

D7.3 –

Extraction,

Transformation &

Loading tools and

Model Checking

v1

 D7.3 Extraction, Transformation& Loading Tools and Model Checking v1 1

COGITO – GA ID. 958310

COnstruction phase

diGItal Twin mOdel

D7.3 – Extraction, Transformation & Loading Tools and Model
Checking v1

Dissemination Level: Public

Deliverable Type: Demonstrator

Lead Partner: UCL

Contributing Partners: UPM

Due date: 31-05-2022

Actual submission date: 31-05-2022

Authors

Name Beneficiary Email

Georgios N. Lilis UCL g.lilis@ucl.ac.uk
Kyriakos Katsigarakis UCL k.katsigarakis@ucl.ac.uk

Dimitrios Rovas UCL d.rovas@ucl.ac.uk
Salvador González Gerpe UPM salvador.gonzalez.gerpe@upm.es

Reviewers

Name Beneficiary Email

Giorgos Giannakis Hypertech g.giannakis@hypertech.gr
Jochen Teizer AU teizer@cae.au.dk

Version History

Version Editors Date Comment

0.1 UCL 20.04.2022 Table of Contents

0.2 UCL 30.04.2022 Sections 1 and 2

0.3 UCL, UPM 05.05.2022 Section 3

0.5 UCL 20.05.2022 Sections 4 and 5

0.6 UCL 24.05.2022 Draft version ready for internal review

0.7 Hypertech, AU 27.05.2022 First draft internal review

0.8 UCL 30.05.2022 Review comments addressed

0.9 UCL 30.05.2022 Final version

1.0 UCL, Hypertech 31.05.2022 Submission to the EC portal

Disclaimer

©COGITO Consortium Partners. All right reserved. COGITO is a HORIZON2020 Project supported by the European
Commission under Grant Agreement No. 958310. The document is proprietary to the COGITO consortium
members. No copying or distributing, in any form or by any means, is allowed without the prior written
agreement of the owner of the property rights. The information in this document is subject to change without
notice. Company or product names mentioned in this document may be trademarks or registered trademarks of
their respective companies. The information and views set out in this publication are those of the author(s) and
do not necessarily reflect the official opinion of the European Communities. Neither the European Union
institutions and bodies nor any person acting on their behalf may be held responsible for the use, which may be
made, of the information contained therein.

mailto:g.lilis@ucl.ac.uk
mailto:k.katsigarakis@ucl.ac.uk
mailto:d.rovas@ucl.ac.uk
mailto:salvador.gonzalez.gerpe@upm.es
mailto:g.giannakis@hypertech.gr
mailto:teizer@cae.au.dk

 D7.3 Extraction, Transformation& Loading Tools and Model Checking v1 2

COGITO – GA ID. 958310

COnstruction phase

diGItal Twin mOdel

Executive Summary

This deliverable presents the first version of the Extraction Transformation and Loading (ETL) and Model Checking

(MC) tools of the COGITO framework. These tools are individual software components that are located in two

layers of DTP’s six-layer architecture presented in D7.1: the data ingestion layer and the data post-processing

layer, as well as in the COGITO input data sources component. Based on the characteristics of their input data

and the three data domains defined in D3.2 (construction, resources, and process) these tools can be classified

into (a)construction-, (b)resource- and (c)process-related tools as well as (d) general tools receiving data from all

the above domains and dynamic data from IoT devices. Additionally, depending on the type of operation these

tools apply to their input data, they can be classified into transformation (ETL) and Model Checking (MC) tools.

The ETL tools apply data transformations on COGITO input data, while the MC checking tools check the quality

of COGITO’s input data and report missing, incomplete, inconsistent, and incorrect data structures if any. In this

deliverable domain dependent, ETL and MC tools will be analysed. Tools acting on IoT data will be introduced

but discussed extensively in D8.2. The main part of the deliverable is split into two sections depending on the

location of the analysed ETL and MC tools.

In the first main section, tools belonging to the Data Ingestion layer of DTP are analysed. These, include one MC

tool, the RDF validator which applies SACHL shapes to validate the generated RDF files against the defined

COGITO ontology, and four COGITO data domain-dependent RDF generator tools: (1) the Project RDF Generator

which transforms project-related data into RDF TTL file format, (2) the Construction RDF Generator which

transforms input IFC BIM data into RDF semantically linked data files, (3) the Process RDF generator which

transforms schedule input data into RDF TTL files and (4) the Resources RDF Generator which transforms input

data related to the construction project resources into RDF TTL files.

In the second main section of this deliverable tools placed at the Data Post-processing layer of DTP are presented.

These include: one MC tool: the MVD checking tool which applies data quality checks on input IFC4x3 files and

two ETL tools: (1) the B-rep Generator which transforms input IFC BIM files into graphics friendly OBJ files

containing triangulated boundary representations for visual purposes and (2) the IFC optimizer which applies

lossless compression on input IFC BIM files to reduce their size while maintaining their format.

The technology and dependencies of these tools are described in detail and application examples of these

components are also presented in the following sections.

 D7.3 Extraction, Transformation& Loading Tools and Model Checking v1 3

COGITO – GA ID. 958310

COnstruction phase

diGItal Twin mOdel

Table of contents

Executive Summary .. 2

Table of contents .. 3

List of Figures .. 6

List of Tables ... 7

List of Acronyms ... 8

1 Introduction .. 9

1.1 Scope and Objectives of the Deliverable .. 9

1.2 Relation to other Tasks and Deliverables ... 9

1.3 Structure of the Deliverable.. 10

2 ETL and MC tools of COGITO .. 11

2.1 ETL and MC tools on static data .. 11

2.1.1 Data Ingestion layer tools (Block A).. 11

2.1.2 Data Post-processing layer tools (Block B) ... 12

2.2 ETL and MC tools on dynamic data ... 12

3 ETL and MC tools in Data Ingestion layer of DTP ... 14

3.1 RDF Validator .. 14

3.1.1 Prototype Overview .. 14

3.1.2 Technology Stack and Implementation Tools .. 15

3.1.3 Input, Output, and API Documentation ... 15

3.1.4 Application example ... 16

3.1.5 Licensing ... 16

3.1.6 Installation Instructions .. 16

3.1.7 Development and integration status.. 17

3.1.8 Requirements Coverage ... 17

3.1.9 Assumptions and Restrictions .. 17

3.2 Project RDF Generator .. 17

3.2.1 Prototype Overview .. 18

3.2.2 Technology Stack and Implementation Tools .. 18

3.2.3 Input, Output, and API Documentation ... 18

3.2.4 Application example ... 19

3.2.5 Licensing ... 19

3.2.6 Installation Instructions .. 19

3.2.7 Development and integration status.. 19

3.2.8 Requirements Coverage ... 19

3.2.9 Assumptions and Restrictions .. 19

3.3 Construction RDF Generator ... 20

 D7.3 Extraction, Transformation& Loading Tools and Model Checking v1 4

COGITO – GA ID. 958310

COnstruction phase

diGItal Twin mOdel

3.3.1 Prototype Overview .. 20

3.3.2 Technology Stack and Implementation Tools .. 21

3.3.3 Input, Output, and API Documentation ... 21

3.3.4 Application example ... 23

3.3.5 Licensing ... 23

3.3.6 Installation Instructions .. 23

3.3.7 Development and integration status.. 23

3.3.8 Requirements Coverage ... 24

3.3.9 Assumptions and Restrictions .. 24

3.4 Process RDF Generator ... 24

3.4.1 Prototype Overview .. 25

3.4.2 Technology Stack and Implementation Tools .. 25

3.4.3 Input, Output and API Documentation .. 26

3.4.4 Application example ... 27

3.4.5 Licensing ... 27

3.4.6 Installation Instructions .. 27

3.4.7 Development and integration status.. 27

3.4.8 Requirements Coverage ... 28

3.4.9 Assumptions and Restrictions .. 28

3.5 Resources RDF Generator ... 28

3.5.1 Prototype Overview .. 28

3.5.2 Technology Stack and Implementation Tools .. 29

3.5.3 Input, Output, and API Documentation ... 29

3.5.4 Application example ... 30

3.5.5 Licensing ... 30

3.5.6 Installation Instructions .. 30

3.5.7 Development and integration status.. 31

3.5.8 Requirements Coverage ... 31

3.5.9 Assumptions and Restrictions .. 31

4 ETL and MC tools in Data Post-processing layer of DTP ... 32

4.1 MVD Checker .. 32

4.1.1 Prototype Overview .. 32

4.1.2 Technology Stack and Implementation Tools .. 33

4.1.3 Input, Output, and API Documentation ... 33

4.1.4 Application examples.. 36

4.1.5 Installation Instructions .. 37

4.1.6 Development and integration status.. 37

4.1.7 Requirements Coverage ... 37

 D7.3 Extraction, Transformation& Loading Tools and Model Checking v1 5

COGITO – GA ID. 958310

COnstruction phase

diGItal Twin mOdel

4.1.8 Assumptions and Restrictions .. 37

4.2 B-rep Generator .. 38

4.2.1 Prototype Overview .. 38

4.2.2 Technology Stack and Implementation Tools .. 39

4.2.3 Input, Output, and API Documentation ... 39

4.2.4 Application examples.. 40

4.2.5 Installation Instructions .. 41

4.2.6 Development and integration status.. 41

4.2.7 Requirements Coverage ... 41

4.2.8 Assumptions and Restrictions .. 41

4.3 IFC Optimizer ... 42

4.3.1 Prototype Overview .. 42

4.3.2 Technology Stack and Implementation Tools .. 43

4.3.3 Input, Output, and API Documentation ... 43

4.3.4 Application example ... 43

4.3.5 Installation Instructions .. 44

4.3.6 Development and integration status.. 44

4.3.7 Requirements Coverage ... 45

4.3.8 Assumptions and Restrictions .. 45

5 Conclusions ... 46

References .. 47

 D7.3 Extraction, Transformation& Loading Tools and Model Checking v1 6

COGITO – GA ID. 958310

COnstruction phase

diGItal Twin mOdel

List of Figures

Figure 1: ETL and MC tools on static COGITO input data. .. 11
Figure 2: Asynchronous parallelizable execution of Data Post-processing layer tools via ESB. 12
Figure 3: ETL tools on dynamic COGITO input data ... 13
Figure 4: RDF Validator tool operation ... 15
Figure 5: Illustration of I/O file format of MVD Validator using data entries from an imaginary human resources

database. .. 16
Figure 6: Project RDF Generator operations .. 18
Figure 7: Input/Output of Project RDF Generator .. 19
Figure 8: Construction RDF Generator operation .. 20
Figure 9: Input/Output operation of Construction RDF Generation tool .. 22
Figure 10: Example of TTL RDF file generation by the Construction RDF generation tool (1: IFC input data, 2: TTL

RDF data). ... 23
Figure 11: Process RDF Generator operation ... 25
Figure 12: O/I file ETL operations of the Process RDF Generator tool ... 26
Figure 13: Example of triple generation of a Leaf and Parent Tasks by the Process RDF generation tool 27
Figure 14: Resources RDF Generator operation ... 29
Figure 15: O/I file ETL operations of the Resources RDF Generator tool ... 30
Figure 16: Illustration of the I/O file operations of the Resources RDF Generator tool. 30
Figure 17: MVD Checker operation .. 33
Figure 18: Input mvdXML file format of MVD Checker .. 35
Figure 19: JSON output file format of MVD Checker.. 36
Figure 20: Example of MVD Checker's issue reporting using DTP’s UI... 36
Figure 21: OBJ generation process from input IFC files of B-rep Generator. ... 38
Figure 22: Input and output of B-rep Generator tool. ... 40
Figure 23: Examples of triangulated BRG's output: (A) Road network, (B) Building construction site 41
Figure 24: IFC Optimizer operation .. 42
Figure 25: Input and Output files of IFC optimizer ... 43
Figure 26: Example of IFC file optimization operations of IFC Optimizer tool. .. 44

 D7.3 Extraction, Transformation& Loading Tools and Model Checking v1 7

COGITO – GA ID. 958310

COnstruction phase

diGItal Twin mOdel

List of Tables

Table 1 – Libraries and Technologies used in RDF Validator .. 15
Table 2 – Libraries and Technologies used in Project RDF Validator ... 18
Table 3 – Libraries and Technologies used in Construction RDF Generator .. 21
Table 4 – Libraries and Technologies used in Process RDF Generator... 25
Table 5 – Libraries and Technologies used in Resources RDF Generator .. 29
Table 6 – Libraries and Technologies used in MVD Checker .. 33
Table 7 – Libraries and Technologies used in B-rep Generator ... 39
Table 8 – Libraries and Technologies used in IFC Optimizer .. 43

 D7.3 Extraction, Transformation& Loading Tools and Model Checking v1 8

COGITO – GA ID. 958310

COnstruction phase

diGItal Twin mOdel

List of Acronyms

Term Description

COGITO Construction Phase diGItal Twin mOdel

DTP Digital Twin Platform

BIM Building Information Model

IFC Industry Foundation Class

ETL Extraction Transformation & Loading

MC Model Checking

ESB Enterprise Service Bus

SOA Service Oriented Architecture

CSV Comma Separated Values

SHACL SHapes Constraint Language

BIM Building Information Model

XML Extensible Markup Language

RDF Resource Description Framework

MVD Model View Definition

JSON JavaScript Object Notation

GUI Graphical User Interface

COGITO Construction Phase diGItal Twin mOdel

RDF Resource Description Framework

TTL Terse Triple Language

BRG B-Rep Generator

DCC Digital Command Centre

DigiTAR Digital Twin Visualization with AR

UC Use Cases

GPU Graphics Processing Unit

OBJ Object file

QC Quality Control

H&S Health and Safety

 D7.3 Extraction, Transformation& Loading Tools and Model Checking v1 9

COGITO – GA ID. 958310

COnstruction phase

diGItal Twin mOdel

1 Introduction

The COGITO Deliverable D7.3 “Extraction, Transformation & Loading Tools and Model Checking” describes in detail all

the Extraction Transformation, and Loading (ETL), and Model Checking (MC) components of COGITO’s infrastructure.

These tools are the main checking and processing blocks required to perform the necessary operations on COGITO’s

input data to support all other COGITO tools and applications and their requirements. These tools can be classified as

(i) ETL tools, which include the tools that transform input data to appropriate data structures required for the formation

of the COGITO digital twin model and for the data needs of other COGITO applications, and (ii) MC tools, which ensure

that the generated data structures conform to the defined COGITO ontology and well-established standards.

1.1 Scope and Objectives of the Deliverable

The main scope of this deliverable is to describe in detail and demonstrate the operation of several components

of COGITO’s infrastructure characterized as Extraction Transformation and Loading (ETL) tools and Model

Checking (MC) tools. These tools perform the following operations on COGITO’s input data:

1. Checking the quality of COGITO’s input data to ensure their suitability for further processing. The tools

which belong to this category are characterized as Model Checking (MC) tools;

2. Applying transformations on these input data to generate the necessary new data structures to support

the diverse data requirements of all COGITO tools. These tools are characterized as Extraction

Transformation and Loading (ETL) tools; and

3. Ensuring that the generated semantically linked data model conforms to the defined COGITO ontology

in D3.2.

The characteristics and goals of these components include:

• Conformity to multiple widely used input data formats including IFC, CSV, XML, and JSON from the

various input sources such as laser scanners, UAVs, 4D BIM authoring tools, location sensing devices,

multisource imagery data, and results of the Quality Control, Workflow Management and Health &

Safety services;

• Provision of the necessary quality checking services to ensure that the input data content is complete,

correct, and consistent with the COGITO ontology definition in WP3 D3.2.

• When the above two conditions are met, application of the necessary data transformation operations

to support the various input data formats of other COGITO software components.

To minimize the overall execution time of their operations, some of the ETL and MC tools are organized in a

scalable, containerized environment which enables asynchronous and independent execution. Furthermore,

these tools are also diversified concerning their input data content as tools acting on static and dynamic data and

as BIM-related and non-BIM-related tools. These tools are treated differently in terms of their required

computational resources.

1.2 Relation to other Tasks and Deliverables

Deliverable D7.3: Extraction, Transformation & Loading Tools and Model Checking v1 depends on the following

COGITO deliverables:

• D7.1: Digital Twin Platform Design & Specification v1, which presents the initial architecture design of
COGITO’s Digital Twin Platform. D7.3 presents an initial implementation of COGITO’s ETL and MC tools.
Some of these tools are contained in the DTP architecture described in D7.1.

• D3.2: COGITO Data Model & Ontology Definition and Interoperability Design v1, which describes the
initial structure of COGITO’s ontology. The operation of COGITO’s ETL tools which generate semantic
graphs (RDF generation tools) depends on the data classes of COGITO’s ontology.

• D3.5: IoT Data Pre-processing Module v1, which describes the operation of the IoT Data Pre-processing
module. The IoT Data Pre-processing module contains an ETL tool named Processing engine which
implements data transformation operations on COGITO’s input IoT data. These tools will be briefly
mentioned here. A deeper analysis of these tools will be performed in D3.5.

 D7.3 Extraction, Transformation& Loading Tools and Model Checking v1 10

COGITO – GA ID. 958310

COnstruction phase

diGItal Twin mOdel

1.3 Structure of the Deliverable

The COGITO’s ETL and MC tools are classified depending on the nature of the data they are applied to. With this
classification in mind, section 2 introduces the tools and relates them to the architecture of COGITO’s Digital
Twin Platform (DTP) described in D7.1. Two categories of ETL and MC tools are identified: tools acting on data
that remain relatively constant for long periods of time (static data) and tools acting on data that change more
frequently such as: the automatically updated data from IoT-enabled devices, point cloud data and the data
generated by the QC Workflow and H&S applications (dynamic data). “Static data” tools are classified further
depending on their location with respect to the DTP architecture as: tools of the Data Ingestion layer and tools
of the Data Post-processing layer. This deliverable focuses on tools acting on static data and describes them in
sections 3 and 4.

With the above classification in mind, the ETL and MC tools of DTP’s data Ingestion layer acting on static data are

described in section 3.

In more detail section 3 consists of the following subsections:

• Subsection 3.1 introduces the RDF Validator as an MC tools of Data Ingestion layer.

• Subsections 3.2, 3.3, 3.4, 3.5 describe four RDF Generator tools referring to project data and input data

from the three COGITO data domains defined in D3.2: Construction domain (CONS), Process domain

(PROC) and Resource domain (RESO). These tools are ETL tools of DTP’s Data Ingestion layer.

The ETL and MC tools of DTP’s Data Post-processing layer acting on static BIM data are described in section 4.

More specifically, section 4 consists of the following subsections:

• Subsection 4.1 introduces the MVD Checker as an MC tool of Data Post-processing layer.

• Subsection 4.2 describes the B-rep Generator as an ETL tool of the Data Post-processing layer.

• Subsection 4.3 describes the IFC optimizer as an ETL tool of the Data Post-processing layer.

This deliverable concludes in section 5.

 D7.3 Extraction, Transformation& Loading Tools and Model Checking v1 11

COGITO – GA ID. 958310

COnstruction phase

diGItal Twin mOdel

2 ETL and MC tools of COGITO

Within COGITO’s DTP architecture, the first version of which is described extensively in D7.1, there are ETL and

MC tools applied on static COGITO input data, which are introduced in subsection 2.1. ETL and MC tools acting

on dynamic data, belong to the IoT data Pre-processing component of COGITO and are introduced in subsection

2.2.

2.1 ETL and MC tools on static data

As displayed in Figure 1, the ETL and MC tools applied on static data are placed into two groups (displayed in

blocks A and B in Figure 1) and in respective DTP layers: (A) the Data Ingestion layer (layer 2) and more specifically

in its Knowledge Graph Generator component and (B) the Data Post-Processing layer (layer 6). These tools are

briefly presented next and described analytically in section 3 and 4.

Figure 1: ETL and MC tools on static COGITO input data.

2.1.1 Data Ingestion layer tools (Block A)

Less computationally intensive ETL and MC tools are placed in the Data Ingestion layer of DTP. These tools

include:

One MC tool, displayed with red rectangle 1 in block A in, Figure 1:

1. The RDF Data Validator which validates the RDF output files produced by the three RDF Generator tools

(tools 1 - 4) using SACHL shapes, against pre-defined checking rules.

Four ETL tools which are displayed with green rectangles (1-4) in block A of Figure 1, and include:

1. The Project RDF Generator that converts project-related data such as project id, project name and

project description to RDF TTL files

2. The Construction RDF Generator which converts input 3D BIM data (in the form of IFC4x3 files) to

appropriate RDF files representing the semantic graph of 3D BIM data.

 D7.3 Extraction, Transformation& Loading Tools and Model Checking v1 12

COGITO – GA ID. 958310

COnstruction phase

diGItal Twin mOdel

3. The Process RDF Generator which transforms the input construction schedule files into RDF files

representing the fourth (time) dimension of the BIM data.

4. The Resource RDF Generator which converts the input construction resource data into respective RDF

data.

2.1.2 Data Post-processing layer tools (Block B)

More computationally demanding ETL tools acting on COGITO 3D BIM input files are placed in the Data Post-

Processing layer of DTP. To execute these tools in an effective manner, asynchronous and parallelizable

connections using the Enterprise Service Bus (ESB) framework, were established between the Data Persistence

layer the Data Management layer and the host layer of these tools the Data Post-processing layer, as illustrated

in Figure 2.

Figure 2: Asynchronous parallelizable execution of Data Post-processing layer tools via ESB.

The Data Post-processing layer ETL and MC tools include:

One MC tool, displayed with a red rectangle 2 in block B of Figure 1:

1. The MVD checker checks the content of input 3D BIM data files (IFC4x3) against rules defined in an

MVD XML file.

Two ETL tools, displayed with a green rectangle (5 and 6) in block B of Figure 1:

1. The B-rep Generator transforms subsets of the geometric content of 3D BIM input files to a graphics-

friendly format (OBJ format) on-demand, a feature useful for handheld AR devices which have hardware

and processing power limitations.

2. The IFC optimizer reduces the file size of input 3D BIM files by applying lossless compression.

In the next sections, these tools and their utilized technologies are described in detail, starting with the Data

Ingestion layer tools in section 3, followed by the Data Post-processing layer tools in section 4.

2.2 ETL and MC tools on dynamic data

Within COGITO infrastructure, there is an ETL tool acting on dynamic data named Processing engine which is

displayed with the green rectangle in the IoT Data Pre-processing module block in Figure 2. This tool is a part of

COGITO Input Data Sources layer.

 D7.3 Extraction, Transformation& Loading Tools and Model Checking v1 13

COGITO – GA ID. 958310

COnstruction phase

diGItal Twin mOdel

`

Figure 3: ETL tools on dynamic COGITO input data

Processing engine is described analytically in D3.6. In brief, this tool applies the following ETL operations on

incoming IoT data:

• Filtering: IoT data contain outliers referring to sudden changes in the positions of the sensed

construction entities. These outliers are sensed values which are filtered out from the IoT traffic.

• Aggregating: The sampled IoT position data are aggregated over constant time intervals, depending on

the type of the sensed entity, resulting in smaller total IoT data volumes and data storage requirements.

 D7.3 Extraction, Transformation& Loading Tools and Model Checking v1 14

COGITO – GA ID. 958310

COnstruction phase

diGItal Twin mOdel

3 ETL and MC tools in Data Ingestion layer of DTP

3.1 RDF Validator

A part of the COGITO data model consists of semantic graphs of linked data. These semantic graphs are in the

form of inter-linked TTL RDF files using prefixes pointing to semantic ontologies and appropriate URIs. These files

are stored in the triplestore data base of Data Persistence layer of DTP. These RDF files follow the TTL file format

and are generated using four separate ETL processes described in subsections 3.2, 3.3, 3.4 and 3.5, by the four

RDF Generation modules displayed in Figure 1. These files are parts of COGITO’s semantic graph. After these

parts are generated by the ETL processes are linked together enriching the overall COGITO semantic graph.

Multiple COGITO UC’s contain queries to the COGITO semantic graph formed be these inter-linked data. These

UCs include:

• UC1.1: PMS tool in transaction 5, requests from the DTP the as-planned resources

• UC2.2: Visual Data Pre-processing tool in transaction 7, requests from DTP building tasks and linked

components.

• UC 3.2: Pro-active safety in transaction 1, requests from DTP as-built data.

• UC 3.2: SafeConAI in transaction 13, requests from DTP 4D BIM data and enhances them with safety

information.

• UC4.1: DCC in transaction 7, requests task progress from DTP.

• UC4.2: DigiTAR in transaction 8, requests from DTP QC data linked to 3D BIM objects and in transaction

13, DigiTAR requests from DTP H&S data linked to 3D BIM objects.

To support the above use cases the semantic graph of COGITO data model should contain the necessary

populated data structures. To ensure this, a checking mechanism should be established which will report

possible: data errors, missing content or missing semantic links. These are possible data quality issues that are

related to the consistency (missing links), completeness (missing content), and correctness (data errors) of the

input data, that should be detected and reported before the formation of the COGITO data model graph. To

detect these issues in all produced RDF files an RDF data validator component is implemented called RDF

Validator. The operation of the RDF Validator is described in the following subsections.

3.1.1 Prototype Overview

The RDF Validator checks the conformity of the generated semantic graphs against a set of predefined checking

rules contained, as in the case of the MVD Checker, in an RDF TTL file called the SHACL TTL file, or shapes graph

file. This checking operation performed by the RDF validator is illustrated in the block diagram of Figure 4.

As illustrated of Figure 4, the RDF Validator receives two inputs:

• Input RDF: this is the file containing the data in TTL RDF form which is going to be checked. This file is

also called data graph.

• Checking rules: this is a TTL RDF file containing the checking rules which are going to be applied in the

input RDF during the checking operations. These rules are formed as TTL triplets according to the SHACL

specifications. This file is also called shapes graph.

Finally, as it is also displayed in Figure 4, the RDF Validator outpus the checking results into a JSON text file.

 D7.3 Extraction, Transformation& Loading Tools and Model Checking v1 15

COGITO – GA ID. 958310

COnstruction phase

diGItal Twin mOdel

Figure 4: RDF Validator tool operation

The operation of the RDF data validator is based on the following operation step sequence:

1. Initially using Apache/Jena or similar RDF processing tools, the triplets contained into the input RDF files

(data graph and SHACL shapes graph) are converted into memory objects.

2. For every entity contained in the objects generated from the shapes graph a checking rule is formed.

3. Using every rule formed in step 3 all objects originating from the RDF data file are checked against this

rule.

4. The results of the checking procedures in step 3 are gathered and exported in the output JSON file.

3.1.2 Technology Stack and Implementation Tools

Table 1 – Libraries and Technologies used in RDF Validator

Library/Technology Name Version License

Rdflib 6.1.1 BSD 3-Clause License

Pyshacl 0.19.0 Apache License 2.0

3.1.3 Input, Output, and API Documentation

Currently, input TTL RDF files referring to specific construction-related data quality checking operations have

not been defined. To define however the input and output file format of MVD Validator, I/O examples from a

human resources database are presented Figure 5 which are taken from (W3C, n.d.). The format of the input TTL

RDF files (data graph and shapes graph) which are the presented in Figure 5, is the same as the format of

construction-related input TTL RDF file used in RDF Validator. In the right part of Figure 5, an example of the

validation results referring to the data and space graphs presented in the left part of Figure 5, is presented. As

we can see from the data graph of Figure 5, the data to be checked contain three entries referring to three

persons: (Alice, Bob, Calvin). For every entry certain properties are defined such as ssn, bith data and company

name, by appropriate triplet predicates (ex:ssn, ex:birthdate and ex:worksFor).

Three checking rules are defined using the sh:nodeShape predicate in the example shapes graph in Figure 5,

targeting entries by the sh:targetClass, sh:property and sh:path predicates. The first rule is related to the format

of the ex:ssn entry (the ssn must be one entry, which has string format consisting of a set of three groups of

three, two and four decimal numbers, separated with the dash character). The second rule declares that an

instance of ex:Person can have unlimited values for the property ex:worksFor and these values are IRIs and

SHACL instances of ex:Company. The third rule defines that all rdf properties to be ignored.

The checking results are summarized in the example validation results screenshot of Figure 5. All entries of the

data graph fail to pass validation for different reasons. Entries ex:Alice and ex:Bob fail in rule 1 (alice not correct

ssn format and bob max count of ssn), and ex:Calvin fails in rule 2 (not included company name) and in rule 3 as

it uses an rdf type for the birthdate entry.

 D7.3 Extraction, Transformation& Loading Tools and Model Checking v1 16

COGITO – GA ID. 958310

COnstruction phase

diGItal Twin mOdel

Figure 5: Illustration of I/O file format of MVD Validator using data entries from an imaginary human resources
database.

Using the previous rationale of these simple examples, all the triplets referring to construction-related data that

are contained in the TTL RDF files exported by the RDF Generator tools described in the following subsections,

can be validated against rules defined also in TTL RDF files.

3.1.4 Application example

Currently, the RDF Validator is under development. SHACL based shape graphs have not been defined as TTL RDF

files. Once these knowledge graphs and respective TTL RDF files are created, this tool will perform the validation

of the links defined in these TTL RDF files. If the validation is successful, the process will end. In case the validation

is not successful, a JSON file with the detected issues, formatted according to the report file of section Figure 5,

will be returned.

3.1.5 Licensing

The license of the code used for the creation of this tool is available in the GitHub repository

(https://github.com/oeg-upm/cogito_validator_module). The Project RDF Generator is a part of the KGG

component of DTP. All KGG sub-components are open-source and licenced under the Apache Licence 2.0.

3.1.6 Installation Instructions

Currently the RDF Validator will be used internally in DTP and it will not be connected with an external UI,

allowing external user interventions. Therefore, installation instructions are not applicable at this point.

https://github.com/oeg-upm/cogito_validator_module

 D7.3 Extraction, Transformation& Loading Tools and Model Checking v1 17

COGITO – GA ID. 958310

COnstruction phase

diGItal Twin mOdel

3.1.7 Development and integration status

Currently, the RDF validator’s development and integration into the system is in progress. The local operation of

the tool works correctly, but there are still several functionalities to be included, such as the validation of more

links between graphs generated by means of SHACL files.

3.1.8 Requirements Coverage

All input files to RDF Validator should follow the TTL RDF file format. Furthermore, for the correct operation of

the tool the following two conditions should be satisfied:

1. The structure of the input data graph file should follow the COGITO ontology defined in D3.3.

2. The shapes graph should be formatted according to the SHACL shapes language described in (W3C,

n.d.).

Any violation of the previous two requirements will result to improper tool execution without the desired

checking results reported in the output file of the tool.

3.1.9 Assumptions and Restrictions

The operation of the RDF Data Validator tool relies on the following assumption:

• Knowledge graphs that have the links between them must be stored before this process of validation is

made.

• The shapes defined in the SHACL TTL file should cover all required checking operations.

3.2 Project RDF Generator

Data traffic in COGITO among data sources or providers and data consumers is so diverse in nature, that without

any data structures acting as a common point of reference, the related data exchanges will be left unorganized

leading finally to confusion. The data which act as a common reference point, essentially bind together all data

structures referring to a single construction project. These data are defined as project data.

These project data are generated when the project is created after the COGITO user is being authenticated by

the DTP’s Authentication layer applications. According to D2.5, within COGITO, a list of projects and project-

related data are requested from the DTP by other COGITO tools in all UCs, to refine their data requests. More

specifically:

• UC1.1: DTP in transaction 3, returns to PMS UI the list of projects.

• UC1.2: DTP in transaction 3, returns to WOEA the list of projects.

• UC2.1: DTP in transaction 4, returns to Visual Data Pre-processing the list of projects.

• UC2.2: DTP in transaction 4, returns to Visual Data Pre-processing UI the list of projects.

• UC3.1: DTP in transaction 3, returns to SafeConAI UI the list of projects.

• UC3.2: DTP in transaction 11, returns to SafeConAI UI the list of projects.

• UC4.1: DTP in transaction 3, returns to DCC the list of projects.

• UC4.2: DTP in transaction 3, returns to DigiTAR the list of projects.

These project-related data include: the project name, the project description, and the project ID. These data

should be included in the semantic graph model of any COGITO project. These data are provided in text JSON

form by the authentication layer of DTP. To link these text JSON data to the TTL RDF graph models produced by

other RDF Generator tools this project-related information should be converted to TTL file format. This

conversion is performed by the Project RDF Generator tool, which is the first ETL tool in the series of four ETL

tools of block A, presented in Figure 1. The operation of the Project RDF Generator is described next.

 D7.3 Extraction, Transformation& Loading Tools and Model Checking v1 18

COGITO – GA ID. 958310

COnstruction phase

diGItal Twin mOdel

3.2.1 Prototype Overview

Project RDF Generator tool essentially is a file translation component. It transforms a JSON text file in the input,

containing project-related data, to an TTL RDF file in the output, as summarized in Figure 6.

Figure 6: Project RDF Generator operations

The output TTL RDF file of Project RDF Generator, contains the triplets of project-related data classes of the input

JSON file.

The operation of Project RDF generator is based the following series of processing steps:

1. Initially the input JSON file is parsed, and appropriate memory objects are created.

2. Based on facility domain ontology published at http://cogito.iot.linkeddata.es/def/facility an

appropriate memory object is initiated.

3. Using the data from the created memory objects from step 1, the memory objects initiate in step 2 are

populated.

4. The populated memory objects from step 3 are used to export the final TTL RDF file in the output of the

tool.

3.2.2 Technology Stack and Implementation Tools

Table 2 – Libraries and Technologies used in Project RDF Validator

Library/Technology Name Version License

Stellar-base-sseclient 0.0.21 MIT License

Wheezy.template 3.1.0 MIT License

3.2.3 Input, Output, and API Documentation

The input of Project RDF Generator is a JSON file containing the project-related information obtained from the

authentication layer of DTP. This information is organized inside the JSON file, using the following classes which

are highlighted with different colours in part 1 of Figure 7:

• project_id: a string representing the project identifier.

• project_name: a string representing the project name.

• project_description: a string containing the paragraph of the project description.

The output produced by the Project RDF Generator is an TTL RDF file which is displayed part 2 of Figure 7. This

output file contains three triplets which are referring to the classes of the JSON input file. This RDF output file

together with the TTL RDF output files of the other three RDF Generator tools described in the following

subsections, will be linked together forming the COGITO semantic graph model for every construction project.

This model will be stored later in a triple store, where it can be queried by SPARQL queries originated from other

COGITO applications.

http://cogito.iot.linkeddata.es/def/facility

 D7.3 Extraction, Transformation& Loading Tools and Model Checking v1 19

COGITO – GA ID. 958310

COnstruction phase

diGItal Twin mOdel

Figure 7: Input/Output of Project RDF Generator

3.2.4 Application example

The use of this tool starts with the tool itself reading from a queue of server sent events, where events are

published to perform certain actions. The project RDF generator, in particular, is in charge of collecting the events

related to the generation of knowledge graphs of the projects to be registered in the platform. Once the event

pertaining to the creation of the project is collected, it extracts the information encapsulated in JSON format, to

generate the graph arranged by means of the Helio
1
 translation tool, together with previously defined mappings.

When the translation process is finished, the data generated in the knowledge graph is validated in RDF format

and if the validation is positive, the RDF is sent to the system that has published the event to later save the

knowledge graph in a Triple-Store.

3.2.5 Licensing

The Project RDF Generator is a part of the KGG component of DTP. All KGG sub-components are open-source

and licenced under the Apache Licence 2.0.

3.2.6 Installation Instructions

The installation instructions are simply to deploy a docker container along with a configuration file indicating the

type of event to pick up from the server sent events queue, and the endpoints of the Helio tool and the server

providing the events.

3.2.7 Development and integration status

Currently, the status of the development and integration of the tool into the system is in progress. The local

operation of the tool works correctly, but there are still several functionalities to be included, such as the

validation of the graphs generated by means of SHACL files.

At the moment, the tools are tested individually, without considering the output of other RDF Generator

components of block A in Figure 1. As integration of COGITO components progresses and as data from the

COGITO demonstration construction sites become available, the tool is going to be tested on real data and its

output will be linked to other TTL RDF data forming a unified semantic graph for every construction project.

Updated results considering these later developments will be presented in the second version of this deliverable

D7.4 in M24.

3.2.8 Requirements Coverage

The coverage of requirements includes the generation and validation of knowledge graphs in RDF format for the

projects to be registered in the Digital Twin Platform.

3.2.9 Assumptions and Restrictions

The operation of the Project RDF Generator tool relies on the following three assumptions and restrictions:

1 Cimmino, A., & García-Castro, R. Helio: a framework for implementing the life cycle of knowledge graphs.

 D7.3 Extraction, Transformation& Loading Tools and Model Checking v1 20

COGITO – GA ID. 958310

COnstruction phase

diGItal Twin mOdel

• The JSON obtained from the event queue should only contain the information regarding the project

identifier, name and description in a correct string format.

• The translation will be performed asynchronously to the retrieval of the data received from the Server

Sent Events queue.

• The identifier of the project must be a UUID.

3.3 Construction RDF Generator

According to the use cases defined in D2.4 and updated in D2.5 there are several COGITO applications requiring

access to the information related to the elements of COGITO’s input 3D BIM files. These tools require not only

the geometric descriptions of these construction elements but also properties associated to them such as tasks,

material properties, point clouds and others. Within the input 3D BIM files these elements together with their

geometry and properties, are organized in a hierarchical tree-like structure formed by containment relations. In

this structure the overall construction site is placed at the root of the tree followed by the construction facilities

located at the intermediate branches of the tree and finally reaching the elementary facility parts (or construction

components which cannot subdivided further) placed at the end leaves of the tree. Inside this tree-like structure

of the input 3D BIM files, the semantic links of the construction elements are intertwined with the geometry and

properties of these elements, resulting to inefficient query times.

Consequently, the semantic links of this tree structure of the construction elements, should be separated from

the geometry and properties of these elements. There are many COGITO’s use cases and respective tools which

perform separate queries to the semantic links of this tree-like structure of the construction elements of the

project, include:

• UC2.1: Geometric QC tool in transaction 16, requests from DTP point cloud data and as planned 4D BIM

data including geometry related to specific construction elements.

• UC2.2: Visual Data Pre-processing tool in transaction 7, requests from DTP construction components

and tasks.

• UC4.1: DCC tool in transaction 5, requests from DTP as planned 4D BIM data including geometry.

• UC4.2: DigiTAR tool in transaction 5, requests from DTP QC/3DBIM with geometry data and in

transaction 10, requests H&S/3DBIM with geometry data.

To support the generation of a tree-like structure of semantically connected construction elements of a

construction project within COGITO framework, the construction element related data structures contained in

COGITO’s 3D BIM input files, excluding geometric data, are translated into a semantic graph in the form of an

RDF file. This data translation process is performed by an ETL tool called Construction RDF Generator which is

analyzed in the following subsections.

3.3.1 Prototype Overview

Briefly, the Construction RDF generator produces a semantically linked RDF file in TTL format, according to the

construction domain ontology defined in D3.2, that contains only the semantic links of the construction elements

(without geometry). These links are extracted from the 3D BIM data contained in the tool’s input IFC file. The

operation of the Construction RDF Generator tool is outlined in block diagram of the following Figure 8.

Figure 8: Construction RDF Generator operation

 D7.3 Extraction, Transformation& Loading Tools and Model Checking v1 21

COGITO – GA ID. 958310

COnstruction phase

diGItal Twin mOdel

The operation of Construction RDF generator is based on the following series of processing steps:

1. The schema version of the input IFC file is detected.

2. Based on the detected schema version appropriate classes are used for the IFC data deserialization

performed by the IFC Parser component of the data ingestion layer of DTP. After the deserialization

finishes depending on the version all existing IFC classes containing data from the input IFC file are

populated on memory.

3. The set of the construction elements is extracted from the loaded IFC classes on memory including their

properties such as (area, volume, related construction task and possible containment relations to other

construction elements).

4. Based on the COGITO ontology described in D3.4 appropriate memory objects related to the

construction domain ontology are initiated.

5. Using the data extracted from step 3, the memory objects created in step 4, are populated.

6. The populated memory objects from step 5 are used to export the final TTL RDF file in the output of the

tool.

3.3.2 Technology Stack and Implementation Tools

Table 3 – Libraries and Technologies used in Construction RDF Generator

Library/Technology Name Version License

BIM Library 1.0.0 Open source
Stellar-base-sseclient 0.0.21 MIT License

Wheezy.template 3.1.0 MIT License

3.3.3 Input, Output, and API Documentation

The construction RDF Generator tool receives as input an IFC BIM file in IFC4 format (ISO 16739, 2016) (including

the latest IFC4x3 schema) as illustrated in the screenshot in part 1 of Figure 9 that refers to an IFC4 file exported

from Autodesk’s Revit 2021. IFC is an openBIM ISO standard produced by buildingSMART international. The IFC

files conforming to this standard follow the EXPRESS data format as displayed in the screenshot of part 1 of Figure

9. These files can act as a common data repository of construction related projects, since the latest IFC4x3

schema has extended the data coverage from the building domain to the rail, road and bridge data domains. In

this sense the IFC4 files used as input to the Construction RDF Generator contain geometric as well as non-

geometric information of all the elements which are related to a specific construction project.

The geometric content of the IFC file which includes the parametric as well as the non-parametric geometric

representations of all of the construction elements are processed by the BIM management component of DTP

to be converted to a graphics-friendly format for visual purposes by the B-rep generator tool of the Data Post-

processing layer of DTP analysed in section 4.2.

The non-geometric content of the IFC file includes properties of the construction objects some of which are used

by the Construction RDF Generator tool, such as area and volume properties. Additionally, the non-geometric

content of the IFC file contains relations among the construction elements which are also used by the

Construction RDF Generator tool, such as the containment relation.

The output of the Construction RDF Generator tool a TTL RDF file a screenshot of which, is presented in part 2 of

Figure 9. This TTL RDF file contains the construction elements of the input IFC file described as subjects which

are modelled using appropriate bot or beo elements according to COGITO ontology described in D3.3. The non-

geometric properties of respective IFC construction elements related to these subjects are described as triplets

of these subjects in this output TTL RDF file. As we can also see in part 2 of Figure 9, and to facilitate the addition

of the fourth (time) dimension these IFC construction elements and their respective TTL subjects, are also linked

to construction tasks via the triplet const:involvesTask. Furthermore, the elements are organized in a tree-like

 D7.3 Extraction, Transformation& Loading Tools and Model Checking v1 22

COGITO – GA ID. 958310

COnstruction phase

diGItal Twin mOdel

structure based on containment relations (one element is placed inside another) modelled as triplets using the

bot:containsElement and brick:isPartOf predicates. These containment relations define the overall tree-like

structure of COGITO’s 3D BIM data.

To reduce verbosity appropriate prefixes are added in the header of the output TTL RDF file referring to the used

ontologies.

Figure 9: Input/Output operation of Construction RDF Generation tool

The elements contained in the TTL RDF output of the Construction RDF Generator have the following triplets:

• brick:isPartOf: Points to the element containing the current element. For example, it can be a building

storey containing the current element.

• bot:containsElement: Points to the element(s) which are contained in the current element.

• const:involvesTask: Points to the construction task related to the current element.

• props:hasCompressedGuid: Points to the string of the IFC GUID of the current element.

 D7.3 Extraction, Transformation& Loading Tools and Model Checking v1 23

COGITO – GA ID. 958310

COnstruction phase

diGItal Twin mOdel

• props:hasName: Points to the string of the name of current element in the IFC input file.

• props:hasVolume: Points to a double number which is equal to the volume of the current element.

• props:hasArea: Points to a double number which is equal to the area of the current element, if the

element is aligned to a horizontal plane (for example floor slab).

3.3.4 Application example

An example of a TTL RDF file produced by the Construction RDF generator is displayed in Figure 10. In this

example the BIM IFC4 file of a demo building construction pictured in part B of Figure 23, is used as input to the

Construction RDF Generator. To check the construction elements TTL RDF triplets produced by the tool and the

hierarchical tree-like structure of the construction elements, we examine two elements in random. These are:

an IfcColumn element with GUID: 2UD3D7uxP8kecbbBCRtzC2 and an IfcBuildingStorey element with GUID:

0hozoFnxj9leOc81mNbdSw. In this example the IfcBuildingStorey element contains the IfcColumn element. The

definition of these elements in the IFC4 text file is displayed in part 1 of Figure 10.

Figure 10: Example of TTL RDF file generation by the Construction RDF generation tool (1: IFC input data, 2: TTL
RDF data).

The output of the Construction RDF Generator tool for these examined elements is displayed in part 2 of Figure

10. As it is displayed in the TTL RDF screenshots of part 2 of Figure 10, the Construction RDF Generator not only

generates the examined elements as elements of beo and bot ontologies, but also creates triplets referring to

their IFC GUID via the props:hasCompressedGuid and their containment relation (the BuildingStorey element

has a triplet: bot:containsElement which points to the column element).

3.3.5 Licensing

The Construction RDF Generator is a part of the KGG component of DTP. All KGG sub-components are open-

source and licenced under the Apache Licence 2.0.

3.3.6 Installation Instructions

The installation instructions are simply to deploy a docker container along with a configuration file indicating the

type of event to pick up from the server sent events queue, and the endpoints of the Helio tool and the server

providing the events.

3.3.7 Development and integration status

Currently the Construction RDF Generator has been tested on a BIM IFC files related to a building construction

site the geometric content of which is displayed in part B of Figure 23: Examples of triangulated BRG's output:

 D7.3 Extraction, Transformation& Loading Tools and Model Checking v1 24

COGITO – GA ID. 958310

COnstruction phase

diGItal Twin mOdel

(A) Road network, (B) Building construction site. In a later stage in the project and as BIM data from COGITO

demonstration sites become available the tool is going to be tested on the respective IFC data files of these sites.

Up to now, the tool is tested as an isolated component and its output is verified using imaginary and artificial

demo IFC files as input. As the integration of COGITO platform components progresses, the output of this tool

will be semantically linked to the output of the other RDF generation tools of block A of Figure 1.

The output TTL RDF data files of the tool when applied on IFC BIM files from COGITO demonstration sites and

their semantic links to other TTL RDF data produced by the other RDF generator components, is expected to be

presented in the second version of this deliverable D7.4 in M24.

3.3.8 Requirements Coverage

The correct operation of the Construction RDF generator requires the existence of an BIM IFC file according to

the IFC4 schema with the IFC4x3 extension in case the construction project contains non-building components

such as roads, rails and bridges. Currently these specifications cover the tool’s requirements in terms of modelling

of the construction elements.

To form the hierarchy tree of construction elements in the TTL RDF output file of the tool, necessary element

containment relations are required to be present in the input IFC BIM file of the tool. To ensure the existence of

these relationships, the following two proactive actions can be performed:

o Issuing of appropriate design guidelines to the person responsible for developing the IFC BIM file, that

guide him to define these relations using an appropriate BIM authoring software. For example, the

developer of the IFC BIM file can define using a BIM authoring tool, such as Revit, zones containing

construction elements.

o Checking whether the IFC exporter of the BIM authoring tool exports these containment relations in its

output IFC file.

3.3.9 Assumptions and Restrictions

The operation of the Construction RDF Generator tool relies on the following assumptions and restrictions

applied on the input IFC BIM file:

• The input IFC BIM file should conform to the IFC4 standard (ISO 16739, 2016).

• The input file IFC file should contain at least one construction element.

• To form a hierarchy tree of construction elements in the output TTL RDF file of the tool, spatial elements

such as construction spaces and zones, should be connected with non-spatial construction elements

with appropriate containment relationships, in the input IFC file.

• All construction elements contained inside the input IFC file should be associated with a construction

task id.

• Material types of all construction elements contained inside the input IFC file, should be present e.g.

cement, steel.

• All required property values of the construction elements in the input IFC should be included in the

appropriate format e.g. integer, string.

3.4 Process RDF Generator

The overall work of a construction project is split into segments defined as construction tasks. The work-related

to each construction task is expected to be realized within a predefined time interval defined by start and end

time instances. All construction tasks are organized in a tree-like structure following parent-child relation

scheme. Tasks are distributed horizontally (modelled as children of the same parent at the same branch level of

the tree) according to a time execution sequence (one after another). Tasks are also distributed vertically where

one task (parent) has multiple sub-tasks (children). At a higher-than-task level, is the workflow process which

contains a set of tasks. The workflows of the construction projects are defined for managerial purposes, as some

of them are independent of each other and can be executed in a parallel fashion. The workflow is the parent

 D7.3 Extraction, Transformation& Loading Tools and Model Checking v1 25

COGITO – GA ID. 958310

COnstruction phase

diGItal Twin mOdel

which has multiple tasks as children. At the highest (root) level the overall construction project can be defined

as a single workflow. This scheduling information (workflows and sets of tasks and their horizontal and vertical

relations) is contained in a schedule file which is provided as input to the COGITO framework. This schedule file

is provided in either XML or CSV file formats.

Within COGITO framework there are several use cases and respective tools which require access to this workflow

and task and subtask tree structure. These include:

• UC1.1: PMS tool in transaction 5, requests 4D BIM data from DTP. These data contain this construction

schedule information.

• UC2.2: Visual Data Pre-processing tool in transaction 7, requests from DTP building components and

tasks.

• UC4.1: DCC in transaction 5, requests from DTP as planned 4D BIM data.

• UC4.1: DCC in transaction 7, requests from DTP workflow progress.

To support these task-related queries in the above use cases in an efficient and less time-consuming manner, the

construction schedule information contained in the input XLM or CSV files of COGITO should be translated into

a semantic graph format and linked to respective construction elements contained in the semantic graph output

of the Construction RDF Generator (TTL file containing the semantic links of the construction elements without

geometry), presented in the previous subsection. The tool that performs this translation is defined as the Process

RDF Generator and is described in the following subsections.

3.4.1 Prototype Overview

The operation of Process RDF Generator is summarized in the block diagram of Figure 11. Essentially, Process

RDF Generator takes as input the construction schedule input file (in XML or CSV format) and populates the data

classes according to the COGITO’s process domain ontology, forming an output RDF file in TTL file format.

Figure 11: Process RDF Generator operation

The operation of Process RDF generator is based on the following series of processing steps:

1. Depending on the type of the input file an appropriate parser software module is used to create

populated memory objects for every construction task.

2. Based on the COGITO ontology described in D3.4 appropriate memory objects related to the process

domain ontology are initiated.

3. Using the data from the populated memory objects from step 1, the memory objects created in step 2

are populated.

4. The populated memory objects from step 3 are used to export the final TTL RDF file in the output of the

tool.

3.4.2 Technology Stack and Implementation Tools

Table 4 – Libraries and Technologies used in Process RDF Generator

Library/Technology Name Version License

Stellar-base-sseclient 0.0.21 MIT License

 D7.3 Extraction, Transformation& Loading Tools and Model Checking v1 26

COGITO – GA ID. 958310

COnstruction phase

diGItal Twin mOdel

Wheezy.template 3.1.0 MIT License

3.4.3 Input, Output and API Documentation

Process RDF Generator input XML or CSV file contains the information related to the construction process

(construction schedule and related tasks), which is going to be translated into RDF format in the output of the

tool.

The input information in the CSV or XML file, is organized in a tree-like structure, containing the project identifier,

the URL of the file containing the information to be translated, and more metadata related to construction tasks.

Tasks are arranged horizontally in terms of time scale (one task is executed after another task), as well as

vertically (each task consists of subtasks). These arrangements are modelled by the the Work Breakdown

Structure (WBS), Predecessor and the SubTask task properties. Part 1 of Figure 12 indicates, the properties of

each task which are contained in the input to the Process RDF Generator tool, XML file:

• ID: Is an integer used for identification of each task.

• Status: A string indicating the status of the task such as “Active”.

• Task_Name: Is a string describing the name of a task.

• Duration: Is a value indicating the duration of the task in time units.

• SubTasks: Is a list of the subtasks of the task.

• Predecessor: Is a task which is before the current task in the time sequence.

• Outline_Level: Is the level of inheritance of a task, i.e. how many parent tasks are above the current

task.

• Is_related_to: A list of BIM element IDs related to this task.

• Start_Date: A string indicating the start time of the task based on the time ontology.

• Finish_Date: A string indicating the end time of the task based on the time ontology.

• WBS: Is the Work Breakdown Structure of the task containing the higher w.r.t the present task, task IDs

in the task hierarchy.

The contents of the output file produced by the RDF Generator is shown in part 2 of Figure 12. This output file is

a TTL RDF file, which contains the triples referring to the previous properties of each Task. This RDF file instance

generated by the Process RDF Generator tool, will be stored later in a triple store where it can be queried by

SPARQL queries.

Figure 12: O/I file ETL operations of the Process RDF Generator tool

 D7.3 Extraction, Transformation& Loading Tools and Model Checking v1 27

COGITO – GA ID. 958310

COnstruction phase

diGItal Twin mOdel

3.4.4 Application example

An example of triple generation by the Process RDF generator component, in a leaf and parent task elements the

is presented in parts 1 and 2 of Figure 13 respectively. What differentiates the triplets of a leaf task from the

triplets of a parent task, as it is indicated by the dashed rectangles in parts 1 and 2 of Figure 13, is the existence

of a hasPredecessor triplet in the leaf task and the existence of the hasSubTask triplet in the parent task. In case

both hasPredecessor and hasSubTask exist in a task element, the task element is an intermediate task node.

Figure 13: Example of triple generation of a Leaf and Parent Tasks by the Process RDF generation tool

3.4.5 Licensing

The Process RDF Generator is a part of the KGG component of DTP. All KGG sub-components are open-source

and licenced under the Apache Licence 2.0.

3.4.6 Installation Instructions

The installation instructions are simply to deploy a docker container along with a configuration file indicating the

type of event to pick up from the server sent events queue, and the endpoints of the Helio tool and the server

providing the events.

3.4.7 Development and integration status

Currently, the status of the development and integration of the tool into the system is in progress. The local

operation of the tool works correctly, but there are still several functionalities to be included, such as the

validation of the graphs generated by means of SHACL files.

In addition, at the moment only the pre-processing and translation of schedule files in XML format is performed,

in the future, the translation of new file formats, also belonging to the field of process-related files, will be carried

out.

 D7.3 Extraction, Transformation& Loading Tools and Model Checking v1 28

COGITO – GA ID. 958310

COnstruction phase

diGItal Twin mOdel

Additionally, the Process RDF Generator has been tested using artificially created construction schedule CSV files

as input. In a later stage in the project and as time schedule data from COGITO demonstration sites become

available, the tool is going to be tested on these data from the real construction sites.

Furthermore, the tool is tested as an isolated component and its output is examined without considering the

output of other components. As the integration of COGITO platform components progresses, the output of this

tool will be semantically linked to the output of the other RDF generation tools of block A of Figure 1. The results

of the tool when applied on time schedule data from the real construction sites and their semantic links to other

TTL RDF data produced by the other RDF generator components, is expected to be presented in the second

version of this deliverable D7.4 in M24.

3.4.8 Requirements Coverage

The coverage of requirements includes the pre-processing, generation and validation of knowledge graphs in

RDF format for the process-related files to be registered in the DTP.

3.4.9 Assumptions and Restrictions

The operation of the Resources RDF Generator tool relies on the following assumptions and restrictions applied

on the input CSV or XML files:

• The input file should contain the data related to the construction tasks. At least one task should be

present at the root level that should be related to at least one construction element, with its property

values completed.

• In the input file, for every construction task all the properties should have values in the appropriate

format (integer, string…).

3.5 Resources RDF Generator

Every construction project requires a certain number of human and non-human resources to be completed.

Within COGITO this resources-related information is described in an input CSV or XML file together with the

description of the construction schedule’s tasks. This information contains resource types and not instances of

the actual resources. For example, it determines that a specific task is going to be executed by a crane without

describing a specific crane instance. The binding of the construction tasks with the available resource instances

is performed by the WODM tool, after the optimization operations carried out by the PMS tool have been

completed.

Within COGITO the tools and respective use cases requiring access to construction resource-related information

are:

• UC1.1: PMS in transaction 5, requests 4D BIM data and respective resources from DTP.

• UC1.1: WODM in transaction 24, requests as-planned resource data from the DTP.

• UC1.2: WODM in transaction 25 sends updated workorder data containing resource allocation

information to DTP.

To support the resource-related data queries within COGITO and their associations with construction schedule

tasks and construction elements, this resource-related data should be translated in to a TTL RDF form and linked

to other TTL RDF files produced by the previous RDF Generator tools (Project, Construction and Process RDF

Generators), to form the COGITO semantic graph model. This TTL RDF translation of the project resource-related

information, from the native XML or CSV format is performed by the Resources RDF Generator tool, as analysed

in the following subsections.

3.5.1 Prototype Overview

The Resources RDF Generator, as the RDF generator tools analysed in the previous subsections, is a file

translation tool which transforms construction resources-related data in XML or CSV format, to TTL RDF file

format, as summarized in Figure 14.

 D7.3 Extraction, Transformation& Loading Tools and Model Checking v1 29

COGITO – GA ID. 958310

COnstruction phase

diGItal Twin mOdel

Figure 14: Resources RDF Generator operation

The operation of Resources RDF generator is based on the following series of processing steps:

1. Depending on the type of the input file an appropriate parser software module is used to create

populated memory objects for every construction resource type.

2. Based on the COGITO ontology described in D3.4 appropriate memory objects related to the resource

domain ontology are initiated.

3. Using the data from the populated memory objects from step 1, the memory objects created in step 2

are populated.

4. The populated memory objects from step 3 are used to export the final TTL RDF file in the output of the

tool.

3.5.2 Technology Stack and Implementation Tools

Table 5 – Libraries and Technologies used in Resources RDF Generator

Library/Technology Name Version License

Stellar-base-sseclient 0.0.21 MIT License

Wheezy.template 3.1.0 MIT License

3.5.3 Input, Output, and API Documentation

Resources RDF Generator input XML or CSV file contains information related to types of construction resources

(human and non-human) which are going to be translated into RDF format in the output of the tool. File instances

of the tool’s input and output files are presented in Figure 15.

As presented in part 1 of Figure 15, the input CSV or XML file instances contain information in the following fields:

• ID: Is an integer used for identification of the specific resource type.

• Resource_Name: Is a string describing the name of the resource type.

• Type: Is a string describing the type of the resource (equipment or people). This is used to differentiate

human and non-human resources.

• Initials: Is an integer used for the identifying a specific resource within its type.

• Max_Units: Is an integer identifying the maximum allowable number of instances of a specific resource

type.

• Cost_Per_Use: It is a numerical value identifying the cost of using the specific resource type. If the

resource type is a worker for example, this is the amount of currency required per hour for the use of

the specific worker.

The output of produced by the Resources RDF generator is shown in part 2 of Figure 15, where we can see the

triples reflecting the information in RDF format associated to the input process CSV or XML file and the related

resource type instances. This RDF file generated will be stored later in a triple store where it can be queried by

SPARQL queries.

 D7.3 Extraction, Transformation& Loading Tools and Model Checking v1 30

COGITO – GA ID. 958310

COnstruction phase

diGItal Twin mOdel

Figure 15: O/I file ETL operations of the Resources RDF Generator tool

3.5.4 Application example

An application example of the Resources RDF Generator’s ETL file operations is illustrated in Figure 16. In part 1

of Figure 16, an example of a CSV file instance, which is used as input to the Resources RDF generator is

presented. In this CSV file a row is highlighted which refers to an excavator resource type. This excavator resource

type is translated in TTL RDF file format in the output of the tool as presented in part 2 of Figure 16. The portion

of the output TTL RDF file referring to this excavator resource instance contains multiple triplets. Each triple

refers to each of the properties (columns in the input CSV file) of this resource type. The five translated

properties as triplets, for this resource type, are: hasCostPerUse:1500, hasID: 4, hasInitials:1, hasMaxUnits:2 and

hasName: ”Excavator”.

Figure 16: Illustration of the I/O file operations of the Resources RDF Generator tool.

3.5.5 Licensing

The Resources RDF Generator is a part of the KGG component of DTP. All KGG sub-components are open-source

and licenced under the Apache Licence 2.0.

3.5.6 Installation Instructions

The installation instructions are simply to deploy a docker container along with a configuration file indicating the

type of event to pick up from the server sent events queue, and the endpoints of the Helio tool and the server

providing the events.

 D7.3 Extraction, Transformation& Loading Tools and Model Checking v1 31

COGITO – GA ID. 958310

COnstruction phase

diGItal Twin mOdel

3.5.7 Development and integration status

Currently, the status of the development and integration of the tool into the system is in progress. The local

operation of the tool works correctly, but there are still several functionalities to be included, such as the

validation of the graphs generated by means of SHACL files.

In addition, only the pre-processing and translation of resources files in CSV format is currently performed, in the

future, the translation of new file formats, also belonging to the field of process-related files, will be carried out.

The Resources RDF Generator has been tested using artificially created construction resource-related CSV files

as input. In a later stage in the project and as resource type data from COGITO demonstration sites become

available, the tool is going to be tested on these real data.

Furthermore, the tool is tested as an isolated component and its output is examined without taking into account

the output of other RDF Generator components. As the integration of COGITO platform components progresses,

the output of this tool will be semantically linked to the output of the other RDF generation tools of block A of

Figure 1. The results of the tool when applied on resource-related data from the real construction sites and their

semantic links to other TTL RDF data produced by the other RDF generator components, is expected to be

presented in the second version of this deliverable D7.4 in M24.

3.5.8 Requirements Coverage

The coverage of requirements includes the pre-processing, generation and validation of knowledge graphs in

RDF format for the resources-related files to be registered in the Digital Twin Platform.

3.5.9 Assumptions and Restrictions

The operation of the Resources RDF Generator tool relies on the following assumptions and restrictions applied

on the input CSV or XML files:

• The input file should contain the data related to the construction resource types. At least one resource

type should be present with its property values completed.

• In the input file, for every construction resource type all the properties should have values in the

appropriate format (integer, string,…).

• The process identifier must be sent as a parameter to the tool to be added to the existing data in the

resource file.

 D7.3 Extraction, Transformation& Loading Tools and Model Checking v1 32

COGITO – GA ID. 958310

COnstruction phase

diGItal Twin mOdel

4 ETL and MC tools in Data Post-processing layer of DTP

As presented in Figure 2, three tools of the Data Post-processing layer (block B) apply ETL and MC operation on

COGITO input BIM IFC files. These operations are more hardware resource demanding than simple ETL

operations performed by the RDF Generation tools. To support this requirement, the Data Post-Processing Layer

uses Docker Swarm to orchestrate the multiple running instances of the deployed components. The current

version of this layer includes three tools: (i) the B-rep Generator component, which produces mesh-based

representations of BIM data that conform to the IFC4x3 standard, (ii) the MVD Checker, which validates 4D BIM

models by checking the existence of the task identifier of the construction schedule in the property sets for each

building, and (iii) the IFC Optimiser which performs lossless compression and is capable to significantly reduce

the original file size of an IFC to speed up the data transformation processes. For fast and efficient execution, as

it is also illustrated in Figure 2, these tools communicate asynchronously with the Data Persistence layer of DTP

via the Data Management layer of DTP and are executed in a containerized and parallel fashion using the ESB.

These three tools are described analytically in the following subsections.

4.1 MVD Checker

COGITO’s input IFC BIM files contain diverse data ranging from pure geometric to non-geometric data that refer

to construction elements and their related properties and associations. These data, although supported by the

IFC schemas, are not always present in the input IFC files, due to several reasons. These reasons include human

errors of the BIM designer, who might omit to enter them when developing the BIM, and non-human flaws due

to bugs in BIM exporting software programs. Consequently, a checking mechanism is required to ensure that

COGITO input BIMs have the necessary information for every COGITO application using BIM files as input.

This data quality checking mechanism is required in many use cases of COGITO since several COGITO applications

use data originated from IFC BIM files. These applications and respective use cases are:

• UC1.1: PMS tool requires the 4D BIM file an especially the links between tasks and 3D BIM elements.

• UC2.1: Geometric QC requires 3D BIM element data containing material data to perform regulation and

rule conformity checks.

• UC3.1: SafeCon AI requires access to BIM data to enrich them with H&S information.

• UC3.2: Proactive Safety uses 4D BIM data during the construction phase to prevent potential H&S

hazards.

• UC4.1: DCC requires the 4D BIM data for 4D visualization purposes.

• UC4.2: DigiTAR requires access to BIM data for BIM element inspection and issue reporting.

This checking mechanism is offered within COGITO framework by an MC tool called MVD Checker which was also

introduced in D7.1. MVD Checker is described in more detailed in the following subsections.

4.1.1 Prototype Overview

In a nutshell, MVD Checker ensures that a predefined subset of the populated IFC classes in the input IFC BIM

files of COGITO are correct and complete data.

Essentially, MVD Checker, follows the MVD specification defined buildingSMART, which enables the view of only

a subset of the overall IFC schema, to facilitate the data transactions among IFC data providers and consumers.

This “subset view” of the overall IFC schema is based on a set of predefined Concept Templates and Rules. These

Concept Templates and Rules are defined in an mvdXML file produced by buildingSMART’s IfcDoc tool. The

mvdXML file only defines the IFC data classes, their properties and connecting relations that are going to be

checked. The checking rules defined inside the mvdXML file as ConceptTemplates, are essentially sub-graphs of

the IFC schema which contain the necessary Concepts, Rules, and Constraints on those.

 D7.3 Extraction, Transformation& Loading Tools and Model Checking v1 33

COGITO – GA ID. 958310

COnstruction phase

diGItal Twin mOdel

In a nutshell, to perform its model checking operations, MVD Checker requires two files as input:

• An input IFC BIM file.

• An mvdXML file according to the MVD specification which contains the checking rules (an IFC subset

containing the required IFC classes, properties and inter-relations to be checked).

The output of MVD Checker is a JSON file containing the results of the checking process. These input/ output file

operations and the position of the MVD Checker within the COGITO framework are illustrated in the following

Figure 17.

Figure 17: MVD Checker operation

To analyze further the operation of the MVD checker one has to look further in to the tool’s architecture. The

tool as a software block consists of 2 subcomponents: (a) the MVD parser and (b) the MVD algorithm. The MVD

parser parses the input mvdXML as well as the into IFC file and generates respective memory objects. After the

parsing of the input files is completed two steps follow:

1. Based on the values of the objects generated from the mvdXML file parsing, IFC search paths inside the

IFC schema and checking rules are defined and isolated. These search graphs and rules define a set of

IFC classes and attributes to be checked. Using these IFC classes and attributes of the search paths,

certain memory objects derived from the IFC file referring to the IFC classes and attributes related are

collected. Additionally, based on the mvdXML file parsing the checking rules referring to these isolated

memory objects from the IFC file, are also collected.

2. Using these isolated memory objects originated from the IFC file, as well as the checking rules from the

first step, the required checking operations are performed by the MVD algorithm component.

After the above both steps are completed for all the collected search paths and respective checking rules, the

obtained results from the checking operations are written in the output JSON file.

4.1.2 Technology Stack and Implementation Tools

Table 6 – Libraries and Technologies used in MVD Checker

Library/Technology Name Version License

BIM Library 1.0.0 Open source

4.1.3 Input, Output, and API Documentation

The input to the MVD Checker tool consists of two files: (a)a BIM file according to IFC schema specification which

was also input to Construction RDF Generator as described in subsection 3.3.3, which is going to be checked and

(b) an mvdXML text file which contains information related to the checking rules to be used to perform the data

quality checks. Input (a) was documented extensively in subsection 3.3.3. As illustrated in Figure 18, input (b) is

an XML file containing two basic data items:

 D7.3 Extraction, Transformation& Loading Tools and Model Checking v1 34

COGITO – GA ID. 958310

COnstruction phase

diGItal Twin mOdel

• Concept Templates: This item contains entity and attribute rules which are nested on one another and

define a searchable path within the IFC interconnected classes and their attributes. Two of these

concept templates are illustrated with numbered (1 and 2) dashed rectangles Figure 18.

• Views: This item defines the checking rules. Every view uses two additional items:

o Applicability: Uses the Templates from the defined Concept Templates to isolate the IFC

elements on which the checking rule is to be applied.

o Concept: Contains the checking rules of the view defined by Template Rules applied on

Templates obtained from the Concept Templates

The views are illustrated in the last bottom screenshot of Figure 18.

The output of the MVD checker contains the results of the checking operations performed on the elements of

the IFC file located using the routing paths defined in the applicability items inside the views section of the

mvdXML input. These results are formed in JSON format as displayed in Figure 19. In the JSON output all entities

defined in the input mvdXML document are checked. For every checked entity the JSON file reports the following

values:

o valid: a boolean value (true/false) representing the checking results of the checked entity.

o name: Is a string describing the name of the checked element

o global: Is a 22-character string describing the IFC global unique identifier (GUID) of the checked entity.

o express: is an integer defining the express id of the checked entity.

o rules: a complex entity containing the rules that are checked for the current entity and the checking

results for every rule individually. A rule further contains the following entities:

o valid: a boolean value (true/false) representing the checking results of the current rule.

o description: a string describing the current rule.

o parameters: a complex entity containing the parameters of the current rule. Every parameter

further contains:

▪ valid: a boolean value (true/false) representing the checking results of the checked

parameter.

▪ name: a string describing the checked parameter.

▪ value: a string describing the value of the current checked parameter.

The MVD checking results are communicated back to the COGITO application which initiated the checking

process in order for appropriate corrective actions to be performed.

 D7.3 Extraction, Transformation& Loading Tools and Model Checking v1 35

COGITO – GA ID. 958310

COnstruction phase

diGItal Twin mOdel

Figure 18: Input mvdXML file format of MVD Checker

 D7.3 Extraction, Transformation& Loading Tools and Model Checking v1 36

COGITO – GA ID. 958310

COnstruction phase

diGItal Twin mOdel

Figure 19: JSON output file format of MVD Checker

4.1.4 Application examples

The MVD checker tool is integrated in the UI of DTP allowing the user to visualize elements of the BIM IFC file

that have issues in their related IFC classes (incomplete data classes or not semantically connected data classes).

An example of such visualization is presented in Figure 20, related to a detected issue in a column element of an

IFC file of a demonstration building which is highlighted with green colour.

Figure 20: Example of MVD Checker's issue reporting using DTP’s UI

To understand better how the MVD Checker works, the checking results of the demo construction IFC BIM file

referring to the building pictured in part B of Figure 23, are presented in Figure 19 using the checking rules

defined in the mvdXML file presented in Figure 18. As we see in the concept template displayed in part 2 of Figure

18, in this example, the three types of the IfcSlab elements which are checked are: FLOOR, BASESLAB and ROOF.

Additionally, from the concept template displayed in part 1 of Figure 18, a certain property with description “4D”

of these slab types, is checked whether it obtains the value “4D_Task_ID”. To put this checking mechanism in

fewer words, the IfcSlab elements of the IFC file of type FLOOR, BASESLAB and ROOF are checked whether they

 D7.3 Extraction, Transformation& Loading Tools and Model Checking v1 37

COGITO – GA ID. 958310

COnstruction phase

diGItal Twin mOdel

are connected to construction task elements. In other words, the IFC file is checked whether it has a fourth (time)

dimension for these slab elements.

4.1.5 Installation Instructions

The MVD Checker is an internal component of data post-processing layer of DTP. Consequently, there is no API

involved and respective installation procedure.

4.1.6 Development and integration status

At present the MVD checker is successfully applied on the IFC BIM file related to demonstration building

construction project which is pictured in part B of Figure 23. For this demo case the link between the 3D BIM

data and the fourth (time) dimension for specific types of construction elements is successfully checked. The

checking results of the MVD checker are also integrated with DTP’s 3D Viewer for visualization purposes. This

integration offers the user of DTP the ability to locate in 3D space problematic elements of the construction

project that violate the checking rules.

Currently the MVD Checker is tested on demo IFC BIM files with artificially created checking rules. As the data

requirements of COGITO tools become more solidified new data checking requirements will be added and new

respective checking rules will be defined accordingly. With this plan in mind, the MVD checker will be tested with

these new checking rules originated from COGITO tools, defined in mvdXML format. These new rules will define

new separate checking procedures for the MVD Checker which will become even more complex and more diverse

in nature, supporting the variable data needs of COGITO tools. This extension of the MVD checker to support the

variable data needs of COGITO tools, will contribute to the integration and seamless and unified operation of the

whole COGITO framework.

4.1.7 Requirements Coverage

Currently, the MVD Checker receives as input a openBIM file conforming to the IFC4 standard (ISO 16739, 2016)

and an mvdXML file according to the MVD specification defined by buildingSMART (buildingSMART, 2018). It is

required for the correct operation of the tool both input files to have a structure according to these specifications.

Any violation of this well-defined structure of the input files, will result to termination of the tool’s execution

without any output file generation and any checking results reported.

4.1.8 Assumptions and Restrictions

For the correct operation of the tool, and especially if the mvdXML file is generated from a tool other than the

IfcDoc tool, then it is assumed that the following conditions are satisfied:

o It should be ensured that the search path of the IFC elements or attributes inside the Rules of Concept

Template definitions of the mvdXML file, should be according to the IFC4 schema (ISO 16739, 2016).

o The checking rule definitions inside the Concepts as well as the Applicability elements in the Views

section of mvdXML should have the correct references to the defined Concept Templates.

o Finally the input IFC file should conform to the IFC4 standard (ISO 16739, 2016).

 D7.3 Extraction, Transformation& Loading Tools and Model Checking v1 38

COGITO – GA ID. 958310

COnstruction phase

diGItal Twin mOdel

4.2 B-rep Generator

To avoid text verbosity, the geometric content of the 3D BIM IFC files is in an intricate and highly complex form

that contains cyclic references among data classes conforming to the EXPRESS G specifications. Oftentimes, the

IFC geometric content contains parametric geometrical descriptions which cannot be used directly for viewing

purposes and require geometric transformations to become graphics friendly. The bigger the IFC file, the more

the time and processing resources are required to produce files that can be used by 3D viewing software. This

fact limits the use of whole IFC files as direct input to hand-held devices (oculus), due to size, hardware resources,

and processing power limitations of these devices.

Within COGITO architecture, defined in D2.4 and updated in D2.5, certain use cases and respective tools require

portions of the 4D BIM file, referring to specific time intervals, to be converted into a graphics friendly format.

These use cases are:

• UC 4.1: DCC in transaction 5, requests from the DTP certain construction elements from the 4D BIM

model to be displayed in computer displays.

• UC 4.2: DigiTAR in transactions 5 and 10, requests from the DTP certain construction elements from the

4D BIM model to be displayed in hand-held devices.

To support this on-demand graphics compatible file generation from 4D BIM data, an ETL tool called B-rep

generator (BRG) is introduced, as a part of the Data Post-processing layer of DTP, displayed in block 5 in Figure

1. BRG is described in more details in the following subsections.

It is important to point out that although DCC and DigiTAR tools in UC4.1 and UC4.2 respectively, have

implemented their own IFC to OBJ converters for development purposes using the ifcoOpenShell (IFCtoMesh

Generator reported in D7.5) their final implementation might use the BRG tool.

4.2.1 Prototype Overview

The B-rep generator receives as input the static 3D BIM geometric content of COGITO’s input openBIM IFC files

and produces graphics-friendly files following the open OBJ file format. For a better viewing experience and to

be compatible with graphics-related GPU hardware, the produced OBJ files, contain triangulated boundary

representations of the 3D BIM elements augmented with the normal vectors of the generated triangle vertices.

This representation can be used directly by the GPU hardware as it is in the simplest polygon form (triangle) and

can be displayed in a parallel manner by the multiple GPU cores.

To produce these triangulated OBJ files, the B-rep Generator parses an input XML file produced by the IFC

Geometry Exporter of the BIM management component of the Data Ingestion layer of DTP, containing the

deserialized geometric descriptions of the 3D BIM elements (parametric and non-parametric). This OBJ

generation process from an input IFC file is illustrated in Figure 21.

Figure 21: OBJ generation process from input IFC files of B-rep Generator.

The operation of B-rep generator is based on the following series of processing steps:

 D7.3 Extraction, Transformation& Loading Tools and Model Checking v1 39

COGITO – GA ID. 958310

COnstruction phase

diGItal Twin mOdel

1. Initially the construction elements described inside the input xml file are separated depending on their

geometric descriptions into parametric (having parametric geometric descriptions) and non-parametric

elements (having non-parametric geometric descriptions).

2. The parametric elements are then passed to appropriate (internal to B-rep Generator) conversion

software components depending on the kind of parametric description of the element (extrusion, CSG

Boolean operation, …). These conversion software components convert the parametric geometric

description of the input element to a non-parametric geometric description, consisting of a set of

surfaces (polygons with holes) in 3D space.

3. The non-parametric elements need no conversion as their geometric descriptions can be expressed as

a set of surfaces (polygons with holes) in 3D space.

4. After the geometric descriptions of all elements (parametric and not) are expressed as sets of polygonal

surfaces in 3D space, the resulting sets of these polygons are collected (one set per construction

element).

5. Finally, every polygon from the formed sets in step 4, is converted into a set of triangles in 3D space

using a fast ear-clipping polygon triangulation algorithm, which is implemented using the clipper library

(Johnson, 2014), (a library based on Vatti’s algorithm (Vatti, 1992)). Ear-clipping-based polygon

triangulation works for polygons without holes. In case any polygon from the sets obtain from step 4

contains holes, it is converted to a degenerate polygon without holes according to (Mei, Tipper, & Xu,

2015) and then is triangulated. All the resulting triangles in 3D are gathered in separate triangle sets (a

triangle set is formed from the triangles obtained from the polygons of a polygons set generated in step

4).

6. The sets of triangles obtained from the polygonal sets from step 5, are exported in the OBJ text output

of the BRG tool (every triangle in a triangle set is written as a faces of the same object in the output OBJ

of BRG tool).

4.2.2 Technology Stack and Implementation Tools

Table 7 – Libraries and Technologies used in B-rep Generator

Library/Technology Name Version License

Clipper 6.1.3 Boost Software Licence

RapidXML 1.13 Boost Software Licence

4.2.3 Input, Output, and API Documentation

B-rep Generator’s input XML file contains deserialized geometric descriptions (IfcDefinitionShapes) of the

elements of COGITO’s input IFC4x3 file. These descriptions are organized in a tree-like structure as presented in

blue colour, in the left part A of Figure 22. At the root level, this structure contains the description of the projects’

district (if exists), followed by the building subtree description (if any), which is considered also a construction

facility, and non-building facility subtrees (these subtree descriptions include roads, rails, bridges). Every facility

subtree consists of facility parts that have certain definition shapes translated to their local coordinate systems

according to location, direction, and axes vectors described in the tree structure as facility part end leaves.

 D7.3 Extraction, Transformation& Loading Tools and Model Checking v1 40

COGITO – GA ID. 958310

COnstruction phase

diGItal Twin mOdel

Figure 22: Input and output of B-rep Generator tool.

Based on the previous XML input, B-rep Generator produces a triangulated OBJ file at the output containing

three fields: (a) the triangle faces of the boundary presentations of the facility parts or building elements (if any)

of the input, (b) the vertexes of these faces, (b) the normal vectors of these faces, as displayed in the right part

B of Figure 22 for a specific road segment. The objects at B-rep Generator’s output, are linked to respective

facility parts or building elements (if any) of the B-rep Generator’s input, by the IFC GUIDs. This IFC GUID link is

illustrated for a facility part related to a road segment with IFC GUID:3YgZL9ZXXA_xmPsWoGAxwp, with linked

dashed rectangles across the parts of Figure 22. Finally, the output OBJ file and its elements can then be visualized

using geometric mesh viewers such as Blender, as illustrated for a specific road segment in part C of Figure 22.

4.2.4 Application examples

Examples of BRG’s triangulated OBJ file output are displayed in Figure 23. In the left, part A, of Figure 23, a set of

triangulated boundary representations of a road network is displayed, which includes curb, pavement, and road

segments exported in IFC4x3 format as facility parts. In the right, part B, of Figure 23, a set of triangulated

boundary representations of a building construction site is presented which refer to the following structural

elements: slabs walls, columns, and beams.

 D7.3 Extraction, Transformation& Loading Tools and Model Checking v1 41

COGITO – GA ID. 958310

COnstruction phase

diGItal Twin mOdel

Figure 23: Examples of triangulated BRG's output: (A) Road network, (B) Building construction site

4.2.5 Installation Instructions

The B-rep Generator is an internal component of data post-processing layer of DTP. Consequently, there is no

API involved and respective installation procedure.

4.2.6 Development and integration status

The initial version of BRG tool was designed for only building-related elements such as walls, curtain walls, slabs,

coverings, roofs, beams, columns, and proxy elements and their respective Opening volumes with their included

components (windows, doors, and plates). Aligned to the IFC4x3 specification, the tool is updated in the second

version to support the added three facilities from the respective domains which are the road, the bridge, and the

rail. For these facilities, the nested facility part abstraction IFC4x3 rationale was adopted to simplify the building

domain complexity. Under the facility part at the leaf level, the tool’s operations remained unchanged in the

second updated version.

4.2.7 Requirements Coverage

Currently, the B-rep Generator covers the COGITO’s user’s 3D visualization requirements as it supports fast,

accurate and on-demand, graphics-friendly BIM geometry file generation operations extended to non-building

domains such as roads, rails, and bridges. The element of non-building domains is supported by the IFC4x3

schema as facility parts and their geometries are exported in OBJ by BRG.

4.2.8 Assumptions and Restrictions

The operation of the B-rep Generator tool relies on the following two assumptions:

• Only polyhedral geometric representations (solid geometric representations with no curved surfaces)

in the definition shapes of the facility parts of the building elements (if any), contained in the tool’s XML

input file, are translated with no approximation in the tool’s OBJ output.

• If curved geometric representations exist in the definition shapes of the facility parts and building

elements (if any), are approximated linearly by polyhedral boundary representations in the OBJ file

output.

 D7.3 Extraction, Transformation& Loading Tools and Model Checking v1 42

COGITO – GA ID. 958310

COnstruction phase

diGItal Twin mOdel

4.3 IFC Optimizer

The IFC exporters of BIM authoring tools often generate multiple instances of the same object, increasing IFC
text verbosity. This “same-object” repetition becomes even more frequent when the geometric content of IFC
files is described. In this content, the same, points, lines and whole surfaces are repeated inside a single IFC file.
The simple removal of these repeated instances is not possible as it will result to broken links of other entities
referring to these removed instances, destroying the IFC file structure. Consequently, a more complex com-

pression mechanism is required that removes not only the repeated objects but also their references from other
FC entities.

Such IFC lossless compression operations are required within COGITO framework as many applications process
large IFC files. Based on D2.4 and D2.5 the following use cases and respective tools require access to large IFC
files:

• UC1.1: PMS tool requests from DTP as planned 4D BIM data in transaction 5.

• UC2.1: Geometric QC requests from DTP as planned 4D BIM data in transaction 16.
• UC2.2: DTP returns 3D BIM data to visual processing UI in transaction 5.
• UC3.1: SafeConAI tool requests from DTP as planned 4D BIM data in transaction 5 and sends also 4D

BIM enhanced with safety info in transaction 10.
• UC3.2: Proactive safety requests as built 4D BIM data from DTP in transaction 1. SafeConAI requests as

built data enhanced with safety info from DTP in transaction 13. SafeCon AI returns 4D BIM with updated
safety info to DTP and SafeCon AI UI in transaction 16.

• UC4.1: DCC requests as planned 4D BIM data from DTP in transaction 5.
• UC4.2: DigiTAR requests from DTP 3D BIM data in transaction 5. DTP returns the requested 3D BIM data

in transaction 6.

In all of these transactions the respective IFC files should be optimized by reducing their sizes without loosing
content. Reducing the IFC file size without losing content will expedite the operations of these applications, in
cases large IFC files are required to be processed. To remove the excess lines in IFC files while maintaining their
content, a lossless compression tool is introduced as a BIM management component in COGITO’s post-processing
layer (see Figure 1), called IFC Optimizer. The operational structure of IFC Optimizer is described next.

4.3.1 Prototype Overview

The IFC Optimizer performs a reduction in the total IFC file size, to accelerate the loading and execution processes
of other BIM-related tools. The IFC Optimizer uses the IFC Java Library to compare the hash values of the IFC
objects and to merge them in case they are equal. Furthermore, it updates the express identifiers of the deleted
objects to maintain the original connections. This optimization operation is applied to an input IFC0, to produce
an output IFC1 file as is illustrated in Figure 1.

Figure 24: IFC Optimizer operation

The operation of IFC Optimizer is based on hashing techniques and relies on the following series of processing

steps:

1. The IFC file’s Express IDs are converted into hash keys into a hash table.

 D7.3 Extraction, Transformation& Loading Tools and Model Checking v1 43

COGITO – GA ID. 958310

COnstruction phase

diGItal Twin mOdel

2. All IFC text lines which are the same by string comparison and their Express IDs (respective hash keys),

are isolated into sets of identical IFC text lines and respective hash key values. For every one of these

sets one representative hash key value and respective IFC text line entry is kept.

3. For every set isolated in step 2, all references to its hash key values in the IFC text are replaced by the

single representative hash key-value entry of the set. This is done to maintain the IFC structure intact.

4. Finally, after all the replacements of step 3 are completed, for every set extracted in step 2, all the

elements (hash key entries and respective IFC text lines) except from the representative ones are

removed.

4.3.2 Technology Stack and Implementation Tools

Table 8 – Libraries and Technologies used in IFC Optimizer

Library/Technology Name Version License

BIM Library 1.0.0 Open Source

4.3.3 Input, Output, and API Documentation

The IFC optimizer uses as input any BIM file that is generated by the exporters of openBIM authoring tools such

as Autodesk’s Revit or Graphisoft’s Archicad, according to the IFC specifications, as described in subsection 3.3.3.

These files often contain repeated segments of text due to exportation inefficient operations. The IFC optimizer

removes these repeated text segments and keeps only one main segment as a point of reference. Additionally,

the tool adds appropriate references to the maintained single text segments, keeping the structure of the whole

IFC file unaffected. After these text operations, the final IFC file at the output of the tool is significantly reduced

in size. The input and output files are illustrated in Figure 25. Part 1 of Figure 25 is a screenshot of the input IFC

file that has a total of 147087 lines and part 2 of Figure 25 is a screenshot of the output file the IFC Optimizer

using the input file, that has a total of 97525 lines.

Figure 25: Input and Output files of IFC optimizer

4.3.4 Application example

These text reduction operations in the input IFC files and the production of optimized output IFC Files by the IFC

optimizer, is demonstrated in Figure 26, for the IFC file of the building construction project displayed in part B of

Figure 23.

 D7.3 Extraction, Transformation& Loading Tools and Model Checking v1 44

COGITO – GA ID. 958310

COnstruction phase

diGItal Twin mOdel

Figure 26: Example of IFC file optimization operations of IFC Optimizer tool.

. As we can see in part 1 of Figure 26 the following line:

‘’ IFCPROPERTYSINGLEVALUE('Mark',$,IFCTEXT('B1'),$); ‘’

is selected in the input IFC file. The line is counted using Notepad++, 306 times in the text. After the text

operations finish and as part 2 of Figure 26 demonstrates, the same line is counted only one time in the optimized

output IFC file of the tool. With these text reduction operations, the file size of the IFC for this example is reduced

by 35.59% (9,183,232 bytes to 5,914,624 bytes), yielding a compression ratio of 1.55. Additionally, the references

to line #8866 have increased from 14 in the input file to 319 in the optimized file. This proves that the necessary

references have been added by the IFC Optimizer, to maintain the IFC schema structure.

4.3.5 Installation Instructions

The IFC Optimizer is an internal component of data post-processing layer of DTP. Consequently, there is no API

involved and respective installation procedure.

4.3.6 Development and integration status

Currently the IFC optimizer is tested on a demo IFC BIM file referring to a building construction model displayed

in Figure 23. When more complex, non-building BIM construction data are generated representing real entities

COGITO’s demonstration sites, the BIM optimizer will be tested on bigger IFC files. The respective achieved

compression ratios of IFC Optimizer for these new files, is expected to be increased.

In the future, geometric criteria will be added to the IFC Optimizer operations, which will include geometric

tolerances to achieve even higher compression ratios and simplification of the IFC geometric content. Using these

tolerances multiple lines referring to the same geometric entities will be compressed as the example presented

at the end of subsection 4.3.8.

 D7.3 Extraction, Transformation& Loading Tools and Model Checking v1 45

COGITO – GA ID. 958310

COnstruction phase

diGItal Twin mOdel

4.3.7 Requirements Coverage

Currently the IFC optimizer receives as input openBIM files conforming to the IFC4 standard (ISO 16739, 2016).

It is required for the correct operation of the tool the input file to have a structure according to the standard

specification. Any violation of this structure in the input file will result to termination of the tool’s execution

without any output file generation and any compression achieved.

4.3.8 Assumptions and Restrictions

The IFC optimizer checks the lines of the IFC files and performs string comparisons to identify similar lines,

remove them and place appropriate references without breaking down the IFC structure. Currently the similarity

criteria used to detect the similar lines in the IFC text is based on character- by- character checking. These strict

criteria are assumed for all text line checks performed by the tool. Geometric criteria for identifying similar lines

in geometric context, such as the Euclidean distance, are not considered.

For example, the current version of IFC Optimizer treats the lines:

#51484= IFCCARTESIANPOINT((2.16493489801906E-15,0.));

and

#51582= IFCCARTESIANPOINT((0.,0.));

as different lines.

From a geometric perspective, these two lines are the same referring to point (0,0), if we consider any geometric

tolerance smaller than 10^(-14) meters. In the future, by adding the geometric tolerances the previous two lines

will be compressed to a single “IFCCARTESIANPOINT((0.,0.))” line.

 D7.3 Extraction, Transformation& Loading Tools and Model Checking v1 46

COGITO – GA ID. 958310

COnstruction phase

diGItal Twin mOdel

5 Conclusions

In this demonstrator deliverable, eight components or tools of Digital Twin Platform were presented, and their

operation was demonstrated on example data referring to one building construction site and one road network

construction example. These tools apply extraction transformation and loading (ETL) and model checking (MC)

operations on static BIM-related data. Tools applying ETL operations on dynamic data, such as IoT data, are

briefly introduced.

Following the architecture presented in D7.1 these eight tools were split into two groups: (A) five tools belonging

to the data Ingestion layer of DTP which included one MC tool and four ETL tools applying necessary data

operations on COGITO input to form COGITO semantic graph data model and (B) three tools belonging to the

data post-processing layer of DTP which include one MC tool and two ETL applying operations on COGITO input

BIM files. The operations performed in the tools of group B are demanding in terms of hardware resources which

is why they are organized in a parallel and highly containerized fashion to be executed asynchronously via the

ESB framework. With this tool-classification in mind, the deliverable was divided into two main sections (3 and

4), where the tools of group A and B were presented in respective subsections. All tools presented in this

deliverable are designed to support specific COGITO use cases reported in the tools’ respective subsections.

Many of the presented tools can be executed as standalone services in a containerized environment according

to a SOA principle. Consequently, simultaneous, parallel and asynchronous executions of these tools are possible,

which reduces significantly the overall query response time of COGITO tools, requesting these ETL and MC tool

executions as separate services. Furthermore, the coordination of the execution of these tools was designed to

be performed via an appropriate messaging scheme issued by the Messaging Layer components, which will

facilitate further the data traffic and the required data transformation operations between the data providers

(external data sources or stored data) and the data consumers (COGITO tools).

An initial version of these tools was presented and demonstrated in this deliverable. As the project evolves and

when data from the project’s demo sites are ready the tools will be demonstrated on these data and the results

will be presented in the second version of this deliverable (D7.4) which is expected to be released on M24. This

second version will include more detailed information related to the detailed technology stack used for the

implementation of the tools, as well as updates based on additional tests of these tools, on construction site data

arriving from the demonstration sites. Finally, when additional data structures related to reports regarding

detected quality control and health and safety issues on construction elements and data originating from

construction workflow applications, become available, new RDF Generation tools will be implemented that take

as input these new data structures and produce semantic graph outputs in TTL RDF format. These new tools will

be incorporated into the Knowledge Graph generator component of DTP and reported in the second version of

this deliverable.

 D7.3 Extraction, Transformation& Loading Tools and Model Checking v1 47

COGITO – GA ID. 958310

COnstruction phase

diGItal Twin mOdel

References

ISO 16739. (2016). Industry Foundation Classes (IFC) for data sharing in the construction and facility management

industries (ISO 16739:2013). CEN.

buildingSMART. (2018). Model View Definition. Retrieved from https://www.buildingsmart.org/standards/bsi-

standards/model-view-definitions-mvd/

Vatti, B. R. (1992). A generic solution to polygon clipping. Communications of the ACM, 35(7), 55-36.

Mei, G., Tipper, J. C., & Xu, N. (2015). Ear-Clipping Based Algorithms of Generating High-Quality Polygon

Triangulation. International Conference on Information Technology and Software Engineering .

Johnson, A. (2014). Clipper - an open source freeware library for clipping and offsetting lines and polygons.

Retrieved from http://www.angusj.com/delphi/clipper.php

W3C. (n.d.). Shapes Constraint Language (SHACL). Retrieved from https://www.w3.org/TR/shacl/

This project has received funding from the European Union's Horizon 2020 research and
innovation programme under grant agreement No 958310

	Executive Summary
	Table of contents
	List of Figures
	List of Tables
	List of Acronyms
	1 Introduction
	1.1 Scope and Objectives of the Deliverable
	1.2 Relation to other Tasks and Deliverables
	1.3 Structure of the Deliverable

	2 ETL and MC tools of COGITO
	2.1 ETL and MC tools on static data
	2.1.1 Data Ingestion layer tools (Block A)
	2.1.2 Data Post-processing layer tools (Block B)

	2.2 ETL and MC tools on dynamic data

	3 ETL and MC tools in Data Ingestion layer of DTP
	3.1 RDF Validator
	3.1.1 Prototype Overview
	3.1.2 Technology Stack and Implementation Tools
	3.1.3 Input, Output, and API Documentation
	3.1.4 Application example
	3.1.5 Licensing
	3.1.6 Installation Instructions
	3.1.7 Development and integration status
	3.1.8 Requirements Coverage
	3.1.9 Assumptions and Restrictions

	3.2 Project RDF Generator
	3.2.1 Prototype Overview
	3.2.2 Technology Stack and Implementation Tools
	3.2.3 Input, Output, and API Documentation
	3.2.4 Application example
	3.2.5 Licensing
	3.2.6 Installation Instructions
	3.2.7 Development and integration status
	3.2.8 Requirements Coverage
	3.2.9 Assumptions and Restrictions

	3.3 Construction RDF Generator
	3.3.1 Prototype Overview
	3.3.2 Technology Stack and Implementation Tools
	3.3.3 Input, Output, and API Documentation
	3.3.4 Application example
	3.3.5 Licensing
	3.3.6 Installation Instructions
	3.3.7 Development and integration status
	3.3.8 Requirements Coverage
	3.3.9 Assumptions and Restrictions

	3.4 Process RDF Generator
	3.4.1 Prototype Overview
	3.4.2 Technology Stack and Implementation Tools
	3.4.3 Input, Output and API Documentation
	3.4.4 Application example
	3.4.5 Licensing
	3.4.6 Installation Instructions
	3.4.7 Development and integration status
	3.4.8 Requirements Coverage
	3.4.9 Assumptions and Restrictions

	3.5 Resources RDF Generator
	3.5.1 Prototype Overview
	3.5.2 Technology Stack and Implementation Tools
	3.5.3 Input, Output, and API Documentation
	3.5.4 Application example
	3.5.5 Licensing
	3.5.6 Installation Instructions
	3.5.7 Development and integration status
	3.5.8 Requirements Coverage
	3.5.9 Assumptions and Restrictions

	4 ETL and MC tools in Data Post-processing layer of DTP
	4.1 MVD Checker
	4.1.1 Prototype Overview
	4.1.2 Technology Stack and Implementation Tools
	4.1.3 Input, Output, and API Documentation
	4.1.4 Application examples
	4.1.5 Installation Instructions
	4.1.6 Development and integration status
	4.1.7 Requirements Coverage
	4.1.8 Assumptions and Restrictions

	4.2 B-rep Generator
	4.2.1 Prototype Overview
	4.2.2 Technology Stack and Implementation Tools
	4.2.3 Input, Output, and API Documentation
	4.2.4 Application examples
	4.2.5 Installation Instructions
	4.2.6 Development and integration status
	4.2.7 Requirements Coverage
	4.2.8 Assumptions and Restrictions

	4.3 IFC Optimizer
	4.3.1 Prototype Overview
	4.3.2 Technology Stack and Implementation Tools
	4.3.3 Input, Output, and API Documentation
	4.3.4 Application example
	4.3.5 Installation Instructions
	4.3.6 Development and integration status
	4.3.7 Requirements Coverage
	4.3.8 Assumptions and Restrictions

	5 Conclusions
	References

