MC components is based on the work performed in
“T7.2 — Extraction, Transformation and Loading tools (ETL) and Model-Checking” and the corresponding
deliverable “D7.3 — Extraction Transformation & Loading Tools and Model Checking v1”.

e The creation and deployment of DTP’s application-driven modules used for orchestrating the various
data processing operations is based on the work performed in “T2.4 — COGITO System Architecture
Design” and the corresponding deliverable “D2.5 — COGITO System Architecture v2”.

1.3 Structure of the Deliverable

This deliverable is organised according to the identified functional requirements of the DTP. As mentioned above,
the DTP is a cloud-based data integration middleware responsible for: i) providing an authentication and
authorisation mechanism to COGITO users and applications, ii) loading and validating information coming from
various input data sources, and iii) supervising and orchestrating data processing operations and data delivery
requests. This deliverable is structured as follows:

e Section 1 summarises the outcomes of the work conducted in “T7.1 — Digital Twin Platform Design &
Interface Specification” and their relationships with the development activities of “T7.5 — Digital Twin
Platform Development and Testing”.

e Section 2 presents the overall architecture and the deployment of the core software components in the
different layers of the DTP.

e Section 3 presents the Identity Provider, which is part of the Authentication Layer and is responsible for
authenticating COGITQ’s users and applications.

e Section 4 presents the first release of the core components contained in the Data Ingestion Layer, which
are responsible for loading data from various input data sources, managing projects, populating the
ontologies, and validating the knowledge graphs.

e Section 5 presents the DT Runtime component, which is part of the Data Management Layer and is
responsible for handling the data requests and harmonising the data before being delivered to the final
destinations.

e Section 6 presents the conclusions along with a release plan for the final version of the DTP.

el [%T

- D7.9 Digital Twin Platform v1 10

2 Digital Twin Platform

At this phase of the project, the development activities in “T7.5 — Digital Twin Platform Development and Testing”
follow the Minimum Viable Product (MVP) approach. The first release of the DTP provides all necessary features
to be usable by the developers and the early users of the COGITO system [2]. During the integration, they can
provide valuable feedback for developing the final release. This section describes the overall architecture and
the deployment characteristics of the core software components installed in the various layers of the DTP. Some
of these components are based on open-source projects, while others are developed from scratch.

2.1 Software Components Classification

As mentioned in the previous section, the DTP is responsible for loading the as-designed and as-built data,
populating the ontology network, validating the knowledge graphs, and handling the data requests performed
by the other COGITO applications. DTP’s architecture design is based on a multi-layered approach comprising of
six core layers. Each layer has different deployment characteristics and contains a set of software components
as shown in Figure 1.

COGITO Applications
Health & Safety ‘ Quality Control Process Modeling Visualization
Authentication Layer Data Management Layer Messaging Layer
Identity Provider H ” Message Broker
DT Library DT Runtime

g

Data Persistence Layer
Triplestore Timeseries DB File Storage t
Data Post-Processing
Layer
Relational DB Key-Value DB Thing Directory
MVD Checker
B-rep Genemtor
Data Ingestion Layer
BIM Management Knowledge Graph Generator IFC Optimizer

Input Data Management

Digital Twin Platform t '

External Tools COGITO Tools
4D BIM loT Data Pre-Processing
As Planned Resources Visual Data Pre-Processing

Figure 1 DTP’s overall architecture along with its software components

w COnstruction phase

B SRR |
diGltal Twin mOdel
COGITO

- D7.9 Digital Twin Platform v1 11

The software components are deployed into the DTP layers implementing various business-logic operations to
support the main objectives of the COGITO system. Based on their non-functional requirements they are
classified into three categories:

e Standalone Software Applications: This category contains software components configured to run on
one computational node. They provide static endpoints in various protocols (HTTP, TCP, WS) and
common security standards (SSL, TLS). For instance, the Identity Provider, the Input Data Management
component, the DT Runtime component, and the Message Broker are deployed in the DTP as standalone
software applications.

e Microservices: This category contains software components configured to run on multiple
computational nodes simultaneously. These components are packaged and deployed as Docker
containers in a cloud-computing infrastructure, providing flexibility, high-availability, and scalability.
They implement the Service-Oriented Architecture (SOA) design pattern to achieve asynchronous
communication through the Messaging Layer that provides an integrated communication environment
supporting various asynchronous messaging protocols. For instance, the MVD Completeness Checker,
the B-rep Generator and the IFC Optimiser are deployed in the DTP as microservices.

e Software Libraries: This category contains low-level software packages such as parsers and application-
specific algorithms used to develop other components and applications. They often provide multithread
processing operations and exchange information through Programming APIs.

2.2 Deployment Environment

Currently, only the core software components have been deployed into the DTP. Figure 2 illustrates an overview
regarding the actual implementation status.

Authentication Layer Data Management Layer Messaging Layer

altl | i
:

Data Persistence Layer

- - - Data Post-Processing
- - - B
Data Ingestion Layer

«| I

Figure 2 Deployment of the core software components following the MVP approach

As shown in Figure 2, the software components included in the first release of the DTP are highlighted in green
and explained as follows:

w COnstruction phase

B SRR |
diGltal Twin mOdel
COGITO

D7.9

The Authentication Layer contains the first release of the Identity Provider that offers a central identity and
access management solution for COGITO users. It's based on the open-source project Keycloak, an industry-
standard implementation supporting various authentication protocols such as OpenlID Connect and SAML 2.0.

The Messaging Layer contains the first release of the Message Broker that offers an integrated solution enabling
asynchronous bi-directional communication between DTP’s software components and other COGITO
applications. It is based on the open-source project Apache ActiveMQ Artemis’ offering a high-performance
message broker that supports multiple messaging protocols.

The Data Ingestion Layer contains the first releases of the following core software components:

e The Input Data Management component provides a Graphical User Interface (GUI) and a REST API which
offers core functionalities such as project creation, user management, and loading of the as-planned
data.

e The BIM Management component offers a Java-based API for serialising/deserialising, querying,
updating, and merging IFC data.

e The Knowledge Graph Generator includes a) the first release of the various ETL tools described in “D7.3
— Extraction, Transformation & Loading Tools and Model Checking v1” and, b) the Thing Manager,
responsible for supervising the data transformation processes, validating the knowledge graphs and
generating the Thing Descriptions.

The Data Persistence Layer contains the first releases of the following core software components:

e The File Storage System offers a REST API for storing, retrieving, and deleting files.

e The Relational Database is used for storing metadata related to projects, users, roles, connected
applications, and data collections.

e The Triplestore is used for storing the validated RDF data.

e The Thing Description Directory is used for storing the Thing Descriptions generated by the Thing
Manager.

The Data Management Layer contains the first releases of the following core software components:

e The DT Runtime component responsible for i) hosting and supervising application-driven modules
performing various data processing operations and, ii) providing configurable endpoints for the
interaction with the other COGITO tools

e The DT Library which contains a set of ready-made coding blocks allowing external developers to create
their own application-driven modules.

The Data Post-Processing Layer contains a set of components that use the asynchronous communication
channels provided by the Messaging Layer. Depending on the complexity of the input data, these components
can have higher execution times than other components. Currently, the Data Post-Processing Layer contains the
following software components:

e The MVD Checker validates IFC data in terms of completeness and semantic consistency by applying
predefined rules created by the MVD specification.

e The B-rep Generator uses the geometric information included in the IFC and generates triangulated B-
rep solids of the structural and non-structural elements.

e The IFC Optimiser performs lossless compression of an IFC to speed up loading and data processing
operations. It’s generating a new IFC with reduced file size.

In general, the DTP consists of software components that require one running instance and other software
components that can have multiple running instances simultaneously. The software components that require
one running instance are deployed on Virtual Machines (VM). In this case, the open-source server Nginx is used
as a reverse proxy server for forwarding the HTTP requests to the local destinations of the deployed standalone

2 ActiveMQ Artemis https://activemg.apache.org/

el C%T

https://activemq.apache.org/

- D7.9 Digital Twin Platform v1 13

applications. Currently, the Identity Provider, the Input Data Management, the File Storage System, and the DT
Runtime are behind Nginx.

On the other hand, the software components that implement the SOA design pattern are deployed as
containerised applications on a private cloud computing environment hosted on dedicated physical servers. In
this case, the running instances exchange data with the DTP through a central messaging system using local
endpoints that are not exposed to the internet. Within the first release of the DTP, the MVD Completeness
Checker, the B-rep Generator and the IFC Optimiser are deployed using the Docker technology. Table 1
summarises the main characteristics and the deployment status of the software components that have been

analysed previously.

Table 1 Main characteristics of DTP’s software components

SOftwa = components Type m

Standalone

Deployment Status

Authentication Layer | Identity Provider e Open source Deployed
Standalone Developed from
Input Data Management T - S— Deployed
f Devel f
Data Ingestion Layer BIM Management S'o tware e Tested
Library scratch
Knowledge Graph Generator Stan(_:lalc?ne Developed from Tested
Application scratch
. Standalone Developed from
Relational DB (data model) N —— S Deployed
. Standalone Developed from
File Storage System A —— p— . Deployed
I
Triplestore (server) itanlt':la qne Open source Deployed
Data Persistence pplication
Layer L Standalone Developed from
Thing Directory syl en . Tested
. . Standalone .
Timeseries DB (server) e —— Open source Pending
Standalone .
Key-Value DB (server) s —— Open source Pending
DT Runtime Stanlt'ialgne Devek;ped from Sty
Data Management Application scratc
Layer
BT Wy Stant.ialc?ne Developed from Tested
Application scratch
MVD Checker Microservice Partially Deployed
developed
Data Post-Processing B-rep Generator Microservice parall Deployed
Layer developed
. . . Partially
D
IFC Optimiser Microservice el eployed
. Standalone
Messaging Layer Message Broker Application Open source Tested

- - COGITO - GA ID. 958310

COnstruction phase

oI

- D7.9 Digital Twin Platform v1 14

3 Authentication and Authorisation Infrastructure

The various COGITO applications can be classified based on their functional and non-functional requirements.
Some applications offer a Graphical User Interface (GUI) and require a system to authenticate and authorise the
COGITO users. The Authentication Layer provides an Authentication and Authorization Infrastructure (AAl),
allowing the DTP to manage the users and their roles by providing various functionalities to COGITO system, such
as registration, password recovery, authentication, and authorisation endpoints.

3.1 Identity Provider

The AAl solution of the DTP relies on the Keycloak3 open-source identity and access management solution.
Keycloak is an industry-standard implementation for identity and access management supporting various
protocols such as the OpenlID Connect and SAML 2.0. Within COGITO, the OpenID Connect protocol is used,
offering Single Sign-On (SSO) capabilities to the COGITO applications.

3.1.1 Overview

The Identity Provider has been deployed as standalone software application behind the Nginx reverse proxy
server and offers an integrated solution for access management. The authentication process of a user is divided
into three main parts:

1. The COGITO application redirects the user to Keycloak to perform the authentication process.

2. The user provides the credentials, and if the authentication is successful, Keycloak redirects the user
back to the COGITO application.

3. The COGITO application performs a new request to the Keycloak service for retrieving the Access, ID,
and Refresh tokens.

. Auth Request . User Authentication

Access, Refresh, ID Toke ns—

Application
lient ID, Secret —Q

Figure 3 Identity Provider’s user authentication process

3.1.2 Technology Stack and Implementation Tools

The Identity Provider is based on the open-source project Keycloak. The work conducted in T7.5 is related to the
installation and configuration of the service. The service is behind the Nginx reverse proxy server, which handles
the SSL encryption and forwards the HTTP requests to the local destination.

Table 2 Libraries and Technologies used in the Identity Provider

TGChnOIogy Same

Keycloak 16.1.1 Apache Licence 2.0
Nginx 1.20.2 BSD
Certbot 1.22 Apache Licence 2.0

* Keycloak Identity and Access Management https://www.keycloak.org

w COnstruction phase

B SRR |
diGltal Twin mOdel
COGITO

https://www.keycloak.org/

- D7.9 Digital Twin Platform v1 15

3.1.3 API Documentation

The Keycloak server is configured to provide i) an Authentication REST API responsible for granting access to
users based on their credentials and ii) an Admin REST API that allows administrator users to access the
management resources that are provided by Keycloak’s Admin Console.

3.1.3.1 Authentication REST API

Each COGITO application that requires authentication through the Identity Provider has a unique ClientID and a
Secret generated by DTP developers during the configuration of Keycloak. The endpoints and the parameters
required for preparing external applications to connect to the Keycloak server are listed in Table 3.

Table 3 Identity Provider’s Authentication API

Name Method | Endpoint

OpeniD Endpoint GET http;//autch.coglto-prOJect.com/auth/realms/coglto/.weII-known/openld-
configuration

Auth URL GET https://auth.cogito-project.com/auth/realms/cogito/protocol/openid-connect/auth

Access Token URL GET https://auth.cogito-project.com/auth/realms/cogito/protocol/openid-
connect/token

The OpenlID Endpoint provides the main configuration parameters of the authentication server. The response is
a JSON object which includes all available endpoints, scopes, and signing algorithms. The Auth URL is the
endpoint of the authorisation server. It is used to retrieve an authorization code which is included in the
redirected URL after a successful login. On the other hand, the Access Token URL is the endpoint of the
authentication server. It is used by COGITO application to request the Access, ID and Refresh Tokens and it uses
as parameter the authorisation code.

3.1.3.2 Admin REST API

The Identity Provider offers a fully functional Admin REST APl which offer access to all features provided by the
Keycloak’s Admin Console. This APl is mainly used within the Input Data Management component by the DTP
Identity Manager for retrieving the complete list of registered users and roles. This information is required for
assigning or removing roles from the registered users. The endpoints and their parameters are listed in Table 4.

Table 4 Identity Provider’s Admin API

Name Method \Endl:ioint—

Get Users GET https://auth.cogito-project.com/auth/admin/realms/cogito/users

Get Roles GET https://auth.cogito-project.com/auth/admin/realms/cogito/roles

https://auth.cogito-project.com/auth/admin/realms/cogito/users/{user-id}/role-

Get User Roles GET !
mappings/realm

Assign a Role to https://auth.cogito-project.com/auth/admin/realms/cogito/users/{user-id}/role-

POST
User mappings/realm
Remove a Role DELETE https://auth.cogito-project.com/auth/admin/realms/cogito/users/{user-id}/role-
from a User mappings/realm

w COnstruction phase

B SRR |
diGltal Twin mOdel
COGITO

D7.9

The requests Assign a Role to User (POST) and Remove a Role from a User (DELETE) require the list of the selected
roles as body parameter. Each user role is defined as JSON object that contains the Role Id and the Role Name.
The detailed documentation® and the Postman collection of this API are available online.

3.1.4 Usage Walkthrough

The COGITO applications automatically redirect the unauthenticated users to the main page of the Identity
Provider. If the user has valid credentials, he/she can proceed with the authentication process using the login
page as shown in Figure 4.

COGITO

Figure 4 Identity Provider’s user login page

Otherwise, a registration process is required. The Identity Provider offers a registration page for registering new
users as shown in Figure 5.

COGITO

Figure 5 Identity Provider’s user registration page

After the registration process, the users still have no access to the COGITO system. The DTP Identity Manager
should assign the proper roles to grant users access to COGITO applications. Furthermore, each user has access

4 Digital Twin Platform API documentation https://api.cogito-project.com

i S

el

https://api.cogito-project.com/

D7.9

to Keycloak’s Account Management Console, which provides access to a basic account management system as
shown in Figure 6. The URL® of this console is open to the internet and offers an alternative way for users to
register without accessing the COGITO applications. It also provides pages for updating the users account
information and resetting their password.

B oo oo

Welcome to Keycloak Account Management

Personal Info

s "

Figure 6 Identity Provider’s Account Management console

3.1.5 Application Example

As shown in the example of Figure 7, the user authentication process has three steps. Initially, the COGITO
application redirects the user (1) to Keycloak to perform the authentication process. Next, the user provides the
credentials, and if the authentication is successful, Keycloak redirects (2) the user back to the COGITO application.
Finally, the COGITO application performs a new POST request to the Keycloak (3) for retrieving the Tokens.

grant_type:

code:

redirect_uri:

client_id:

Figure 7 Identity Provider’s user authentication example

3.1.6 Licensing

The Identity Provider is based on the open-source project Keycloak and provides an identity and access
management solution which is released under the Apache License 2.0.

3.1.7 Installation Instructions

This component is deployed as standalone software application in the Authentication Layer. It provides various
endpoints which are open to the internet. No file download, installation or maintenance is required by the
COGITO users.

> Account Management Console https://auth.cogito-project.com/auth/realms/cogito/account/#/

%‘T’D

https://auth.cogito-project.com/auth/realms/cogito/account/#/

- D7.9 Digital Twin Platform v1 18

3.1.8 Development and Integration Status

As mentioned previously, the work performed in this component was focused mainly on installation and
configuration activities. Currently, the service is fully functional, and the configuration is aligned with the
outcomes of the “T2.1 — Elicitation of Stakeholder Requirements” and “T2.4 — COGITO System Architecture
Design”. The stakeholders identified in T2.1 have been introduced in Keycloak as different roles [3]. Furthermore,
the COGITO applications that include user authentication as a functional requirement are registered to Keycloak
as Clients.

3.1.9 Requirements Coverage

The Identity Provider covers some of DTP’s functional and non-functional requirements defined in T2.4 and the
corresponding deliverable “D2.5 — COGITO System Architecture v2”. The functional and non-functional
requirements which are related to this component are presented in Table 5. The Reqg-1.1 is fully covered thanks
to the central identity and access management solution. Additionally, Reg-2.3 is achieved due to Nginx server
which offers SSL encryption.

Table 5 Identity Provider’s requirements coverage

Type ID Description Status
Functional Reg-1.1 Authenticates COGITO users and applications Achieved
Non-Functional Reg-2.3 Security Achieved

3.1.10 Assumptions and Restrictions

The first release of the Identity Provider has been deployed under certain assumptions and restrictions, listed
below:

e It has been configured to manage a single realm instance dedicated to the COGITO project. Currently,
all tests regarding the authentication mechanism have been performed using the IDM component and
Postman. The COGITO tool developers have access to the credentials of a demo client that they can use
to test the authentication and authorisation system.

e Theroles and the clients are configured based on the outcomes of the T2.1 and T2.4. New roles or clients
can be added or removed during the integration phase based on the needs.

e It supports email notifications allowing users to reset their passwords. In the final release, this
functionality will include additional email notifications related to security issues.

w COnstruction phase

B SRR |
diGltal Twin mOdel
COGITO

D7.9

4 Project Creation and Ontology Population

One of the core functionalities of the DTP, is to load the as-planned data and to populate the corresponding
knowledge graphs and databases. Before the construction works start, the as-planned data of a project are
loaded into the DTP through the Input Data Management component. Within COGITO, the as-planned data come
from three different sources: a) BIM authoring tools such as Autodesk Revit and Autodesk Civil 3D, providing the
3D BIM model along with the 4D semantics; b) project management tools such as Microsoft Project and
Primavera P6, providing the detailed schedule of the construction works; and c) ERP solutions, providing the as-
planned resources.

When the as-planned data are available, data completeness checking, and file-size optimisation operations are
performed to ensure that the input files meet the requirements of the various transformation tools. Once the
data are ready, the Knowledge Graph Generator (KGG) can generate the complete knowledge graph which
represents a network of physical and virtual entities (i.e., workers, machinery, equipment, zones, building
elements, activities) and illustrates the relationships between them as shown in the example of Figure 8 [4].
Furthermore, it generates and stores the corresponding Thing Descriptions into the Thing Description Directory.
A Thing Description is an object which follows the WoT Thing Description specification and provides a set of
meta-data and interfaces of Things, where a Thing is an abstraction of physical or virtual entities.

Figure 8 Example of a knowledge graph generated by the KGG component

In this section, we present the first release of the components involved in the processes of project initialisation,
data loading and ontology population and validation.

4.1 Input Data Management component

The first release of the Input Data Management (IDM) component has been deployed in the Data Ingestion Layer.
It provides a web-based GUI that allows users with proper permissions to create new projects, assign users to
projects, and upload the as-planned data. Furthermore, it offers a REST API allowing other COGITO applications
to access information related to the projects, users, and roles.

4.1.1 Prototype Overview

The IDM component is deployed as a standalone application into the Data Ingestion Layer. It uses modern web
technologies to deliver a rich GUI and offers authorised access to COGITO users through the Identity Provider.

] [%}D

- D7.9 Digital Twin Platform v1 20

The implementation of this component is based on Spring Boot technology which is built on top of the Spring
Framework. It contains an embedded version of the Apache Tomcat which hosts all required software packages.
The web application follows the Model-View-Control (MVC) approach and uses the Spring Security Framework
with the Spring Keycloak Adapter for managing the access policies of the COGITO users.

It also provides a REST API allowing the COGITO applications to interact with the DTP for project creation, user
management and loading as-planned data. Figure 9 shows the main interactions between the IDM component
and the other entities of the DTP.

Figure 9 IDM’s sub-components along with their interactions

4.1.2 Technology Stack and Implementation Tools

The IDM component is based completely on open-source technologies. As mentioned previously, it is built on
top of the Spring Framework and is deployed as standalone application. It’s installed behind the Nginx reverse
proxy server, which handles the SSL encryption and forwards the HTTP requests to the correct destination.

Table 6 Libraries and Technologies used in the Input Data Management component

Technology Name Version License

Spring Framework 53.1 Apache Licence 2.0
Spring Boot 2.3.0 Apache Licence 2.0
Spring Security 5.5.0 Apache Licence 2.0
Thymeleaf 3.0.15 Apache Licence 2.0
Hibernate 5.6.9 LGPL2.1

MysQL 8.0.24 GPLV2

Nginx 1.20.2 BSD

Certbot 1.22 Apache Licence 2.0

4.1.3 Input, Output and APl Documentation

The IDM component provides a REST APl enabling the COGITO applications to access data related to the projects.
This APl is used by various COGITO applications such as the Digital Command Centre (DCC), the Process Modeling
and Simulation (PMS) and the Work Order Definition and Monitoring (WODM) to retrieve data related to the
available projects and their users. The endpoints along with their parameters are listed in Table 7.

w COnstruction phase

B SRR |
diGltal Twin mOdel
COGITO

.

Digital Twin Platform v1

Table 7 Input Data Management component’s REST API

PP = Path Parameter

21

Method Endpoint
FP = Form Parameter

Get all Projects GET https://dtp.cogito-project.com/api/projects N/A

. https://dtp.cogito- . .
Get a Project GET A ey Em (PP) projectld: GUID
Get all Users of a https://dtp.cogito- . .
Project GET project.com/api/projects/{projectld}/users 177 prepzs ek B0
Get all Properties https://dtp.cogito- . .
of a Project GET project.com/api/projects/{projectld}/properties PLF] pprelciieR G
Get all Users GET https://dtp.cogito-project.com/api/users N/A
Get all Roles of a https://dtp.cogito-)
User GET project.com/api/users/{userld}/roles 7tP) scetels €I
Get a User GET https://dtp.cogito-project.com/api/users/{userid} (PP) userld: GUID
Get all Projects of a https://dtp.cogito-)
User el project.com/api/users/{userld}/projects iR seeitieh G

The following are examples of JSON responses returned by the GET requests of IDM’s REST API. For some
requests, the responses have no body content. In this case, the HTTP status code is used: i) the "200 - OK" is
returned if the request is successful, the "404 - Not Found" is returned if the resource is unavailable and iii) the
response "400 - Bad Request" is returned if an error has occurred.

Get all Projects

[
{
"name": "DEMO_01"
; "id": "1cf55b98 db69 46f8-ab64e-a531d512d4d3"
{
"name": "DEMO_02"
) "id": “c69407ff 2f81 4138-85d1-21a5e9e24550"
1

Get a Project

{
"name": "DEMO_01",
"descr1pt1on T "4D BIM provided by UEDIN"
) "id": "1cf55b98-db69-468-ab4e-a531d512d4d3"

Get all Users of a Project

[
{
"firstname": "Kyriakos",
e “1b20a241 c5fe-422e-8043- 01461da1a2c3“
"email": kats1garak1s@gma1'l com"
; "lastname": "Katsigarakis"
]

Get all Properties of a Project

[

{ " n n "
name": "country",
"value": "GR"

}!

{

- - S
S '
diGltal Twin mOdel
COGITO

.

- - COGITO - GA ID. 958310

Digital Twin Platform v1 22
"name": "datastore",
) "value": "https://his.cogito-project.com/demo_01"
r _
"name": "triplestore",
} "value": "https://triplestore.cogito-project.com/demo_01"
1
Get all Users
[
{))
"firstname": "Kyriakos",
"id": "1b20a241-c5fe-422e-8043-01461dala2c3",
"email": "katsigarakis@gmail.com",
: "lastname": "Katsigarakis"
{, " s " " s "
firstname": "Georgios",
"jd": "685d8e70-8f7d-4c23-97f9-69dffd52677d",
"email": "g.lilis@ucl.ac.uk",
: "lastname": "Lilis"
(N s
"firstname": "Frédéric",
"id": "47e5af5c-832c-472c-abcb-88d3bc80efcc"”,
"email": "f.bosche@ed.ac.uk",
; "lastname": "Bosché"
(N .
"firstname": "Giorgos",
"jd": "4d3f182e-997a-4d63-a843-81d498d2240c",
"email": "g.giannakis@hypertech.gr",
} "lastname": "Giannakis"
]
Get all Roles of a User
[
{
"name": "DTP Developer",
"jd": "95f260f6-880a-4899-abfc-0777a07e2a36"
%,
"name": "DTP Project Manager",
; "id": "90080412-bd71-4397-92a0-d01415c463b7"
1
Get a User
{))
"firstname": "Kyriakos",
"id": "1b20a241-c5fe-422e-8043-01461dala2c3",
"email": "katsigarakis@gmail.com",
: "lastname": "Katsigarakis"
Get all Projects of a User
[
{
"name": "DEMO_01",
; "id": "1cf55b98-db69-46f8-ab4e-a531d512d4d3"
1
RIE]

TO

D7.9

4.1.4 Usage Walkthrough

As shown in Figure 10, when the COGITO users sign into the IDM component through the DTP’s Identity Provider,
they see the table of projects created in the past and some of their details, such as the project description and
creation date. On the right side of the table, the Actions column contains a button for deleting a project after
confirmation. By clicking on any project, they can see further information and perform additional actions.
Depending on their roles, users may have access to projects they created or the entire list. The role DTP Project
Manager provides access to all projects, while the role Project Manager to projects created by the active user.

Modules

B Projects

Users

be

- Projects
=i Applications

Actors

Name Description Creation Date Actions

Extensions
3IM Dem t 16/0F 08 .

Figure 10 View of all user’s projects

On the same page, the users can create a new project by clicking the “+ Project” button. As shown in Figure 11 a
modal popup window appears which allows the users to provide basic information such as the project name and
the project description. At any time, users can cancel the project creation process by clicking on the Close button.

New Project

DEMO_03

Projects

Name Actions

B3 -

Figure 11 Creation of a new project

Once the project is created, the users can proceed with the configuration. They need to define the project
members and, if required, add global project parameters. On the main page of a project, the users with proper
roles can assign project members by clicking the “+ User” button. As shown in Figure 12, a modal window
containing a combo box element with all registered users appears. The assighment of the selected user with the
project is done by clicking the Assign button. At any time, users can cancel the assighment process by clicking on
the Close button.

SOGITO

D7.9

DEMO_01

Project Identifie

Add user to DEMO_01

Kyriakos Kat

Assigned Users

Figure 12 Assignment of registered users to a project

Following the assignment process, users with proper roles can create global properties by clicking the “+
Property” button. As shown in Figure 13, a modal popup window appears allowing users to fill in the property
name and its value. In the first release of the IDM component, there are no restrictions on the creation of project

properties.

B Projects Assigned U

& Users

First Name

Properties

Name

Figure 13 Creation of a new property in a project

New Property

country

Value

-

Actions

Actions

On the same page, users can upload the as-planned data by clicking the “Browse” button as shown in Figure 14.
Currently, the as planned data consist of three different files:

1. The 3D BIM is provided in IFC, particularly in versions IFC4 or IFC4x3. The DTP has specific data
requirements described in "D7.3 - Extraction, Transformation & Loading Tools and Model Checking". For
instance, the 4D data for each element, such as the construction zone and the task identifier.

2. The construction schedule is provided in CSV or MS Project XML file format, which contains the tasks

and their properties.

3. The as-planned resources are provided in a CSV file format, containing the resource types and their

properties.

The detailed data structures of the as-planned data are presented in “D7.3 — Extraction, Transformation &
Loading Tools and Model Checking”. Upon the upload process, the IDM will store these files into DTP’s File

S

el

D7.9

Storage System, and it will send an internal notification to DTP’s Data Management Layer for initialising a
sequence of various data processing operations.

&8 Modules

Project Properties
B2 Projects
2 U Name Value Actions
A Users
2t Applications country - x

X Actors

Extensions

Project Files Upload file Browse

Figure 14 Uploading the as-planned data using the IDM component

In the left sidebar of the IDM application, the link “Users” is visible only to users who have the role of DTP Identity
Management, as shown in Figure 15. This role allows users to manage the access policies of the registered users.

© N
0

Name Email Verified

Figure 15 View of all registered users

By clicking on any account, they can view its data and roles. The users with the role DTP Identity Management
can assign roles to any account by clicking the “+ Role” button. As shown in Figure 16, a modal window that
contains a combo box element with the available roles appears. It is worth mentioning that all roles are
predefined and configured directly in Keycloak. The assignment of the selected role with the user account is done
by clicking the Assign button. At any time, users can cancel the assignment process by clicking on the Close
button.

S

2] el

- D7.9 Digital Twin Platform v1 26
m

DTP Developer

B2 Projects
Users = Kyri
2 Users
User Info
User Id 451119-41 3a-4c42-91 da-e9ad4ch402d2 Email katsigarakis@gmx.com
FirstName Kyriakos LastName Katsigarakis
User Roles e
Name Container Actions
DTP Project Manager cogito .

Figure 16 Assigning a role to the user account

4.1.5 Licensing

The IDM is a closed source component. The lead group in charge of development of the DTP is receiving requests
for providing access to the component within the project.

4.1.6 Installation Instructions

This component is deployed as standalone software application in the Data Ingestion Layer. It provides a rich GUI
and a REST API which are open to the internet. No file download, installation or maintenance is required by the
COGITO users.

4.1.7 Development and Integration Status

As mentioned previously, the first release of the IDM component has been deployed in the Data Ingestion Layer.
Currently, the service is fully functional, and it provides all core functionalities that have been identified in “D7.1
— Digital Twin Platform Design & Interface Specification v1”. The WP7 technical partners will provide some minor
improvements in the final release of the component. For instance, a notification system will notify the users via
email when they join/leave a project or have a new role. Furthermore, there are some discussions within the
consortium for improving the GUI and the end-user experience.

4.1.8 Requirements Coverage

This component covers some of the DTP’s functional and non-functional requirements defined in T2.4 and the
corresponding deliverable “D2.5 — COGITO System Architecture v2”. The functional and non-functional
requirements related to the IDM component are presented in Table 8. The Reg-1.2 is fully covered by the
embedded web-based application that enables users to create, load and manage projects, users, and files.
Additionally, the Reg-2.3 and Req-2.4 are achieved due to Nginx reverse proxy server which offers SSL encryption
and load balancing capabilities.

Table 8 IDM component’s Requirements Coverage

Type [») Description NETH

- - S
S '

diGltal Twin mOdel

COGITO

- D7.9 Digital Twin Platform v1 27

Functional Req-1.2 Recglves as-planned data (BIM models, construction schedule, Achieved
available resources)
Reg-2.3 Security Achieved
Non-Functional
Reqg-2.4 High availability Achieved

4.1.9 Assumptions and Restrictions

The first release of the IDM component has been deployed under certain assumptions and restrictions, listed
below:

e It has been developed from scratch following the MVP approach providing the basic functionalities
essential for creating and managing projects. The final release will provide more features and an
improved GUI.

e It supports IFC4x3, although more tests and refinements are required. It has been tested using a sample
file of a road network.

e Currently, it doesn’t support email notifications. The final release, the IDM will send emails notifying
users for new assignments to projects and roles.

COnstruction phase

B SRR |
diGltal Twin mOdel
COGITO

D7.9

4.2 Knowledge Graph Generator

The Knowledge Graph Generator (KGG) component is part of the Data Ingestion Layer and oversees: i) the
execution of the various ETL tools, which are responsible for transforming COGITO’s as-planned input files to
Resource Description Framework® (RDF) data, ii) the validation of the semantic links included in these RDF data
and, iii) the generation of the Thing Descriptions. The ETL tools included in the KGG component have been
described in “D7.3 - Extraction, Transformation & Loading Tools and Model Checking”. The first release of the
KGG contains various sub-components and ETL tools that have been packaged as containerised services using
Docker and deployed in a cloud computing environment.

In this section, we present the first release of the core KGG’s components involved in the orchestration of the
ETL tools and the generation of the Thing Descriptions.

4.2.1 Prototype Overview

The main functionalities of the KGG component are the population and validation of COGITO’s knowledge graph
and the generation of the Thing Descriptions. For this purpose, the KGG contains two core sub-components, the
Thing Manager and the Wrapper module as shown in Figure 17.

Thing Description File Storage

Directory

@ el

System

1

Generates, UpdatesTD

"

Populates KG

[

Requests, Receives Raw Files

l. ® l.

—SSE Event—¥

-Response—

)
@

Input Data
Management

Sends
M eta-Dznz_’

Thing Manager Wrapper module

| File Pre-Processing |

| ETL Execution |

v

| RDF Validation |

Figure 17 High-level Architecture of Knowledge Graph Generation

A quick overview of Figure 17, shows that the starting point for generating the final knowledge graph and the
Thing Descriptions is the IDM component. The users with proper roles upload the as-planned data of a project
via IDM’s GUI. Once the files are loaded and stored in the File Storage System, the IDM component performs a
request (1) to the Thing Manager for creating an empty container for the specific project. Next, the Thing
Manager sends asynchronous messages to the Wrapper module (2) via the Server-Sent Event (SSE) protocol for
invoking the various ETL tools. The Wrapper module is responsible for i) retrieving the as-planned input data files
(3) from the File Storage System, ii) if required, executing pre-processing operations on the files, iii) triggering
the executions of the various ETL tools and, iv) performing data validation operations on the generated RDF data
by applying SHACL rules. Finally, the Thing Manager stores the returned TTL files to the Triplestore (4) and
generates and stores the corresponding Thing Descriptions to the Thing Description Directory (TDD) (5).

4.2.2 Technology Stack and Implementation Tools

The Thing Manager and the Wrapper module, which are the core sub-components of the KGG, have been
developed in Python using a set of open-source technologies and libraries listed in Table 9.

® The RDFis a general framework for representing interconnected data on the web https://www.w3.org/RDF/

SOGITO

https://www.w3.org/RDF/

Table 9 Libraries and Technologies used in the Thing Manager and the Wrapper module

TeChn°|°gy S

- D7.9 Digital Twin Platform v1 29

Flask 211 BSD 3-Clause License

requests 2.27.1 MIT License

wheezy.template 3.1.0 MIT License

Flask-SSE 1.0.0 MIT License

APScheduler 39.1 MIT License

rdflib 6.1.1 BSD 3-Clause License

SPARQLWrapper 2.0.0 W3C® SOFTWARE NOTICE AND LICENSE

4.2.3 Input, Output and APl Documentation

The Thing Manager component provides a REST API allowing other DTP components, such as the IDM and the
DT Runtime, to trigger the various generation and validation operations and to retrieve the generated RDF data
in TTL and the corresponding Thing Descriptions. The endpoints containing the project extension are relative to
the use of a project in a 1-1 relation with the project defined in the IDM component, which is the one reflected
in the ontology. In addition, this component will be of internal use for the DTP, so there will be no collision with
other endpoints that contain the term project in their definition. The endpoints provided along with their

parameters are listed in Table 10.

Table 10 Thing Manager’s REST API

. . PP = Path Parameter
Description Method Endpoint
FP = Form Parameter
Creates a new project, its respective POST /project/{projectld} (PP) projectld: GUID
triples and thing description (FP) name: Text
(FP) description: Text
Updates an existing project, its PUT /project/{projectid} (PP) projectld: GUID
respective triples and thing (FP) name: Text
description (FP) description: Text
Deletes an existing project, its DELETE /project/{projectld} (PP) projectld: GUID
respective triples and thing
description, and the thing
descriptions associated to it in
cascade mode
Retrieves the thing description ofan | GET /project/{projectid} (PP) projectld: GUID
existing project
Adds files to an existing project, POST /project/{projectid}/file (PP) projectld: GUID
creates respective triples and thing (FP) format_of_file: Text
descriptions (FP) type_of_file: Text
(FP) uri_of_file: Text
(FP) metatada: Text
Deletes file from project and its DELETE /project/{projectid}/file (PP) projectld: GUID
respective triples and thing (FP) format_of _file: Text
descriptions (FP) type_of file: Text
(FP) uri_of_file: Text
(FP) metatada: Text
Retrieves from KGG the respective GET /project/{projectld}/file/ttl (PP) projectld: GUID
TTL file generated, saves it into the (FP) format_of_file: Text
triple store and generate respective (FP) type_of_file: Text
thing descriptions for specific (FP) name_of_file: Text
elements of the graph

- - COGITO - GA ID. 958310
C

o

COnstruction phase

GITO

- D7.9 Digital Twin Platform v1 30
The TDD is a persistence service that contains the Thing Descriptions created by the Thing Manager component.
It uses the WoT Hive implementation, compliant with the W3C Web of Things Directory standard specification.
The TDD component provides a REST API allowing other DTP components to discover, create, retrieve, update,
and delete Thing Descriptions. The endpoints provided along with their parameters are listed in Table 11.

Table 11 Thing Description Directory’s REST API
. . PP = Path Parameter
Description Method | Endpoint
FP = Form Parameter
Provides the Thing Description of the GET /.well-known/wot-thing- N/A
WoT Hive directory description
Creates an anonymous Thing Description, | POST /api/things (body) : JSON-LD
provided in the body as JSON-LD framed.
The generated id is output in the
response headers
Partially updates an existing Thing PATCH /api/things/{id} (PP) id: GUID
Description, the updates must be
provided in JSON-LD framed
Solves a SPARQL query following the GET /api/search/sparql?{query} (PP) query: Text
standard. The response is formatted in
JSON. Other formats supported by the
APl: XML, CSV, and TSV.
Deletes an existing Thing Description DELETE | /api/things/{:id} (PP) id: GUID
4.2.4 Application Example
An example of the operations performed by the KGG is illustrated in Figure 18. Initially, the IDM component
creates a project entry into the Thing Manager, which includes the project id, project name, and project
description. Next, the IDM uploads the as-planned input data files, and the Thing Manager through the Wrapper
module triggers the execution of the various ETL tools.
Thing Description E .
Di ry Triplestore
Q GeneratE'IIJ = Pnpulatesli
1TL
ML |
Input Data
Management
1FC
=3 I
Figure 18 Generation of COGITO’s TTLs and TDs
The outputs of the KGG component consist of the TTL data illustrated in Figure 19, and the corresponding JSON-
LD data illustrated in Figure 20.
@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#> .
@prefix data: <http://data.cogito.iot.linkeddata.es/resources/> .
@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#> .
@prefix facility: <https://cogito.iot.linkeddata.es/def/facility#> .
@prefix process: <https://cogito.iot.linkeddata.es/def/process#> .
@prefix resource: <https://cogito.iot.linkeddata.es/def/resource#> .
data:Project_cogito:project:1
a faci Htﬁ :Project ;
facility:hasName "testl"AA<http://www.w3.0rg/2001/XMLSchema#string> ;
facility:hasDescription "test description"AA<http://www.w3.0rg/2001/XMLSchema#string> ;
facility:projectID "cogito:project:1"AA<http://www.w3.0rg/2001/XMLSchema#string> ;

- - COGITO - GA ID. 958310 ;
COGI

TO

D7.9

facility:isRelatedToProcess process:data/1789B04B-1A16-EC11-9EF0-BO0CD17291CA .

data:Process_cogito:project:1_1789B04B-1A16-EC11-9EF0-BO0CD17291CA

a process:Process ;

process:processID '1789B04B-1A16-EC11-9EF0-BO0CD17291CA" ;

process:hasName '20210916_pPlanificacion_UTE_SOT.xml' ;

process:hasCreationDate '2020-07-31T09:00:00'AA<http://www.w3. 0rg/ZOOl/XMLSchema#dateT1me>
process:hasCost data:cost/1789B04B-1A16-EC11-9EF0-B00CD17291CA

process:isPlannedIn data:interval/1789B04B-1A16-EC11-9EFO- BOOCDl7291CA .

data:Task cogitO'project'l 1789B04B-1A16-EC11-9EF0-BO0CD17291CA_0O

a process:Task ;

process:taskId 1889BO4B 1A16-EC11-9EF0-BOOCD17291CA" ;

process:taskuid '0" ;

process:hasName 'SOT-MURCIA'AA<http://www.w3.0org/2001/XMLSchema#string> ;
process:hasCreationDate ''AA<http://www.w3.0rg/2001/XMLSchema#dateTime> ;
process:isPlannedIn data:interval/1889B04B-1A16-EC11-9EF0-BO0CD17291CA ;
process:hasPriority '500'AA<http://www.w3.0rg/2001/XMLSchema#integer> ;
process:hasProgress 'PTOHOMOS'AA<http://www.w3.0rg/2001/XMLSchema#string> ;
process:hasStatus 'PTOHOMOS'AA<http://www.w3.0org/2001/XMLSchema#string> ;
process:hasCost data:cost/1889B04B-1A16-EC11-9EF0-BO0CD17291CA .

data:ResourceType_cogito:project:1_1789B04B-1A16-EC11-9EF0O-
BO0CD17291CA_Truck_mounted_concrete_boom_pump_1

a resource:ResourceType ;

a resource:EquipmentType ;

resource:resourceTypeld 1 ;

resource:name 'Truck_mounted_concrete_boom_pump'AA<http://www.w3.0org/2001/XMLSchema#string> ;
resource:initials 1 ;

resource:masunit 2 ;

resource:costPerHour 2000 .

Figure 19 Example of RDF generated by the ETL tools contained in the KGG component

{
"@context : "https: //www w3.org/2019/wot/td/v1",
"id": co ito: prOJect 1"
"title" demo
"descr1pt1on"'"/ap1/th1ngs/uu1d project:0c8c5e40-dbdf-484f-b563-dcf550f84d90"
secur1tyDef1n1t1ons {
'nosec_sc": {"scheme"'"nosec"}
”éecurity": ["nosec_sc"],
"properties":
"demo": {
. "forms": [
"href": "/files/uuid:file:3741aa23-c870-4937-bfa7-2fbfec971c0a",
: "contentType": "json"
P
"href"' "/f11es/uu1d file:3741aa23-c870-4937-bfa7-2fbfec971cOb",
"contentType": "ifc"
3{_,
”href"' " /f11es/uu1d file:3741aa23-c870-4937-bfa7-2fbfec971c0c",
"contentType": "xml"
1}f’
”href"' "/f11es/uu1d file:3741aa23-c870-4937-bfa7-2fbfec971c0d",
: "contentType": "csv"
, .]
"h ttp //0penmetr1cs eu/openmetrics#Space_1157": {
"forms": [
"href"-"/sparq17query http://openmetrics.eu/openmetrics#Space_1354"
"contentType": "ttl1"
:, 1
"h ttp //openmetr1cs eu/openmetrics#Space_1354": {
"forms"
"href"'"/sparq17query- http://openmetrics.eu/openmetrics#Space_1354",
‘contentType": "tt1"
1
1,
}

Figure 20 Example of Thing Description generated by the Thing Manager

COGIT

diGltal Twin mOdel

- D7.9 Digital Twin Platform v1 32

4.2.5 Licensing

As mentioned previously, the KGG component consists of i) the Thing Manager, which handles the requests done
by other DTP components and generates the Thing Descriptions, ii) the Wrapper module, which is called
internally by the Thing Manager and performs the requests to the ETL tools for generating and validating the RDF
data, and iii) the various ETL tools, which are responsible for transforming the raw input data files to RDF triples.
All these sub-components are open-source and licenced under the Apache Licence 2.0.

4.2.6 Installation Instructions

The installation instructions are simply to deploy a Docker container along with a configuration file indicating the
endpoints where will be allocated the WoT Thing Directory (TDD), the Triple Store and the Thing Manager. In
addition, a docker-compose file containing the execution of the containers belonging to the Thing Manager,
Wrappers, Triplestore and Thing Directory will be provided.

4.2.7 Development and Integration Status

Currently, the KGG component is partially developed. The first release of the Thing Manager and the ETL tools
have been tested and deployed in the DTP. They support the generation of the complete knowledge graph
covering the data requirements of the COGITO use cases. In the final release, the Thing Manager will support i)
the automatic validation of the knowledge graph by applying checking rules using the SHACL specification and ii)
the generation of the Thing Descriptions for all instances included in the graph.

4.2.8 Requirements Coverage

As shown in Table 12, the KGG component covers one of the functional requirements of the DTP included in
“D2.5 — COGITO System Architecture v2”. The Reqg-1.5 is fully covered by the KGG sub-components and the
involved ETL tools. The first release of the Thing Manager can orchestrate the data transformation processes and
to store the output RDF data in the Triplestore.

Table 12 KGG component’s Requirements Coverage

Description NENTH

Functional Reg-1.5 Populates COGITO’s ontology Achieved

4.2.9 Assumptions and Restrictions

The operation of the Knowledge Graph Generator tool relies on the following assumptions and restrictions.

e The communication between the Wrappers and the Thing Manager must be done by means of events,
created by the Thing Manager in different channels to which the different Wrappers must be subscribed
according to their function to be performed.

e The Thing Manager configuration must always contain the endpoints required for Thing Manager
deployment on a specific port, the Triplestore endpoint and the Thing Directory endpoint.

e The information sent to the Thing Manager must always be in JSON format, if the sender is not a
Wrapper.

e In case you want to register a file corresponding to a project, you must send as information in JSON
format, the identifier of the project where you want to register the file and the URL where it is stored,
to extract the information to be transformed to RDF.

e Thing Descriptions must follow the structure defined in the W3C standard.

w COnstruction phase

B SRR |
diGltal Twin mOdel
COGITO

D7.9

5 Data Processing Operations and Data Delivery

Once the as-planned data are loaded to the DTP’s Data Persistence Layer and the knowledge graphs are
generated, the COGITO applications can interact with the DTP for a) providing the as-built data, which consists
of imagery and location tracking information along with their meta-data, and b) performing data requests that
require special handling due to the diversity of the various domains included in COGITO.

Within COGITO, the Data Pre-Processing tools are responsible for providing the as-built data to DTP. More
specifically this category contains the following tools:

e The IloT Data Pre-Processing tool is responsible for pre-processing raw location tracking data coming
from various loT sensors.

e The Visual Pre-Processing tool, responsible for pre-processing raw visual data and point clouds coming
from cameras and LiDAR scanners.

On the other hand, the remaining COGITO tools are interacting with DTP’s Data Management Layer and are
classified as follows:

e The Health and Safety tools are responsible for generating hazards mitigation measures and producing
warnings notifications to the on-site workers for their proximity to hazardous areas.

e The Workflow Modeling and Simulation tools are responsible for monitoring and optimising the
construction processes.

e The Quality Control tools are responsible for comparing the as-designed and as-built data and detecting
potential defects.

e The Visualisation tools are responsible for retrieving and visualizing various data stored in the DTP, to
support on-site and off-site activities of relevant stakeholders.

The Data Management Layer manages the data requests of these tools by offering an actor-based runtime
environment and a web-based application for the configuration of the various endpoints required. This section
presents the first release of the DT Runtime component, which is responsible for orchestrating the internal data
processing operations, harmonizing their responses, and sending them to the COGITO tools.

5.1 Digital Twin Runtime component

The Digital Twin (DT) Runtime component is a lightweight data integration container for hosting configurable
modules implemented to perform various data processing operations. It is based on the open-source framework
Akka’ that offers a toolkit for simplifying the deployment of concurrent and distributed applications. In other
words, Akka is a powerful reactive high-performance framework optimised for running on the Java Virtual
Machine (JVM). Within COGITO, this implementation can handle multiple requests simultaneously performed by
the various COGITO tools and to respond through the provided REST API.

5.1.1 Prototype Overview

This component contains a set of ready-made software actors for facilitating tool developers to design and
deploy dynamic modules that can handle complex requests. An actor is an extensible program-code template
that can contain configurable parameters (user credentials, database credentials, triplestore locations) for
interacting with other components and executes its business-logic operations and forwards the response to the
next actors using framework’s embedded lightweight messaging system. Thus, the actors are created once by
the DTP developers and then reused in the various configurable modules of the DT Runtime component, as
shown in Figure 21. It is worth mentioning that the first release includes a fully functional REST API for interacting
with the other COGITO tools.

7 Akka Actor Model https://www.akka.io

el [%T

https://www.akka.io/

- D7.9 Digital Twin Platform v1 34

The final release of this component will contain various adapters allowing asynchronous communication through
enterprise messaging protocols such as AMQP, KAFKA and MQTT.

E Persistence Layer

Figure 21 Digital Twin Runtime component’s main interactions

For instance, the generation of an IFC file from the corresponding 4D BIM model for a given time frame, has a
two-step process: first, the execution of a SPARQL query for retrieving the identifiers of the BIM elements that
are involved to active tasks, and second, the filtering of the original IFC with the identifiers returned from the
first step. The output of this module is an IFC file that contains only the BIM elements of the active tasks as shown
in Figure 22.

EndpointListener

output1 P

SelectFile

inptt Outpin1 P

QueryGraph

Iopat1 Output1 P

GenerateBimMode}

nput1 outputd P

StoreFile

Figure 22 Example of DT Runtime component’s configurable module and its IFC output

5.1.2 Technology Stack and Implementation Tools

The DT Runtime component is based on open-source technologies. It is built on top of the Spring Framework and
is deployed as standalone web-based application. It has been installed and configured to run behind the Nginx
reverse proxy server, which handles the SSL encryption and forwards the HTTP requests and the web-socket
packets to the correct destination.

%ﬁ COnstruction phase

B SRR |
diGltal Twin mOdel
COGITO

- D7.9 Digital Twin Platform v1 35

The integration between Spring and Akka frameworks is possible through the Akka Extension mechanism. This
technology enables external Dependency Injection (DI) frameworks like Spring to manage the lifecycle of the
actor instances.

Table 13 Libraries and Technologies used in the Digital Twin Runtime component

TGChnOIogy S

Spring Framework 53.1 Apache Licence 2.0
Spring Boot 2.3.0 Apache Licence 2.0
Spring Security 5.5.0 Apache Licence 2.0
Spring Integration 5.5.5 Apache Licence 2.0
Akka 2.6.15 Apache Licence 2.0
Apache Jena 3.13.0 Apache Licence 2.0
Thymeleaf 3.0.15 Apache Licence 2.0
Hibernate 5.6.9 LGPL2.1

MySQL 8.0.24 GPLV2

Nginx 1.20.2 BSD

Certbot 1.22 Apache Licence 2.0

5.1.3 Input, Output and API Documentation

The DT Runtime component provides a REST API enabling the various COGITO applications to request data
fetched by actors interacting with the Data Persistence Layer. The application developers register their tools to
the DT Runtime component and configure the endpoints of each tool as defined in the “D2.5 — COGITO System
Architecture v2”. On the other hand, the lead group in charge of the development of DTP is responsible for
deploying and connecting these endpoints with the proper modules. The REST API allows the COGITO tools to
manage their data collections for each endpoint. Thus, the COGITO tools can perform requests for handling data
collections and the contained files. The endpoints provided along with their parameters are listed in Table 14.
The detailed documentation and the Postman collections of DTP’s REST APIs are available online®.

Table 14 DT Runtime component’s REST API Endpoints

PP = Path Parameter
FP = Form Parameter

Method | REST End

Get the Application | GET https://dtp.cogito-project.com/api/application N/A

Get all Endpoints of GET https://dtp.cogito- N/A

the Application project.com/api/application/endpoints

Get all Data .

Collections of an GET httr')s.//dtp.cogl'to- . . . (PP) endpointld: GUID
. project.com/api/endpoints/{endpointld}/collections

Endpoint

Get a Data https://dtp.cogito- . .

Collection <3y project.com/api/collections/{collectionld} PP it e €D

Create a new Data (FP) endpointld: GUID

Collection POST https://dtp.cogito-project.com/api/collections/create (FP) projectld: GUID

Update the Status https://dtp.cogito- (PP) collectionld: GUID

. POST
of a Data Collection project.com/api/collections/{collectionld}/status (FP) status: Text

8 Digital Twin Platform API documentation https://api.cogito-project.com

w COnstruction phase

B SRR |
diGltal Twin mOdel
COGITO

https://api.cogito-project.com/

D7.9

Delete a Data https://dtp.cogito-

Collection DESSE project.com/api/collections/{collectionld}/delete

Get all Files of a GET https://dtp.cogito-

Data Collection project.com/api/collections/{collectionld}/files

Upload Files into a POST https://dtp.cogito-

Data Collection project.com/api/collections/{collectionld}/upload
:J';:icli:te e Thoe @ POST https://dtp.cogito-project.com/api/files/{fileld}/type
Delete a file DELETE https://dtp.cogito-project.com/api/files/{fileld}/delete

(PP) collectionld: GUID

(PP) collectionld: GUID

(PP) collectionld: GUID
(FP) files: File

(PP) fileld: GUID
(FP) type: Text

(PP) fileld: GUID

The following are examples of JSON responses returned by the GET requests of the REST API. For some requests,
the responses have no body content. In this case, the HTTP status code is used: i) the "200 - OK" is returned if
the request is successful, the "404 - Not Found" is returned if the resource is unavailable and iii) the response

"400 - Bad Request" is returned if an error has occurred.

Get the Application

ame": "Demo
"id": ”36ea91a9 d2a8-4916-8de3-8a8ecdaddfeb”

Get all Endpoints of the Application

{
"name": "4D",
descr1pt1on "'4p",
; "id": "81cffOea-1bf0-4a22-8903-ac5374c02436"

Get all Data Collections of an Endpoint

roject": "1cf55b98-db69-46f8-a64e-a531d512d4d3",
" d"' "47368c01—ld50—459a—997d—f8635e3c0511",
creation_date": "2022-05-03 11:46:12.0",
"status": "completed"

prayea}

roject": "c69407ff-2f81-4138-85d1-21a5e9e24550",
" d"' "0b781566—2dee—4120—bbd7—ec3895e67f67",
creation_date": "2022-05-03 12:54:14.0",
"status": "incomplete"

Get a Data Collection

{
oject": "c69407ff-2f81-4138-85d1-21a5e9e24550",
”1d" "5425dc1d—a9e2—4d52—89fd—5732013b84ff",
"creation_date": "2022-05-03 11:49:46.0",
} "status": "completed"

Get all Files of a Data Collection

{

"date": "2022-05-03 11:49:58.0",

extens10n : "esv"

"name": "rst advanced _sample_project_Msp2010_v2",

"id": "b4984a23-1feb-45Fc-9d79-3 03436b8f68",

"type" : "CONSTRUCTION_SCHEDULE",
; "url": "https://dtp.cogito-project.com/file/b4984a23-1feb-45fc-9d79-3b03436b8f68/download"
{

"date": "2022-05-03 11:49:55.0",

"extension": "CSV",

S

oo

D7.9

"name": "resources",

"id": "f2a52a51-8fc2-4f2f-a7d9-f3fe4968bed3",

"type": "AS_PLANNED_RESOURCES",

"url": "https://dtp.cogito-project.com/file/f2a52a51-8fc2-4f2f-a7d9-f3fe4968bed3/download"

5.1.4 Usage Walkthrough

The DT Runtime component offers a GUI for configuring and managing DTP’s functional modules and their
interfaces with the other COGITO tools. Thus, the GUI consists of three main parts: i) The “Registration of COGITO
Applications” used for registering the COGITO applications and configuring their access policies, endpoints, and
notification channels, ii) The “Registration of COGITO Actors” used for configuring the meta data of the actors
and their properties, and iii) The “Deployment of COGITO Modules” used to create the data processing workflows
required by the COGITO applications. These three parts are presented in detail in the following subsections.

5.1.4.1 Registration of COGITO Applications

The users who have a developer role can sign in to the DT Runtime component through the DTP’s Identity
Provider. The “Applications” button shows the list of applications added in the past, as shown in Figure 23. On
the right side of the screen, the “Actions” column contains buttons for deleting the applications after
confirmation via a popup window. By clicking on any application name, the users can see further information
and perform additional actions. Users may have access only to their applications or the entire list, depending on
their roles. The role of the DTP Developer allows access to all applications. In contrast, various composite roles
like DCC Developer, PMS Developer, WODM Developer and others allow access to applications created by the
specific user.

&= Modules Applications
= Applications
Name Description Actions
2 Actors
y x
1 Extensions

Figure 23 View of all user’s applications

On the same page, users who have a developer role can add a new application by clicking the “+ Application”
button. As shown in Figure 24, a modal window appears which allows users to provide the application name and
a short description. At any time, users can cancel the application registration process by clicking on the Close
button.

COGITO

- D7.9 Digital Twin Platform v1

38

New Application

Name
o .
& Modules Application
VirtualSafety
i Applications
Mame Description
@t Actors
Provides personalized safety education and trainging
DCC
3 Extensions
Demo

DM

10T Data Pre-Processing

PMS

SafeConAl

Visual Data Pre-Processing

WODM

£ -

Data Pre-Processing Application

Process Modeling and Simulation

Health and Safety Application

Data Pre-Processing Application

Work Order Definition and Monitoring

Figure 24 Creation of a new application

-+ Application

Actions

Once the application is added, the users can proceed with the configuration process. Based on COGITQO's system
architecture described in D2.5, they must configure the REST endpoints and, if required, the MQTT channels.
Furthermore, the users can grant access to other users who have different roles by clicking the "+ Role" button.
As shown in Figure 25, a modal window appears that contains a combo box element with all available roles. The
assignment of the selected role to the application is done by clicking the Assign button. The users can cancel the

assignment process by clicking on the Close button.

Assign a role to loT Data Pre-processing

loT Data Pre-Processing Developer

&= Modules

Applications
i Applications

@ Actors

. Application ¢
@ Extensions

API Endpoints

MName Description

Configuration Tags configuration
Roles

Name

DTP Developer

3 -

<+ Endpaint

Actions

Actions

MQTT Channels

Name

Tracking Data

API Keys

User

Kyriakos Katsigarakis

Figure 25 Assignment of a role to the application

Description

loT Data Stream

+ MQTT channel

Actions

Actions

COnstruction phase

B SRR |
diGltal Twin mOdel
COGITO

D7.9

Continuing with the configuration, users can create new endpoints by clicking the “+ Endpoint” button. As shown
in Figure 26, a modal window appears allowing the users to fill in a name and a short description. At any time,
users can cancel the endpoint creation process by clicking on the Close button.

New API Endpoint

&= Modules
Configuration

#: Applications
£ Actors
Tags configurationy
£ Extensions Application It
B -
API Endpoints MQTT Channels m
Roles API Keys s
Name Actions

Figure 26 Creation of new endpoint

Once the endpoint is added, the COGITO users and tools can create data collections using this GUI or the REST
API accordingly. As shown in Figure 27, a modal window appears that contains a combo box element with the
available projects. This action is identical to the request “Create a new Data Collection” of the REST API described
in the previous section.

New Data Collection Job

DEMO_01

Modules

i Applications

& Actors m CLOSE

Configuratic

X Extensions
Endpaint Identifier
Data Collections
Creation Date Project Files Completed Actions

Figure 27 Creation of a new Data Collection

Once the data collection is created, the COGITO users and tools can upload files, annotate the file types, and
update the data collection status. The annotation of the files is essential in case of the data collection contains
multiple files that have the same format and different data structures. For instance, as shown in Figure 28, the

D7.9

data collection contains multiple CSV files with different data structures. In this case, the type is used to
differentiate the files. Furthermore, the status parameter is used as a triggering mechanism that produces
notifications to the active data processing services of the DTP. As mentioned previously, the REST API contains
all the functionalities demonstrated here using the web-based application.

Modules

i Applications
£ Actors
¢ Extensions
Files
Name

Project Identifier

Type

CONSTRUCTION_SCHEDULE

AS_PLANNED_RESOURCES

Upload file

Extension Date

Figure 28 Uploading and annotating files in a Data Collection

Actions

I+
x

The first release of the DT Runtime component can handle data streams and supports various asynchronous
messaging protocols. Currently, the web-based application allows users with proper roles to configure MQTT
connections between external applications and the DT Runtime component. This functionality is essential for
various COGITO tools. For instance, the loT Data Pre-processing module uses this technology for streaming real-
time location tracking data into the DTP.

&2 Modules

i Applications
£ Actors

Application It
X Extensions

API Endpoi

Name

Roles

Name

New MQTT Channel

Tracking Data

loT Data Stream

tep://pluto.openmetrics.eu:1883

openmetrics

cogito/defaulf

B

nels

Description

Actions

Actions

el

D7.9

Figure 29 Creation of a new MQTT channel

In addition, various COGITO tools such as WOEA, VisualQC, and ProActiveSafety use the publish/subscribe
messaging pattern for sending and receiving notifications through the Messaging Layer. As shown in Figure 30,
the GUI provides a button for enabling and disabling the configured channels.

Modules

Applications)ata Pre-Processi acking Dat

i Applications
£2 Actors

MQTT Channel [m
£ Extensions

Name Description

Username Password

Figure 30 Enabling or disabling an MQTT channel
5.1.4.2 Registration of COGITO Actors

The DT Runtime component allows users with proper roles to configure new actors through the web-based
application. These actors are reusable blocks of code with specific names and behaviours that implement
business logic operations and can be placed and interconnected into the modules. The users can create a new
actor by clicking the “+ Actor” button. As shown in Figure 31, a modal window appears allowing the users to fill
in the actor’s name and some necessary meta data such as the Java class name of the actor as well as the number
of inputs and outputs. The creation of the actor is done by clicking the Save button. At any time, the users can
cancel the creation process by clicking on the Close button.

New Actor

SayHello

OMActorSayHello

Actors

£ Actors Name Number of Outputs Actions

B o

Figure 31 Creation of a new Actor

i S .
COGITC

D7.9

Once the actor is created, the users can proceed with the definition of the properties. Each actor can have a set
of configurable properties. The values of these properties are set during the configuration of the module.

Optionally, the DT Runtime component allows users to set default values to the properties in the modal window
as shown in Figure 32.

New Property

Modules
ecelver

i#i Applications

Actors
o) Properties
Extensions

Name Actions

B -

Figure 32 Creation of a new property in an Actor

Next, the users must provide and load the Java code that implements the business logic of the actor. For instance,
a simple actor in charge to say “Hello <receiver>!" has a code as follows.

@Component
@scope(ConfigurableBeanFactory.SCOPE_PROTOTYPE)
public class OMActorSayHello extends OMActorBase {

private static final Logger log = LoggerFactory.getLogger(OMActorSayHello.class);
private String receiver;

public OMActorSayHello(Entity entity) {
super(entity);
log.info("say hello actor, path=" + getSelf().path().tostring();
receiver = entity.getProperty("receiver").getvalue();

}

@override
public void onReceive(Object message) throws Throwable {
if(message instanceof string) {
String msg = (String) message;
if(msg.equals("launch")) {
OMBody omBody = new OMBody();
omBody.setBody("Hello " + receiver + "!");
tel1(omBody) ;

The above actor is designed to accept the string “launch” as an input message. In this case, it will produce an
output string “Hello <receiver>!". The <receiver> is an actor property that the users will provide later during the
module’s configuration. The loading of the above code into the DT Runtime component is done, through the Java
ClassLoader mechanism. This technology allows developers to load dynamically Java classes into the Java Virtual
Machine (JVM).

IIII!II é%%ﬁﬁjl '
COGITO

D7.9

5.1.4.3 Deployment of COGITO Modules

The users who have the DTP Developer role can sign in to the DT Runtime component through the DTP’s Identity
Provider. The “Modules” button, which is located on the left side of the screen, shows the complete list of
modules created in the past, as shown in Figure 33. On the right side of the table, the “Actions” column contains
buttons for deleting, activating, or deactivating the installed modules. On the top of the screen, there is the main
switch for starting and stopping the entire actor system, and it can be used to perform a manual restart of the
active modules. This action is needed when the users demand activation, deactivation, or module installation.

&= Modules .
i Applications
£ Actors
X Extensions
Name Description Actions

Figure 33 View of all created modules

On the same page, users can create a new module by clicking the “+ Module” button. As shown in Figure 34, a
modal window appears which allows users to provide a module name and a short description. At any time, users
can cancel the module creation process by clicking on the Close button.

New Module

Name
&8 Modules
i Welcome someone m » Start

L Actors
Demc
Modules

¢ Extensions

Name Actions

B -

Figure 34 Creation of a new module

By clicking on the “Welcome someone” module we just created, the users can view the workspace for editing
and configuring the module's logic. On the left side of the screen, there is a list of the available actors, as shown
in Figure 35. The users can drag and drop actors from the list to the empty area and define their interlinks. For

i S .
COGITC

D7.9

instance, the actor “SayHello” presented previously has one input connected with the actor “Scheduler”, which
triggers the execution and one output connected with the actor “Logger”, which prints the content of the
messages into the system’s console. As shown in Figure 35, a modal window appears if any actor is selected,
allowing the users to fill in or edit the actor properties. The values of these properties are stored in the module
and not in the actor type. This means that if the same actor is reused in multiple modules the values of the
properties are not shared between the module instances.

= Modules

B3 Projects

= Users

##f Applications

L Acto

o Scheduler
Extensions

£ »
i
zSavHelc
tout 1 P

Logger

SayHello
OMActorSayHello

COGITO|

Figure 35 Workspace for configuring and editing modules

Going back to the example, when the “SayHello” actor is selected using the cursor, the property “receiver” is
listed in the modal window. After filling the textbox and clicking the Save button, the module is ready for
deployment. Figure 36 shows that when the actor system is restarted, the message “Hello COGITO!” appears
periodically on the console.

Figure 36 DT Runtime component’s system console

5.1.5 Application Example

Within “UC1.1 — Efficient and detailed project workflow planning using the project’s construction schedule and
as-planned BIM model”, the PMS tool requests (5) and receives (6) from the DTP the as-planned 4D BIM of the
project, including the as-planned resources as shown in Figure 37. Although the geometric information is not
required, the response includes semantically linked information of a) building elements with their construction
zones, b) tasks with their properties and, c) as-planned resource types with their properties.

When a new project is configured, and the users upload the as-planned data to the DTP, the IDM component
triggers the Thing Manager, which manages the execution of the ETL tools and generates the knowledge graph

D7.9

of the project. At this stage, PMS can request the as-planned non-geometric 4D BIM data because this

information is already included in the knowledge graph.

‘ PMS UI ‘ ‘ PMS ‘ ‘ WODM Ul ‘ ‘ WoDmMm ‘ ‘ SLAM ‘ ‘ BCSC ‘

[DT Platform]

PMISM

1

1. login

2. request eiccess

: 3. retumn (list of projects)
4_select project M |

5. request as-planned 40 BIM data
(non-geometric, including as-planned resources)

A4

7. return

6. refurn

Figure 37 Part of the UC1.1 sequence diagram

As shown in Figure 38, a dedicated application-driven module is connected to the endpoint of the DTP which is
responsible for handling the request and providing the response to PMS.

EndpointListener

i ot P
ty ll\spannedDdla
: ot TP
1&0'@;09

Figure 38 The module UC.1.1 - Request 5 which provides the as-planned 4D BIM data

The response is a JSON file containing data extracted from the knowledge graph using a series of SPARQL queries.

The structure of the JSON is designed to meet the input requirements of the PMS tool.

"project_id": "1cf55b98-db69-46f8-a64e-a531d512d4d3",
"elements"
"2RKoSQb25FeBquQLoNXq6"' {
': "0hozanx391e0c81mNde5"
., name : "Part:239050"
"2 RKoSszSFeBquQLoNXqS"' {
': "OhozanXJ91eOc81mNde5"

name "Part:239049"

roles": {

"cost_per_hour": 2000,

"quantity": 2,

"name": "Truck mounted concrete boom pump",
"type": "Equipment"

"cost_per_hour": 1500,
"quantity": 4,

"name": "Concrete mixer truck",
"type": "Equipment"

"ﬁroject_name”: "Project_1",
"zones": {
"OhozanXJ91e0c81mNdeu"' {
"na

ame": "0l - Entry Level"

[%m

D7.9

1,
"0hozoFnxj91e0c81mNbdT5": {
) "name": "Roof"

'0hozoFnxj91e0c81mNbdsx": {
"name": "02 - Floor"

'6hozanxj91e0c81mNdeW": {
; "name": "03 - Floor"

I
"tasks": {
"11": {
"end_date": "2010-01-26T17:00:00",
"element_Tist": [
"29FKXAz_b8mfMby7zgrevz",
"29FKXAz_b8mfMby7zgrhlx",
] "29FKXAz_b8mfMby7zgren8"
"name": "Emergency staircase shaft",
"start_date": "2010-01-18T08:00:00"

"end_date": "2009-12-04T17:00:00",
"element_list": [
"01U20x69TF78CjGAZXHCIiE",
"01U20x69TF78CjGAZXHCCM",
] "01U20x69TF78CJGAZXHAPE",
"name": "Piles and Caps",
"start_date": "2009-11-23T08:00:00"

5.1.6 Licensing

The DT Runtime is a closed-source component. On the other hand, the libraries containing the actors defined
within COGITO are open source. The COGITO developers can extend the functionalities of the DTP by configuring,
implementing, and deploying new actors. The lead group in charge of development provides access to additional
documentation and scripts to help developers implement new actors and deploy new modules.

5.1.7 Installation Instructions

This component is deployed as a standalone web-based application in a Virtual Machine (VM) and is part of the
Data Management Layer. It provides a GUI and a REST API open to the internet. No file download, installation or
maintenance is required by the users.

5.1.8 Development and Integration Status

The first release of the DT Runtime component has been deployed in the Data Management Layer. This
component provides all core functionalities that have been identified in “D7.1 — Digital Twin Platform Design &
Interface Specification v1”. In the final release, the team in charge of the development will improve the actor
system and the various messaging adapters, and it will provide a library containing the final actors implementing
the data processing operations of the COGITO system.

5.1.9 Requirements Coverage

The DT Runtime component covers most of DTP’s functional and non-functional requirements listed in “D2.5 —
COGITO System architecture v2”. The complete list of the functional and non-functional requirements related to
the DT Runtime component are presented in Table 15. The Reg-1.3 and Reg-1.7 are fully covered by the DT
Runtime component’s REST API, which allows the COGITO tools to upload and download files from the DTP. The
Req-1.4 is fully covered by the various messaging adapters implemented in the DT Runtime component, which
are configured via the GUI and are in charge of routing the streaming data to the active modules. The Reg-1.6 is
achieved by the actor-based system, which provides data integration and a real-time execution environment
allowing developers to define complex routing scenarios using the defined actors. On the other hand, the actor-
based system used within the DT runtime component, covers all non-functional requirements. The Akka
Framework provides the Akka Cluster technology that allows the deployment of the actor system in multiple
machines offering horizontal scalability and high availability. The Akka Framework has a good performance of
~50 million messages per second on a single machine and around ~2.5 million actors per GB of heap memory.

el C%T

- D7.9 Digital Twin Platform v1 47

Table 15 DT Runtime component’s Requirements Coverage

Type [») Description NETH
Reg-1.3 Receives as-built data (video, images, and point-clouds) Achieved
Reg-1.4 Handles real-time data of location tracking sensors Achieved
Functional
Reqg-1.6 Orchestrates the execution of the included ETL services Achieved

Manages the data requests of the COGITO tools by providing

Req-1.7 configurable API and the execution environment Bl

Reg-2.1 Scalability Achieved

Reg-2.2 Responsiveness Achieved
Non-Functional

Reg-2.3 Security Achieved

Reqg-2.4 High availability Achieved

5.1.10 Assumptions and Restrictions

The first release of the DT Runtime component has been deployed under certain assumptions and restrictions,
listed below:

e It has been developed from scratch following the MVP approach providing the core functionalities
essential for responding to data requests performed by the other COGITO tools. The final release will
provide additional functionalities and an improved GUI.

e [tcurrently contains modules supporting only the requests of UC1.1. In the final release, the DT Runtime
component will include modules covering the requests for all UCs of the COGITO system.

e Theinterconnection between the applications’ configurable endpoints and the DT Runtime component
is based on the Spring Events technology. In the final release, other technologies will be tested and
evaluated.

e [t currently handles real-time location tracking data and notifications coming from MQTT brokers. The
final release will support additional protocols such as KAFKA and SSE.

w COnstruction phase

B SRR |
diGltal Twin mOdel
COGITO

D7.9

6 Conclusions

This demonstrator deliverable presented in detail the first release of COGITO’s DT Platform. The DTP plays a
central role in COGITO’s system as it is responsible for i) providing an authentication and authorisation
mechanism to COGITO users and applications, ii) handling input data from various external sources such as BIM
authoring tools, project management tools, cameras, LiDAR scanners and loT devices, and iii) responding to data
requests performed by the other COGITO tools. In the first version of this deliverable, four core components of
the DTP were presented along with the functionalities they provide, the technology stacks they build upon, the
interfaces they use, the usage instructions and the assumptions and restrictions.

The DTP is based on a multi-layered architecture comprising six core layers following the “D7.1 — Digital Twin
Platform Design & Interface Specification v1”. The components presented in this demonstrator deliverable have
been deployed in the various layers of the DTP based on their functional and non-functional requirements. More
specifically, the first release of the DTP includes i) the Identity Provider contained in the Authentication Layer,
responsible for providing an identity and access management solution, ii) the Input Data Management
component contained in the Data Ingestion Layer, responsible for managing users, roles, projects and loading
the as-planned input data, iii) the Knowledge Graph Generator contained in the Data Ingestion Layer, responsible
for generating COGITO’s knowledge graphs and Thing Descriptions, and iv) The DT Runtime component
contained in the Data Management Layer, responsible for creating and hosting various application-driven
modules used in the various data processing operations.

The final version of the DTP is expected to be released along with the corresponding deliverable “D7.10 — Digital
Twin Platform v2” on M24. Thus far, the software components have been tested only with example files obtained
from various online sources. The next version of DTP’s software components will be tested on the COGITO’s pre-
validation sites in “T8.2 — COGITO ICT System Pre-Validation” and the validation sites in “T8.4 — Demonstration
of COGITO Tools and Construction Projects” with real data.

el C%T

- D7.9 Digital Twin Platform v1 49

References

[1] COGITO, “D7.1 - COGITO Digital Twin Platform,” 2021.
[2] COGITO, “D2.5 - COGITO System Architecture v2,” 2022.
[3] COGITO, “D2.1 - Stakeholder requirements for the COGITO system,” 2021.

[4] COGITO, “D3.3 - COGITO Data Model & Ontology Definition and Interoperability Design v2,” 2022.

e
25
COGITO - GAID. 958310 : y
COGITO

CONSTRUCTION PHASE
DIGITAL TWIN MODEL

cogito-project.eu

A
®
THE UNIVERSITY 0 | POUTECNICA

of EDINBURGH e bocgroup.om

construction

S N Novitech
TECHNOLOGIES
d NEW INFORMATION TECHNOLOGIES

OAYMIIA RHOMBERG
0A0Y Senan /!

This project has received funding from the European Union's Horizon 2020 research and
innovation programme under grant agreement No 958310

	Executive Summary
	Table of contents
	List of Figures
	List of Tables
	List of Acronyms
	1 Introduction
	1.1 Scope and Objectives of the Deliverable
	1.2 Relation to other Tasks and Deliverables
	1.3 Structure of the Deliverable

	2 Digital Twin Platform
	2.1 Software Components Classification
	2.2 Deployment Environment

	3 Authentication and Authorisation Infrastructure
	3.1 Identity Provider
	3.1.1 Overview
	3.1.2 Technology Stack and Implementation Tools
	3.1.3 API Documentation
	3.1.3.1 Authentication REST API
	3.1.3.2 Admin REST API

	3.1.4 Usage Walkthrough
	3.1.5 Application Example
	3.1.6 Licensing
	3.1.7 Installation Instructions
	3.1.8 Development and Integration Status
	3.1.9 Requirements Coverage
	3.1.10 Assumptions and Restrictions

	4 Project Creation and Ontology Population
	4.1 Input Data Management component
	4.1.1 Prototype Overview
	4.1.2 Technology Stack and Implementation Tools
	4.1.3 Input, Output and API Documentation
	4.1.4 Usage Walkthrough
	4.1.5 Licensing
	4.1.6 Installation Instructions
	4.1.7 Development and Integration Status
	4.1.8 Requirements Coverage
	4.1.9 Assumptions and Restrictions

	4.2 Knowledge Graph Generator
	4.2.1 Prototype Overview
	4.2.2 Technology Stack and Implementation Tools
	4.2.3 Input, Output and API Documentation
	4.2.4 Application Example
	4.2.5 Licensing
	4.2.6 Installation Instructions
	4.2.7 Development and Integration Status
	4.2.8 Requirements Coverage
	4.2.9 Assumptions and Restrictions

	5 Data Processing Operations and Data Delivery
	5.1 Digital Twin Runtime component
	5.1.1 Prototype Overview
	5.1.2 Technology Stack and Implementation Tools
	5.1.3 Input, Output and API Documentation
	5.1.4 Usage Walkthrough
	5.1.4.1 Registration of COGITO Applications
	5.1.4.2 Registration of COGITO Actors
	5.1.4.3 Deployment of COGITO Modules

	5.1.5 Application Example
	5.1.6 Licensing
	5.1.7 Installation Instructions
	5.1.8 Development and Integration Status
	5.1.9 Requirements Coverage
	5.1.10 Assumptions and Restrictions

	6 Conclusions
	References

