

D7.2 –

Digital Twin

Platform

Design &

Interface

Specification

v2

 D7.2 Digital Twin Platform Design & Interface Specification v2 1

COGITO – GA ID. 958310

COnstruction phase

dIgital Twin mOdel

D7.2 – Digital Twin Platform Design & Interface Specification v2

Dissemination Level: Public

Deliverable Type: Report

Lead Partner: UCL

Contributing Partners: UPM, Hypertech, DTU, UEDIN, CERTH, NT, BOC-AG, QUE

Due date: 31-10-2022

Actual submission date: 01-11-2022

Authors

Name Beneficiary Email

Kyriakos Katsigarakis UCL k.katsigarakis@ucl.ac.uk
Giorgos N. Lilis UCL g.lilis@ucl.ac.uk
Zi Fang UCL zi.fang.15@ucl.ac.uk

Dimitrios Rovas UCL d.rovas@ucl.ac.uk
Raúl García-Castro UPM rgarcia@fi.upm.es
Salvador Gonzalez-Gerpe UPM salvador.gonzalez.gerpe@upm.es
Apostolos Papafragkakis Hypertech a.papafragkakis@hypertech.gr

Giorgos Giannakis Hypertech g.giannakis@hypertech.gr
Thanos Tsakiris CERTH atsakir@iti.gr
Evangelia Pantraki CERTH epantrak@iti.gr
Apostolia Gounaridou CERTH agounaridou@iti.gr
Michalis Chatzakis CERTH mchatzak@iti.gr
Tasos Sinanis CERTH tasos.sinanis@iti.gr
Vasilis Dimitriadis CERTH dimvasdim@iti.gr

Damiano Falcioni BOC-AG damiano.falcioni@boc-eu.com
Robert Woitsch BOC-AG robert.woitsch@boc-eu.com
Martin Straka NT straka@novitechgroup.sk

Bohuš Belej NT belej@novitechgroup.sk
Panos Andriopoulos QUE panos@que-tech.com
Frédéric Bosché UEDIN f.bosche@ed.ac.uk
Martín Bueno Esposito UEDIN martin.bueno@ed.ac.uk

Jochen Teizer DTU teizerj@dtu.dk
Karsten Johansen DTU kawj@dtu.dk

Reviewers

Name Beneficiary Email

Giorgos Giannakis Hypertech g.giannakis@hypertech.gr

Panos Andriopoulos QUE panos@que-tech.com

Version History

Version Editors Date Comment

0.1 UCL, UPM 20.09.2022 ToC

0.3 UCL 10.10.2022 Draft version of section 2,3,4

0.6 UCL, UPM 15.10.2022 Draft version of sections 5,6,7,8,9

0.8 Hypertech, QUE 27.10.2022 Internal review

mailto:k.katsigarakis@ucl.ac.uk
mailto:g.lilis@ucl.ac.uk
mailto:zi.fang.15@ucl.ac.uk
mailto:d.rovas@ucl.ac.uk
mailto:rgarcia@fi.upm.es
mailto:salvador.gonzalez.gerpe@upm.es
mailto:a.papafragkakis@hypertech.gr
mailto:g.giannakis@hypertech.gr
mailto:atsakir@iti.gr
mailto:epantrak@iti.gr
mailto:agounaridou@iti.gr
mailto:mchatzak@iti.gr
mailto:tasos.sinanis@iti.gr
mailto:dimvasdim@iti.gr
mailto:damiano.falcioni@boc-eu.com
mailto:robert.woitsch@boc-eu.com
mailto:straka@novitechgroup.sk
mailto:belej@novitechgroup.sk
mailto:panos@que-tech.com
mailto:f.bosche@ed.ac.uk
mailto:martin.bueno@ed.ac.uk
mailto:teizerj@dtu.dk
mailto:kawj@dtu.dk
mailto:g.giannakis@hypertech.gr
mailto:panos@que-tech.com

 D7.2 Digital Twin Platform Design & Interface Specification v2 2

COGITO – GA ID. 958310

COnstruction phase

dIgital Twin mOdel

0.9 UCL, UPM 29.10.2022 Internal review comments addressed

1.0 Hypertech, UCL 01.11.2022 Submission to EC

Disclaimer

©COGITO Consortium Partners. All right reserved. COGITO is a HORIZON2020 Project supported by the European
Commission under Grant Agreement No. 958310. The document is proprietary of the COGITO consortium
members. No copying or distributing, in any form or by any means, is allowed without the prior written
agreement of the owner of the property rights. The information in this document is subject to change without
notice. Company or product names mentioned in this document may be trademarks or registered trademarks of
their respective companies. The information and views set out in this publication are those of the author(s) and
do not necessarily reflect the official opinion of the European Communities. Neither the European Union
institutions and bodies nor any person acting on their behalf may be held responsible for the use, which may be
made, of the information contained therein.

 D7.2 Digital Twin Platform Design & Interface Specification v2 3

COGITO – GA ID. 958310

COnstruction phase

dIgital Twin mOdel

Executive Summary

The COGITO deliverable “D7.2 Digital Twin Platform Design & Interface Specification v2” aims to document the
COGITO Digital Twin Platform detailed architecture and report the outcomes of work performed in “T7.1 Digital
Twin Platform Design & Interface Specification”. Overall, the COGITO Digital Twin Platform lies at the core of the
COGITO system and is responsible for implementing an information management solution that aims to enable
interoperability with existing standards and ontologies covering different domains.

To ensure the COGITO functional requirements are met using a generic set of reusable components, the COGITO
Digital Twin Platform (DTP) is implemented using a multi-layer architecture. The Authentication Layer ensures
that user access is restricted to specific user roles and groups. The Data Ingestion Layer is responsible for loading
new datasets and orchestrating the execution of the Extract, Transform and Load (ETL) services for generating
the knowledge graph and populating the corresponding databases. At the same time, the Data Persistence Layer
provides a cloud-based data storage solution, including graph, relational and time-series databases. The Data
Management Layer satisfies the data needs of the other COGITO applications by managing DTP’s data-driven
modules and dynamic endpoints. It offers a runtime system responsible for handling the various requests and
delivering the data responses to the COGITO applications using the message broker provided by the Messaging
Layer. The Data Post-Processing Layer provides software components responsible for checking and processing
BIM models that conform to the Industry Foundation Classes (IFC) standard.

The document mainly focuses on presenting the operational blocks of the DTP architecture, including the layers
with their subcomponents and their interconnections. In this deliverable, we describe the architecture following
a hierarchical top-down approach starting from the high-level description of each layer and then drilling down
with a detailed description of its components. In addition, we present the detailed technology stack used for the
final implementation, we define the data flows and we analyse their interfaces: i) among the different layers of
the platform and ii) the ones interacting with the other COGITO applications to ensure transparent
interoperability of the COGITO solution.

 D7.2 Digital Twin Platform Design & Interface Specification v2 4

COGITO – GA ID. 958310

COnstruction phase

dIgital Twin mOdel

Contents
Executive Summary .. 3

List of Figures .. 6

List of Tables ... 7

List of Acronyms ... 8

1 Introduction .. 10

1.1 Scope and Objectives of the Deliverable .. 10

1.2 Relation to other Tasks and Deliverables ... 11

1.3 Structure of the Deliverable.. 11

1.4 Updates to the first version of the DT Platform Design & Interface Specification............................... 11

2 Overall Architecture ... 13

2.1 Multi-layered Architecture ... 13

2.2 Components and High-Level Interfaces .. 14

2.3 Service Orchestration .. 17

3 Authentication Layer .. 19

3.1 Identity and Access Management... 19

3.2 User Roles ... 19

3.3 Interface Specification .. 20

4 Data Ingestion Layer ... 21

4.1 Input Data Management ... 21

4.1.1 Architecture .. 21

4.1.2 Interface Specification .. 24

4.2 BIM Management ... 25

4.2.1 Architecture .. 25

4.2.2 EXPRESS Schema Compiler for Java .. 25

4.2.3 IFC Java Library ... 26

4.2.4 IFC Consistency Checker ... 27

4.2.5 IFC Geometry Exporter ... 27

4.2.6 IFC Revision Control .. 27

4.3 Knowledge Graph Generator .. 28

4.3.1 Architecture .. 29

4.3.2 Thing Manager .. 30

4.3.3 Wrapper Module .. 32

4.3.4 RDF Graph Linker .. 32

4.3.5 RDF Data Validator ... 32

5 Data Persistence Layer ... 33

5.1 File Storage System ... 33

 D7.2 Digital Twin Platform Design & Interface Specification v2 5

COGITO – GA ID. 958310

COnstruction phase

dIgital Twin mOdel

5.2 Project Database ... 33

5.3 Key-Value Database .. 34

5.4 Timeseries Database ... 34

5.5 Graph Database... 35

5.6 Thing Description Directory .. 35

6 Data Management Layer .. 36

6.1 DT Library .. 37

6.2 DT Runtime.. 37

6.2.1 Architecture .. 37

6.3 Interface Specification .. 38

7 Messaging Layer ... 42

8 Data Post-Processing Layer .. 43

8.1 Architecture .. 44

8.2 Model View Definition (MVD) Checker ... 44

8.3 B-rep Generator .. 45

8.4 IFC Optimiser ... 46

8.5 Geometric Clash Checker .. 46

9 Conclusions ... 47

References .. 48

 D7.2 Digital Twin Platform Design & Interface Specification v2 6

COGITO – GA ID. 958310

COnstruction phase

dIgital Twin mOdel

List of Figures

Figure 1 DTP high-level architecture .. 13
Figure 2 DTP’s components and high-level interfaces ... 15
Figure 3 Use of Docker Swarm in COGITO’s DTP .. 17
Figure 4 DTP’s service orchestration .. 17
Figure 5 User authentication process in COGITO solution ... 19
Figure 6 Data Ingestion Layer architecture .. 21
Figure 7 Backend architecture of Input Data Management component ... 22
Figure 8 Stack diagram of Input Data Management component ... 23
Figure 9 High-level architecture of BIM Management component ... 25
Figure 10 IFC Java Classes Generation using the EXPRESS Schema Compiler .. 25
Figure 11 IFC Implementation for Java ... 26
Figure 12 IFC Geometry Exporter component ... 27
Figure 13 IFC Revision Control component .. 28
Figure 14 Knowledge Graph Generator’s core components .. 29
Figure 15 High-level architecture of the Knowledge Graph Generator ... 29
Figure 16 Knowledge graph generation and validation process .. 30
Figure 17 Location tracking Thing Description example .. 31
Figure 18 Relational data-model of the Input Data Management component ... 33
Figure 19 High-level interfaces defined in the IFC Library ... 34
Figure 20 Data Management Layer’s core components interactions .. 36
Figure 21 Example of a module deployment in the DT Runtime component .. 38
Figure 22 Messaging functionalities provided by the Data Management and Messaging layers 42
Figure 23 Data flow between Data Post-Processing and the Data Management layers 43
Figure 24 Stack-diagram of Data Post-Processing Layer components ... 44
Figure 25 Example of a concept template for validating IFC properties .. 45
Figure 26 MVD model checking process .. 45

 D7.2 Digital Twin Platform Design & Interface Specification v2 7

COGITO – GA ID. 958310

COnstruction phase

dIgital Twin mOdel

List of Tables

Table 1 Identity Provider’s Authentication API specification ... 20
Table 2 Identity Provider’s Admin API specification .. 20
Table 3 Input Data Management’s API specification ... 24
Table 4 Example of inverse relations provided by the IFC Library ... 26
Table 5 DT Library’s actor packages ... 37
Table 6 Data exchange requirements of COGITO applications .. 38
Table 7 DTP’s external interfaces ... 40

 D7.2 Digital Twin Platform Design & Interface Specification v2 8

COGITO – GA ID. 958310

COnstruction phase

dIgital Twin mOdel

List of Acronyms

Term Description

AAI Authentication and Authorisation Infrastructure

AMQP Advanced Message Queueing Protocol

API Application Programming Interface

ASCII American Standard Code for Information Interchange

BIM Building Information Model

CoAP Constrained Application Protocol

COGITO Construction Phase diGItal Twin mOdel

CRUD Create, Read Update and Delete

DAO Data Access Object

DB Database

DI Dependency Injection

DT Digital Twin

DTP Digital-Twin Platform

DTV Design Transfer View

ERP Enterprise Resource Planning

ESB Enterprise Service Bus

ETL Extract, Transform and Load

glTF GL Transmission Format

GUI Graphical User Interface

HSE Health, Safety and Environment

IFC Industry Foundation Classes

IoC Inversion of Control

IoT Internet of Things

JDBC Java Database Connectivity

JMS Java Messaging System

JNI Java Native Interface

JPA Java Persistence Layer

JSON JavaScript Object Notation

JVM Java Virtual Machine

LoRa Long Range

MC Model Checking

MQTT Message Queue Telemetry Transport

MVD Model View Definition

OPC UA OLE for Process Control Unified Architecture

 D7.2 Digital Twin Platform Design & Interface Specification v2 9

COGITO – GA ID. 958310

COnstruction phase

dIgital Twin mOdel

ORM Object-Relational Mapping

OWL Web Ontology Language

PaaS Platform as a Service

RDF Resource Description Framework

RDMS Relational Database Management Systems

REST Representational State Transfer

SaaS Software as a Service

SHACL SHApes Constraint Language

SOA Service Oriented Architecture

SQL Structured Query Language

SSO Single-Sign On

STEP Standard for the Exchange of Product Data

STOMP Streaming Text-Oriented Messaging Protocol

TD WoT Thing Description

UDI User-Driver Innovation

UML Unified Modeling Language

VM Virtual Machine

WODM Word Order Definition and Monitoring Tool

WoT Web of Things

XML Extensible Markup Language

 D7.2 Digital Twin Platform Design & Interface Specification v2 10

COGITO – GA ID. 958310

COnstruction phase

dIgital Twin mOdel

1 Introduction

This deliverable reports on the final version of the COGITO Digital Twin Platform (DTP) architecture reflecting the

outcomes of “T7.1 Digital Twin Platform Design & Interface Specification”. The deliverable builds upon the

identified stakeholder requirements of “T2.1 Elicitation of Stakeholder Requirements”, the overall COGITO

system architecture of “T2.4 COGITO System Architecture Design”, and the definition of the COGITO ontology

network of “T3.2 COGITO Data Model, Ontology Definition and Interoperability Design”. This work delivers the

detailed multi-layered architecture of the COGITO DTP, the specifications of its core components, and a detailed

definition of the interfaces.

1.1 Scope and Objectives of the Deliverable

The DTP follows a multi-layered software architecture comprising six core layers. Each layer contains a set of

software components implementing the Service-Oriented Architecture (SOA) design pattern and performing

various business logic operations to support the main objectives of the COGITO solution. The main scope of this

deliverable is to present the final architecture of the DTP and analyse the layers and their roles in supporting the

user-facing COGITO software applications. The objective is to describe: i) the high-level software architecture of

the DTP; ii) decompose each layer into distinct software components; and iii) explore the technological stack and

interfaces required for the implementation.

A centrally integrated solution appears in the proposed ICT framework of several construction-related H2020

projects and other commercial organisations. In the SPHERE project, the raw data produced by machines,

systems and products are linked, captured, and managed using a central cloud-based collaborative Platform as

a Service (PaaS) ICT solution [1]. In BIMprove, the core component is a cloud-based data integration service using

modular APIs for information exchange and data processing. These APIs can add/remove and update information

in the different layers of the BIMprove solution [2]. Finally, in ASHVIN, a microservices-based messaging IoT

middleware is proposed [3]. The middleware abstracts the most common IoT protocols specifications, such as

LoRa, MQTT, OPC UA, CoAP to establish a unified communication interface between devices and software

applications.

COGITO’s DTP is a cloud-based and semantically enabled data integration middleware that includes a

comprehensive suite of services to guarantee scalability, reliability, and enhanced security as it is responsible for:

a) handling data from various input sources such as point clouds, 4D BIM, and IoT devices, b) populating the

internal data models and knowledge graphs, and c) responding to data requests of the various COGITO

applications. The semantically linked knowledge graph and the COGITO ontologies are defined in WP3.

The DTP architecture design considers the variable computation data needs for providing synchronous and

asynchronous interfaces to increase the performance by minimising the query response time as much as

possible. Additionally, the functional components will be deployed as microservices, enabling flexibility and high-

availability capabilities. This renders COGITO’s DTP into a federated ‘loose’ system of interoperable tools instead

of a rigid, tightly integrated system.

 D7.2 Digital Twin Platform Design & Interface Specification v2 11

COGITO – GA ID. 958310

COnstruction phase

dIgital Twin mOdel

1.2 Relation to other Tasks and Deliverables

This deliverable is the outcome of the “T7.1 Digital Twin Platform Design & Interface Specification”, which falls

under “WP7 COGITO Digital Twin Platform” activities. There are several dependencies of this work on other

deliverables and tasks:

• The configuration of the user roles in the Authentication Layer is based on the work performed in “T2.1

Elicitation of Stakeholder Requirements” and the corresponding deliverable “D2.1 Stakeholder

requirements for the COGITO system”.

• The layered architecture design of the platform is primarily based on the work performed in “T2.4

COGITO System Architecture Design” and the corresponding deliverable “D2.5 COGITO System

Architecture v2”.

• Furthermore, the design of the Data Ingestion and Data Persistence layers is based on the work

performed in “T3.2 COGITO Data Model, Ontology Definition and Interoperability Design”.

1.3 Structure of the Deliverable

The rest of the deliverable is organised according to the structure of the COGITO DTP:

• Section 2 presents the overall architecture of the DTP, introducing its layers and their interfaces.

• Section 3 presents the architecture of the Authentication Layer, which provides a central identity and

access management solution, and ensures that access is restricted to specific users and applications

with appropriate permissions.

• Section 4 presents the architecture of the Data Ingestion Layer, which provides a web-based application

for loading the input data and orchestrating the execution of the Model Checking (MC) and Extract,

Transform and Load (ETL) services. These services are responsible for validating the input data and

populating the corresponding databases of the Data Persistence Layer.

• Section 5 presents the architecture of the Data Persistence Layer, which provides a cloud-based data

storage solution including graph, relational and time-series databases.

• Section 6 presents the architecture of the Data Management Layer, which manages the execution of

the data-driven modules used for handling the requests of the various COGITO applications.

• Section 7 presents the Messaging Layer and the proposed technologies for handling asynchronous

messages and notifications.

• Section 8 presents the architecture of the Data Post-Processing Layer, which provides a comprehensive

set of microservices used for preforming time-consuming processes implementing asynchronous

communication patterns.

• The document concludes with Section 9, where some possible future improvements are discussed.

1.4 Updates to the first version of the DT Platform Design & Interface

Specification

The first version, “D7.1 - Digital Twin Platform Design & Interface Specification v1”, presented the design and

specification of a multi-layered platform, including the layers with their software components and

interconnections. Since the submission of the first version, some software components have been added or

changed to meet the functional and non-functional requirements of the COGITO solution. This deliverable

comprises the following changes:

• The Messaging Layer is responsible for transmitting data and notifications between the DTP and the

other COGITO applications in an asynchronous manner. The first version included an Enterprise Service

Bus (ESB) solution that provided the message broker and the integration framework for configuring the

necessary routing operations. In the final version, these services are managed by the Data Management

Layer. Thus, the Messaging Layer now contains the ActiveMQ Artemis message broker supporting

multiple messaging protocols such as AMQP, STOMP and MQTT.

 D7.2 Digital Twin Platform Design & Interface Specification v2 12

COGITO – GA ID. 958310

COnstruction phase

dIgital Twin mOdel

• The Data Management Layer is responsible for processing the various requests performed by the other

COGITO applications and sending back the requested data. The first version contained three core

components: i) Runtime Environment, ii) API Wrappers, and iii) Web Services. In the final design, the

Data Management Layer has been redesigned to maximise flexibility and scalability. The new design

consists of the following core components:

o The DT Runtime component is responsible for configuring and supervising the execution of the

configured modules, handling their responses, and sending them back to the COGITO

applications.

o The DT Library component is responsible for providing a set of ready-made coding blocks

implementing various data-processing operations required for the smooth running of the

COGITO system.

• The Data Ingestion Layer is responsible for loading the input data in the DTP and orchestrating the

execution of the ETL and MC services for generating the knowledge graph and populating the

corresponding databases. The Data Ingestion Layer contains three core components: i) Input Data

Management (previously named Project Management), responsible for project creation and project

management, ii) BIM Management, responsible for handling data conforming to openBIM standards

and iii) Knowledge Graph Generator, responsible for generating and validating the unified knowledge

graph and for populating the corresponding databases of the Data Persistence Layer. In the final design,

the architecture of the provided core components has been updated to maximise reusability and

flexibility.

• The Data Pro-Processing Layer is responsible for hosting time-consuming MC and ETL processes utilising

asynchronous communication methods. In the final design, the Geometric Clash Checker has been

added. This component performs clash detection and semantic enrichment when relationships between

building element and spatial zones are missing.

 D7.2 Digital Twin Platform Design & Interface Specification v2 13

COGITO – GA ID. 958310

COnstruction phase

dIgital Twin mOdel

2 Overall Architecture

The DTP is a cloud-based and semantically enabled data-integration middleware that includes a comprehensive

suite of services for loading, populating, and managing data used by the various COGITO applications. This section

describes the multi-layered architecture of a cloud-based middleware that enables interoperability between

construction-related applications developed within the COGITO project and a set of interfaces that define the

high-level data interactions among the provided software components.

2.1 Multi-layered Architecture

The DTP is responsible for loading the as-designed and as-built data, populating the corresponding knowledge

graphs and databases, and handling the data queries from the various COGITO applications. The platform

architecture follows a multi-layer approach implementing the Service-Oriented Architecture (SOA) design

pattern to guarantee horizontal scalability, reliability, and enhanced security. Figure 1 displays an overview of

the architecture of the DTP, which includes the defined layers with high-level interactions and the information

flow among the layers.

Figure 1 DTP high-level architecture

As shown in Figure 1, the final architecture includes six core layers. Each layer contains a set of software

components performing various business logic operations to meet the final functional and non-functional

requirements of the DTP.

• The Authentication Layer ensures that access to resources and services is restricted to specific users

with the appropriate permissions. It is based on the open-source project Keycloak, which serves as a

central identity and access management provider.

• The Data Ingestion Layer loads the as-designed data and real-time IoT location tracking data to the DTP

and orchestrates the execution of the included Extract, Transform and Load (ETL) services to generate

the unified knowledge graph and to populate the corresponding databases.

• The Data Persistence Layer provides an integrated cloud-based storage solution for COGITO data,

providing datastores such as file storage and relational, key-value, time-series, and triplestore

databases. Additionally, it provides the Thing Description Directory (TDD) which is a searchable registry

of Thing Descriptions. A Thing Description (TD) is an object that follows the WoT Thing Description1

1WoT Thing Description https://www.w3.org/TR/wot-thing-description/

https://www.w3.org/TR/wot-thing-description/

 D7.2 Digital Twin Platform Design & Interface Specification v2 14

COGITO – GA ID. 958310

COnstruction phase

dIgital Twin mOdel

specification and provides metadata and interfaces of Things, where a Thing is a digital abstraction of

physical or virtual entities.

• The Data Management Layer manages the requests of the various COGITO applications by providing i)

configurable endpoints and ii) a runtime system for hosting the various modules which implement the

business-logic operations for the preparation of the responses.

• The Messaging Layer facilitates the smooth transfer of messages between the various COGITO

applications and ensures that the notifications produced by the DTP are delivered to the correct

destinations. It is based on the open-source project Apache ActiveMQ Artemis offering a message

broker which enables asynchronous data transmission utilising the publish/subscribe pattern using

queues and topics.

• The Data Post-Processing Layer provides reusable data integration and quality checking services to

ensure end-user COGITO applications are provided with quality data. As COGITO solution complies with

openBIM data (IFC), the following services have been developed and deployed: i) Model-View Definition

(MVD) checking, ii) Geometric clash detection checking and enrichment, iii) IFC optimisation and v) B-

rep geometry generation.

A quick overview of Figure 1 shows that the starting point of the information flow is the input data sources.

Within COGITO, the input data come from two different sources: a) external applications (1) such as BIM

authoring tools, construction project management tools and Enterprise Resource Planning (ERP) tools, providing

the as-designed BIM model along with the corresponding construction schedules and resources data, and b) the

COGITO data pre-processing tools (2) such as the Visual Data Pre-processing tool and the IoT Data Pre-processing

tool, providing imagery and location tracking data along with their meta-data.

When external sources send data to the DTP, checking, enrichment and optimisation operations are initially

performed before loading the data into the Data Persistence Layer. For instance, in the case of the BIM model,

an ETL service of the Data Ingestion Layer process the IFC data and performs transformations based on a pre-

defined set of mapping rules. Regarding the transformations of contextual data (construction schedule, as-

planned resources) that conform to machine-readable formats, such as JSON, CSV and XML, various ETL services

of the Data Ingestion Layer generate RDF data and the Thing Descriptions in line with the ontologies defined in

“WP3 COGITO Data Model and Reality Capture Data Tools” [4].

The Data Ingestion Layer is responsible for orchestrating the transformation processes to generate the

knowledge graph and populating (3) the various databases of the Data Persistence Layer.

After the ingestion process is complete, the unified knowledge graph is available, and databases of the Data

Persistence Layer databases are populated. The Data Management Layer can then respond to data requests from

upstream COGITO applications. It comprises the DT Runtime component which uses a set of configurable

modules for retrieving data (4) stored in the Data Persistence Layer. In some queries, the corresponding

responses require data arising from different types of databases. For instance, in the case of a 4D BIM query, two

requests are performed: one to the knowledge graph for retrieving the tasks and another to the BIM database

for retrieving the corresponding IFC objects. The Data Management Layer is responsible for orchestrating the

internal data exchanges, harmonising the returned data, and sending responses (5) to the COGITO applications.

2.2 Components and High-Level Interfaces

The DTP follows a multi-layered architecture comprising six core layers. Each layer contains a set of software

components implementing various business logic operations to support the main objectives of the DTP. These

components are packaged and deployed as microservices in a cloud-computing infrastructure, providing

flexibility, availability, and scalability. The main components included in DTP layers are the following:

The Authentication Layer contains COGITO’s Identity Provider which offers a central identity and access

management solution.

The Data Ingestion Layer contains a) the Input Data Management component, which is responsible for project

creation, user assignment, and loading input data, b) the BIM Management component, which is responsible for

 D7.2 Digital Twin Platform Design & Interface Specification v2 15

COGITO – GA ID. 958310

COnstruction phase

dIgital Twin mOdel

parsing, validating and versioning IFC data, and c) Knowledge Graph Generator which is in charge for generating

and validating the unified knowledge graph and populating the databases of the Data Persistence Layer.

The Data Persistence Layer contains a) a File Storage system for storing files, b) a Relational DB for storing project

and user data, c) a Key-value DB for storing the IFC objects, d) a Timeseries DB for storing IoT data, e) a

Triplestore for storing the knowledge graph, and f) Thing Descriptions Directory for storing the Thing

Descriptions.

The Data Management Layer contains a) the DT Runtime component, responsible for creating and executing the

various data-driven modules, handling their responses, and sending them to the COGITO applications and b) the

DT Library component, responsible for providing a set of ready-made coding blocks facilitating the COGITO

developers to create their own data-driven modules using a graphical environment.

The Data Post-Processing Layer contains a) the MVD Checker component for performing model checking on the

BIM model in terms of data completeness, b) the IFC Optimiser component for de-duplication and lossless

compression of the IFC file, c) the B-rep Generator for generating triangulated B-rep solids of the IFC objects,

and d) the Geometric Clash Checker component for detecting clash and containment errors and for creating

additional semantic links between existing entities of the unified knowledge graph. In general, the Data Post-

Processing Layer provides an extensible mechanism to host components providing additional functionalities if

needed.

Figure 2 DTP’s components and high-level interfaces

 D7.2 Digital Twin Platform Design & Interface Specification v2 16

COGITO – GA ID. 958310

COnstruction phase

dIgital Twin mOdel

The primary interfaces have been identified and shown in Figure 2 to illustrate the data exchanges among the

DTP layers' components. The main internal and external interfaces of the DTP layers and their main uses are the

following:

• I-1.0: The Input Data Management component uses I-1.0 to register, assign roles and authenticate

COGITO’s users and developers.

• I-1.1: The various COGITO applications use I-1.1 for authenticating the registered COGITO users.

• I-2.0: COGITO’s registered users use I-2.0 to load the input data into the DTP. The users upload data

such as BIM models, construction schedules and the as-planned resources using the rich Graphical User

Interface (GUI) of the Input Data Management component.

• I-2.1: COGITO’s data pre-processing applications use I-2.1 to load processed data into the DTP. The

corresponding COGITO applications use REST endpoints and KAFKA channels provided by the Input Data

Management component to load various data, such as point clouds, imagery, and real-time location

tracking data.

• I-3.0: This interface facilitates the communication between the Data Ingestion and Data Persistence

layers. The Input Data Management component uses the file storage system and the relational database

to store the uploaded files with their assigned permissions and meta-data. In addition, the BIM

Management component uses the file storage system to store temporary files and the key-value

database to store the IFC objects. In conclusion, the Knowledge Graph Generator component uses the

Triplestore to store the generated RDF data and the Thing Descriptions Directory to store the Thing

Descriptions.

• I-4.0: This interface enables the communication between the DT Runtime component of the Data

Management Layer and the corresponding databases of the Data Persistence Layer. The main protocols

of these interactions are JDBC and HTTPS.

• I-4.1: The DT Runtime component uses I-4.1 to interact with the Messaging Layer allowing the running

data-driven modules of the DT Runtime component to exchange data and notifications asynchronously.

• I-4.2: The Data Post-Processing Layer uses the I-4.2 for triggering the execution of the post-processing

software components. The business logic operations of these components often require more time,

depending on the complexity of the input data files. The Data Post-Processing Layer implementation

will use the Service-Oriented Architecture (SOA) design pattern, with software components provided as

containerised applications. These services utilise the publish/subscribe pattern to interact with the Data

Management Layer via the Messaging Layer asynchronously. Before the knowledge graph generation,

the loaded IFC data are checked for schema consistency and completeness to ensure that each

structural building element has semantic links with the tasks included in the construction schedule.

Then, the IFC is optimised, and the geometric information is exported and converted into OBJ format.

• I-5.0: This interface establishes the communication between the DTP and the various COGITO

applications. Offers a comprehensive and dynamic configurable REST API for exchanging data and

invoking the data-driven modules of the Data Management Layer.

• I-5.1: Finally, I-5.1 allows the various COGITO applications to interact asynchronously with the DTP via

the Messaging Layer. In this case, the Data Management Layer sends notifications to the various COGITO

applications based on the business-logic implementation of the data-driven modules. Additionally, the

Messaging Layer is responsible for forwarding the location tracking data streams via the I-5.1 to various

COGITO applications such as the ProActiveSafety and Digital Command Centre (DCC).

The DTP supports both synchronous and asynchronous communication protocols in a unified manner. Some

components can process the data requests in real-time, while others require more time depending on the data

processing load. For instance, some modules of the Data Management Layer often use asynchronous

communication protocols for exchanging data with the components of the Data Post-processing Layer to perform

MVD-based model-checking, IFC optimisation and B-rep model generation. The software components in DTP’s

various layers and the detailed interface specifications are presented in the following sections of this document.

 D7.2 Digital Twin Platform Design & Interface Specification v2 17

COGITO – GA ID. 958310

COnstruction phase

dIgital Twin mOdel

2.3 Service Orchestration

The Service-Oriented Architecture (SOA) design pattern is used to implement the DTP. The proposed multi-

layered architecture requires service orchestration and an efficient messaging system that supports loose

coupling between the various components of the DTP to achieve flexibility, scalability, and reliability. The

Messaging Layer contains the ActiveMQ Artemis, offering a native integration environment using multiple

protocols for asynchronous communication between the DTP and the various COGITO applications. The support

of asynchronous messaging protocols such as AMQP, STOMP and MQTT offers many benefits and brings

challenges, such as concurrency and synchronisation issues. The service orchestration is needed to ensure that

the business logic operations are running smoothly and that the available computing resources are allocated

correctly. As shown in Figure 3, we use Docker and Docker Swarm to provide basic capabilities such as flexibility,

scalability, and reliability.

Figure 3 Use of Docker Swarm in COGITO’s DTP

The primary responsibility of the orchestration layer is to deploy the components on the available physical

computational nodes efficiently. This deployment method uses Docker, a lightweight virtualisation system that

does not require Virtual Machine (VM) hypervisors running on hardware. The Docker images facilitate the

portability and distribution of workloads in a standardised manner and allow developers to package the software

components and dependencies into reusable and scalable units.

Figure 4 DTP’s service orchestration

The distribution model of the DTP follows the Software as a Service (SaaS) approach, deployed on a private and

containerised cloud computing environment hosted on dedicated physical servers. This approach ensures that

the allocation of hardware resources can be centrally managed using simple instructions. As shown in Figure 4,

 D7.2 Digital Twin Platform Design & Interface Specification v2 18

COGITO – GA ID. 958310

COnstruction phase

dIgital Twin mOdel

the Data Post-Processing Layer components require multiple running instances, while the Data Ingestion Layer

and Data Management Layer components have fewer requirements.

 D7.2 Digital Twin Platform Design & Interface Specification v2 19

COGITO – GA ID. 958310

COnstruction phase

dIgital Twin mOdel

3 Authentication Layer

The Authentication Layer is responsible for storing and managing user accounts and their roles, enabling the DTP

to register and authenticate the users of the COGITO solution. It provides an Authentication and Authorisation

Infrastructure (AAI), allowing the DTP to manage the access of the different stakeholders/users of the various

COGITO software applications by assigning various functionalities such as registration, authentication, and

authorisation to an external open-source identity provider.

3.1 Identity and Access Management

The AAI solution used in the DTP relies on the open-source identity and access management solution named

Keycloak2. This solution is an industry-standard implementation for identity and access management supporting

various protocols such as OpenID Connect and SAML 2.0. The OpenID Connect protocol enables Single Sign-On

(SSO) and cross-domain identity management. Keycloak offers a REST API to handle the authentication protocol

requests and a Graphical User Interface (GUI) to facilitate user registration, login, profile management and

administrative operations.

Figure 5 User authentication process in COGITO solution

Figure 5 shows the authentication process using the OpenID Connect protocol. Keycloak is the central system for

managing profiles and the overall authentication process. The browser is used for the communication between

COGITO's web-enabled applications and Keycloak. In case of a protected resource or endpoint request, the

COGITO application forwards the user session to Keycloak's login page for the authentication request. Then, the

COGITO application identifies itself using the Client ID and a secret key is generated from the Keycloak Admin

Console. After successful authentication, Keycloak provides the Access, Refresh, and ID tokens to the COGITO

application. The application can use these tokens to retrieve the assigned roles of the authenticated user and

apply access policies.

3.2 User Roles

Within Task “T2.1 Elicitation of Stakeholder Requirements” and its primary outcome “D2.1 Analysis of Digital

Tools Market and Prevailing Regulatory Frameworks,” the main stakeholders of the COGITO project have been

identified following a User-Driven Innovation (UDI) methodology [5]. These stakeholders are the end-users of

the various COGITO applications. Thus, the identified roles have been introduced in the Authentication Layer

using the Keycloak Admin Console. Core roles that have been added to the Keycloak database are the following:

Project Manager, Site Manager, Quantity Surveyor, Foreman, Worker, Quality Manager, Surveyor, Health Safety

and Environment (HSE) Manager, HSE Supervisor and HSE Trainer.

When a new user registers to COGITO`s DTP, the Input Data Management component provides access to the GUI

for project creation and assignment of the user into existing projects.

2 Keycloak Identity and Access Management https://www.keycloak.org

https://www.keycloak.org/

 D7.2 Digital Twin Platform Design & Interface Specification v2 20

COGITO – GA ID. 958310

COnstruction phase

dIgital Twin mOdel

3.3 Interface Specification

As mentioned in the previous section, Keycloak is a central management system for managing user-profiles and

the user authentication process. It provides two primary endpoints to interact with the COGITO applications: a)

the Keycloak Authentication API granting access to users based on user credentials such as username and

password and b) the Keycloak Admin REST API allowing administrators to access all features provided by the

Admin Console GUI.

The COGITO applications use the Authentication API for authenticating users. The authentication process has the

following steps: First, the COGITO application redirects the user to Keycloak for performing the authentication

process. If the authentication is successful, the Keycloak redirects the user back to the COGITO application. Next,

the COGITO application performs a second request for retrieving the Access, ID, and Refresh Token. The

endpoints along with their descriptions of the Authentication API are listed in Table 1.

Table 1 Identity Provider’s Authentication API specification

Endpoint Name Protocol Method Endpoint Description

OpenID HTTPS GET
It provides the main configuration parameters of the authentication
server. The response is a JSON object which includes all available
endpoints, scopes, and signing algorithms.

Authorisation HTTPS GET
It is the endpoint of the authorisation server and is used to retrieve an
authorization code which is included as a parameter in the redirected
link after a successful login.

Authentication HTTPS GET
It is the endpoint of the authentication server and is used by the
COGITO application to request the Access, ID and Refresh Tokens.

On the other hand, the Keycloak Admin REST API is used by some COGITO applications and admin users for

interacting with the Keycloak backend. It supports various requests such as getting roles, getting users, getting

users with a specific role, and assigning a role to a user. The endpoints along with their descriptions of the Admin

API are listed in Table 2.

Table 2 Identity Provider’s Admin API specification

Name Protocol Method Endpoint Description

Get users HTTPS GET Get all users of the COGITO realm

Get roles HTTPS GET Get all roles of the COGITO realm

Get user’s roles HTTPS GET Get COGITO’s role mappings

Assign a role to a user HTTPS POST Add COGITO’s role mappings to a user

Remove a role from a user HTTPS DELETE Remove COGITO’s role mappings from a user

 D7.2 Digital Twin Platform Design & Interface Specification v2 21

COGITO – GA ID. 958310

COnstruction phase

dIgital Twin mOdel

4 Data Ingestion Layer

The Data Ingestion Layer includes software components responsible for project creation, BIM data consistency

validation, knowledge graph generation and database population. The software components can be grouped

into three operational blocks based on their characteristics and functionalities: i) Input Data Management, ii)

BIM Management, and iii) Knowledge Graph Generator. These blocks include components, which can act as

standalone services. Figure 6 displays a generalised view of the architecture of the Data Ingestion Layer with its

three blocks and their members.

Figure 6 Data Ingestion Layer architecture

These three operational blocks and their respective components are described in detail in the following

subsections.

4.1 Input Data Management

The Input Data Management component provides a standalone web-based application responsible for creating

a new project, assigning users, and loading data from the other COGITO applications. It is responsible for

supervising the running services and informing the COGITO users about the progress and the corresponding

results.

4.1.1 Architecture

The Input Data Management component is deployed as a Spring Boot application and is the primary input

interface of the DTP. Spring Boot is built on top of the Spring Framework, enabling an easy way to set up,

configure and run services and web-based applications. It provides an API and includes several indicators to

inspect the health of the running processes, memory usage, error logging and more.

The proposed software implementation uses modern web technologies to deliver a rich Graphical User Interface

(GUI) for user interaction and configuration, including web-sockets to synchronise the backend services with the

front-end elements. It uses the Apache Tomcat web server and software packages provided by the BIM

Management component to load, handle, and visualise IFC data.

 D7.2 Digital Twin Platform Design & Interface Specification v2 22

COGITO – GA ID. 958310

COnstruction phase

dIgital Twin mOdel

The Input Data Management component provides authorised access to COGITO users and other COGITO

applications through the Authentication Layer. The web application is based on the Model-View-Control (MVC)

design pattern and uses web-sockets implementing the Streaming Text Oriented Messaging Protocol (STOMP).

Figure 7 shows the interactions of the main components involved in the GUI and REST API backend for the

element.

Figure 7 Backend architecture of Input Data Management component

As shown in Figure 7, the Spring MVC framework comprises four main parts:

• The Dispatcher Servlet forwards incoming client requests to specific controllers based on the URL

pattern configuration of the Mapping Handler.

• The Model contains the data of the request; the data can be a single object or a collection of objects.

• The Controller collects through an API or using Dependency Injection (DI) the data from the Persistence

Layer and stores them in the Model object; and

• The View Resolver combines the Model object with the corresponding HTML template to render the

page and then forwards the response back to the client.

The Input Data Management component uses the Spring Security Framework with the embedded Spring

Keycloak Adapter to manage the access policies of the COGITO users. Spring Security uses the tokens provided

by the Authentication Layer to grant access to users and other COGITO applications for accessing protected data

through the REST API.

As mentioned previously, the backend implementation of the Input Data Management component uses a

relational database located in the Persistence Layer for storing all project data and meta-data. Moreover, it

includes an AMQP adapter for enabling asynchronous communication with the Data Post-Processing Layer

through the Messaging Layer. Figure 8 illustrates the stack diagram of the Input Data Management component

that contains the following subcomponents:

• Spring Core is the foundation component of the Spring Framework. It supports application development

using Dependency Injection (DI) and Inversion of Control (IoC).

• Spring JDBC is a component of the Spring Framework responsible for connecting to the Project Database

and executing SQL queries. Spring JDBC provides an abstraction for handling database connections,

preparing SQL statements, and handling potential exceptions.

• Spring Java Persistence API (JPA) is a component of Spring Framework that automates the creation and

population of relational databases using the Object-Relational Mapping (ORM) specification. It supports

the Create, Read Update and Delete (CRUD) operations of the Data Access Objects (DAO) of the Input

Data Management component.

 D7.2 Digital Twin Platform Design & Interface Specification v2 23

COGITO – GA ID. 958310

COnstruction phase

dIgital Twin mOdel

• Spring Security is a component of Spring Framework that manages the authentication and authorisation

operations of the Input Data Management component. The Keycloak Spring Adapter uses Spring

Security to grant access to registered users and other COGITO applications.

• Spring Model View Control (MVC) provides a framework for creating web applications using the Model

View Control design pattern. It supports the main concepts of modern web applications and offers

extensibility through the integration of external frameworks.

• Thymeleaf is a template engine used for implementing the front-end components, which constitutes

the View part of the MVC design pattern.

• Spring Java Messaging Service (JMS) provides a framework for the asynchronous communication of the

Input Data Management component with the message broker of the Messaging Layer using the AMQP

protocol.

Figure 8 Stack diagram of Input Data Management component

It is worth mentioning that all involved technologies and frameworks to develop the Input Data Management

component are based on open-source projects. The deliverable “D7.10 - Digital Twin Platform v2” reports the

complete list of software frameworks used for the implementation with their version and licences.

 D7.2 Digital Twin Platform Design & Interface Specification v2 24

COGITO – GA ID. 958310

COnstruction phase

dIgital Twin mOdel

4.1.2 Interface Specification

The Input Data Management component provides a REST API allowing the various COGITO applications to

interact with the DTP for project creation, user management and more. Some of the fundamental functionalities

provided are listed in Table 3. The detailed documentation of the Input Data Management REST API is provided

in the deliverable “D7.10 - Digital Twin Platform v2”.

Table 3 Input Data Management’s API specification

Functionality Protocol Method Endpoint Description

Get all projects HTTPS GET Returns the projects of the DTP

Get a project HTTPS GET
Returns the meta-data of a project. The response includes
attributes such as project id, name, description, location, etc

Get all users of a
project

HTTPS GET Returns the users assigned to a project

Get all properties
of a project

HTTPS GET Returns the properties of a project

Get a user HTTPS GET
Returns the meta-data of a user. The response includes
attributes such as user id, first name, last name, email, etc

Get all users HTTPS GET Returns the users registered in the DTP

Get all roles of a
user

HTTPS GET Returns the roles assigned to a user

Get all projects for a
user

HTTPS GET Returns the projects of a user

 D7.2 Digital Twin Platform Design & Interface Specification v2 25

COGITO – GA ID. 958310

COnstruction phase

dIgital Twin mOdel

4.2 BIM Management

The BIM Management component is responsible for handling BIM data that conform to the Industry Foundation

Classes (IFC) standard. It contains low-level software packages for serialising/deserialising, querying, updating,

and merging IFC data used by the DTP facilitating various data processing operations. For instance, the

Persistence Layer uses the BIM Management component for loading the IFC objects into the key-value database.

Furthermore, the Knowledge Graph Generator of the Data Ingestion Layer uses the BIM Management

component for transforming the IFC objects to RDF instances. Finally, the Data Post-Processing Layer uses the

BIM Management component to extract geometric information and execute application-specific algorithms that

use the IFC objects as input.

4.2.1 Architecture

The BIM Management component is a Software Development Kit (SDK) providing a set of software libraries for

serialising/deserialising, validating, querying, updating, and merging IFC data. These software libraries are widely

used within the various layers of the DTP. For the implementation, we use Java with a minimum number of

external dependencies.

Figure 9 High-level architecture of BIM Management component

As shown in Figure 9, the BIM Management component contains four low-level software packages: i) IFC Library

used for serialising/deserialising and querying IFC data, ii) IFC Consistency Checker used for validating the STEP

data against the IFC schema, iii) IFC Version Control used for tracking the changes that might have occurred to

the IFC data, and iv) IFC Geometry Exporter used for generating an XML file that contains the geometric

representation of the building elements and their related coordinate system data.

4.2.2 EXPRESS Schema Compiler for Java

The EXPRESS Schema Compiler is a library developed in Java EE using the Java Code Model framework for

generating the IFC Java classes and IFC types directly from the EXPRESS schema. The compiler can parse all

available IFC releases successfully, from IFC2x3 to IFC4x3. Figure 10 illustrates how IFC classes and IFC types are

generated automatically from the IFC EXPRESS schema.

Figure 10 IFC Java Classes Generation using the EXPRESS Schema Compiler

 D7.2 Digital Twin Platform Design & Interface Specification v2 26

COGITO – GA ID. 958310

COnstruction phase

dIgital Twin mOdel

Firstly, the compiler transforms the EXPRESS data into in-memory objects using an internal data model

representation. Then, it applies a set of transformation rules to instantiate the corresponding Java Code Model

objects. In the end, the Java Code Model framework generates the IFC classes and IFC types and classifies them

based on the name of the IFC schema in different packages.

4.2.3 IFC Java Library

The IFC Java Library, aptly named IFC Library, uses the IFC classes and IFC types generated from the EXPRESS

Schema Compiler to efficiently parse the STEP data and instantiate the representation of the BIM model in-

memory. The current version of the implementation can handle the most frequently used IFC releases, from

IFC2x3 to IFC4x3.

Figure 11 IFC Implementation for Java

As shown in Figure 11, the IFC Library provides an API that offers useful functionalities for handling the loaded

objects. It supports an API for querying and updating the IFC objects and some advanced features, such as

initialising the inverse relations by adding an object to the corresponding collection of the inverse connected

instance of another entity. The initialisation of the inverse relations in the objects is automatically archived by

calling the inverse() method, as shown in Table 4.

Table 4 Example of inverse relations provided by the IFC Library

IfcElement

public IfcElement(){
 ...
 this.hasOpenings = new ArrayList<IfcRelVoidsElement>();
}

public void inverse(){
}

public List<IfcRelVoidsElement> getHasOpenings() {
 return this.hasOpenings;
}

IfcRelVoidsElement

public IfcRelVoidsElement(){
}

public void inverse(){
 if(this.element != null && this.element.getHasOpenings() != null){
 this.element.getHasOpenings().add(this);
 }
}

 D7.2 Digital Twin Platform Design & Interface Specification v2 27

COGITO – GA ID. 958310

COnstruction phase

dIgital Twin mOdel

In the above example, using the inverse() method, it is possible to retrieve the IfcRelVoidsElement object from

the inverse method getHasOpenings() of the IfcElement object. This functionality is widely used by the MVD

Completeness Checking component.

4.2.4 IFC Consistency Checker

Within the COGITO solution, building information exchange among the different components is based on the

openBIM standard IFC ISO 16739:2018. In IFC standard, the data are stored in ASCII form using the STEP format,

the structure of which is defined according to the corresponding EXPRESS schema provided by buildingSMART

International. The IFC Library includes a schema compliance checker for validating the STEP data against the

EXPRESS schema of the standard. The schema compliance can perform validation across various datatypes,

classes and restrictions in numerical values and collections.

4.2.5 IFC Geometry Exporter

The efficient processing of the IFC data consists of separate operations performed by individual libraries written

in different programming languages. The deserialisation of IFC is easier using high-level programming languages

such as Java or C#, while geometric operations are more efficient in low-level languages such as C or C++. As

shown in Figure 12, the IFC Geometry Exporter component uses the IFC Library to parse the IFC data and generate

an XML file that contains the geometric representation of the building elements and their related local coordinate

system data.

Figure 12 IFC Geometry Exporter component

The generated XML conforms to an XSD schema which follows the geometric subset of the IFC4 Design Transfer

View (DTV) specification, including the geometric extensions for IFC4x3.

4.2.6 IFC Revision Control

The BIM Management component can handle both the geometric and the semantic information included in the

IFC data. In the IFC schema specification, the objects may reflect a final state, but they also may reflect a transient

state. For instance, the SafeConAI application identifies zones in the BIM model where specific types of hazards

can occur [6]. After identifying the zones, the tool enhances the BIM model with safety information by revising

the existing IFC objects.

In a scenario where multiple applications update the IFC model simultaneously, the IFC schema supports local

copies of the modified objects. The included revision scheme identifies changes declared on a per-object basis

instead of identifying changes in the text. An IFC object is considered as modified when: a) any of the direct

attribute changes; b) any referenced resources change; and c) items are added or removed from any collection.

Each IFC object is marked with a change action within this revision scheme, indicating if the IFC object was added,

modified, deleted, or not changed.

 D7.2 Digital Twin Platform Design & Interface Specification v2 28

COGITO – GA ID. 958310

COnstruction phase

dIgital Twin mOdel

The COGITO applications can use this revision scheme to track the changes that might have occurred to the IFC

objects during the last active session. In this case, the BIM Management component will know how various

COGITO applications affect an IFC object. Figure 13 illustrates a scenario where various external tools update the

original IFC. The BIM Management component is responsible for filtering and merging the updated IFC objects

according to the latest changes.

Figure 13 IFC Revision Control component

The process is as follows: First, the BIM authoring tool creates an IFC open for modifications. The IFC exporter

should set the ChangeAction attribute of the IfcOwnerHistory to NOCHANGE to establish a baseline. With this

annotation model, the BIM Management component can identify the upcoming modifications. Next, when a

COGITO application updates the information of an existing IFC object, it should set the ChangeAction to

MODIFIED and the OwningApplication to the application identifier. On the other hand, when it adds or deletes

an IFC object, it should set the ChangeAction to ADDED or DELETED accordingly.

Moreover, the COGITO applications are responsible for updating the LastModifiedDate attribute to the time of

modification. Thus, when the BIM Management component receives modified IFC data, it can determine which

objects have been added, modified, and deleted and either merge or reject these changes, as necessary.

4.3 Knowledge Graph Generator

The Knowledge Graph Generator (KGG) is responsible for generating, validating, and storing the RDF data and

the corresponding Thing Descriptions. As shown in Figure 14, it supports the transformation of heterogeneous

data payloads coming from different domains used by the COGITO project. The implementation of the various

ETL tools is based on the type of the input data, the mapping rules, and the corresponding COGITO ontologies.

For instance, the Construction ETL consumes the BIM model (IFC) and generates the corresponding RDF data

based on the COGITO Construction ontology. Similarly, the Process ETL consumes the construction schedule data

(XML, CSV) and generates the corresponding RDF data based on the COGITO Process ontology. The generated

RDF data will be validated and merged into a unified knowledge graph which will conform to the semantic

representation of the construction digital twin. This semantic representation will be the main provider of

information from which the different COGITO applications can consume and exchange data.

 D7.2 Digital Twin Platform Design & Interface Specification v2 29

COGITO – GA ID. 958310

COnstruction phase

dIgital Twin mOdel

Figure 14 Knowledge Graph Generator’s core components

4.3.1 Architecture

As shown in Figure 15, the high-level architecture of the KGG component consists of the following components:

i) the Thing Manager is responsible for orchestrating the execution of the various data transformation processes,

validating their outputs, and storing the RDF data and the corresponding Thing Descriptions in the Persistence

Layer, ii) the Wrapper module is responsible for performing data pre-processing operations and invoking the

various ETL tools for generating the corresponding RDF data, iii) the RDF Graph Linker is responsible for creating

additional semantics on the RDF data, and iv) the RDF Data Validator is responsible for validating the individual

RDF outputs and the unified knowledge graph.

Figure 15 High-level architecture of the Knowledge Graph Generator

As mentioned previously, the main objectives of the KGG component are the creation and validation of the

knowledge graph and the generation of the corresponding Thing Descriptions. Figure 16 shows the interactions

of the involved components. Once the input files are loaded and stored to the Persistence Layer, the Input Data

Management component invokes the KGG to orchestrate the execution of various components. Next, the

process carried out is as follows:

• The Wrapper module retrieves the input data files from the Persistence Layer (1), manages the

executions the various ETL tools for generating (2) and validating (3) the RDF files.

 D7.2 Digital Twin Platform Design & Interface Specification v2 30

COGITO – GA ID. 958310

COnstruction phase

dIgital Twin mOdel

• The Thing Manager receives the individual RDF files (4) and invokes the RDF Graph Linker component

(5) to perform the linking process.

• Once the RDF data are linked, the merged dataset is forwarded to the RDF Data Validator (6) for

validating the additional semantics.

• Finally, the Thing Manager stores the RDF data in the Triplestore (7) and the corresponding Thing

Descriptions in the TDD (8).

The communication between the components will be established utilising a dedicated network and internal APIs.

The Thing Manager will provide the only external interface from the KGG component to the other layers of the

DTP.

Figure 16 Knowledge graph generation and validation process

The services are deployed independently as containerised backend applications using the Docker compose

technology. The Flask micro framework with the Gunicorn HTTP WSGI server for handling the requests in

production. The main programming language used for the development of the component is Python. In the

following sub sections, we will provide further details for each subcomponent.

4.3.2 Thing Manager

The Thing Manager is responsible for orchestrating the flow of information inside the KGG component. The KGG

component gets invoked externally when the RDF graph needs to be generated. Predefined configurations or the

request parameters will activate the corresponding services to store or retrieve data correctly. The Thing

Manager is also in charge of creating the Thing Descriptions for the different data resources needed. Those data

resources represent the various components of the construction site, such as workers, equipment, machinery,

spaces, building elements, etc. We follow the WoT Thing Description specification for their representation, which

provides a set of standard metadata for defining those objects. Figure 17 provides a small example of the Thing

Description used to model a location tracking device.

{
 "id": ""id": "urn:dev:wot:com:example:servient:tracking-device",
 "name": ""name": "MyTrackingDevice",
 "security": [{"scheme": "basic"}],"security": [{"scheme": "basic"}],
 "properties": {"properties": {
 "status": {"status": {":{
 "type": "string",
 "forms": [{""forms": [{"href": "coaps://dt.cogito.io/device/status"}]

 D7.2 Digital Twin Platform Design & Interface Specification v2 31

COGITO – GA ID. 958310

COnstruction phase

dIgital Twin mOdel

 }},
 "battery": {"battery": {":{
 "type": "integer",
 "forms": [{"forms": [{"href": "coaps://dt.cogito.io/device/battery"}]
 }},
 "altitude": {"altitude": {":{
 "type": "real",
 "forms": [{"forms": [{"href": "coaps://dt.cogito.io/device/altitude"}]
 }},
 "longitude": {"longitude": {":{
 "type": "real",
 "forms": [{"forms": [{"href": "coaps://dt.cogito.io/device/longitude"}]
 }},
 "latitude": {"latitude": {":{
 "type": "real",
 "forms": [{"forms": [{"href": "coaps://dt.cogito.io/device/latitude”}]
 }}
 },},
 "actions": {"actions": {
 "alarm-on": {"alarm-on" : {
 "forms": [{"forms": [{"href": "coaps://dt.cogito.io/device/alarm/on"}]
 }},
 "alarm-off": {"alarm-off" : {
 "forms": [{"forms": [{href": "coaps://dt.cogito.io/device/alarm/off"}]
 }}
 },},
 "events":{"events":{": {
 "low-battery":{"low-battery":{
 "type": "boolean",
 "forms": [{"forms": [{
 "href": "coaps://dt.cogito.io/device/low-battery",
 "subProtocol": "LongPoll"
 }]}]
 }}
 }}
}

Figure 17 Location tracking Thing Description example

The Web of Things (WoT) Thing Description (TD) gives information about the different ways we can interact with

the resources. Those interactions, called in the specification interaction affordances, are classified into three

categories:

• Property Affordance: Provides information about certain internal states or properties of the thing we

are modelling. The states can be read-only or writable. For instance, we can retrieve the device's current

location by reading the properties of longitude, latitude, and altitude.

• Action Affordance: This allows the manipulation of the state of the thing or the triggering of an internal

process. Examples of this type of interaction include the on or off actions of a sound alarm of a wearable

location tracking device.

• Event Affordance: This type of interaction affordance pushes subscribers' event data, such as low

battery notification.

For each type of interaction, the TD provides information concerning the endpoints needed to interact with the

real resource, the access method, the protocol, etc. For the specific case of the resources in a construction

project, we could have the thing description of the workers on the construction site. Those TDs can provide

endpoints to access the notification devices of the workers and alert them in case they are near a dangerous

zone.

The Thing Manager will generate those TDs automatically from the data upload by the COGITO application based

on the ontologies developed for each domain. The Thing Descriptions created will be stored in a special

component called the Thing Descriptions Directory, which will perform the persistence of the TDs.

The Thing Manager is implemented as a backend service, provided as a containerised application using the

Docker technology for its easy deployment. The main framework used for the implementation of the service has

been the Flask micro-framework.

 D7.2 Digital Twin Platform Design & Interface Specification v2 32

COGITO – GA ID. 958310

COnstruction phase

dIgital Twin mOdel

4.3.3 Wrapper Module

The Wrapper module is responsible for transforming heterogeneous data provided by the different COGITO

applications into RDF data. The contained ETL tools ensure that the RDF data generated are aligned with the

ontologies developed for each domain. The COGITO developers define the mappings files for each domain or

application before proceeding with the execution of the respective transformation. We define the mapping rules

to perform the data transformation using the RDF Mapping Language (RML). The processed data is then sent to

the other services of the KGG to validate the data, perform the appropriate links to the existing graph, and store

the data in the Triplestore of the Data Persistence Layer.

In particular, the Wrapper module offers the following capabilities:

• Mapping of the ingested data to the respective COGITO ontologies: Mapping files will be created to align

the concepts from the data provided by the applications and concepts from ontologies developed for

the different domains of the project.

• Transformation of the ingested data to the respective COGITO ontology: Using the previously created

RML mapping files, the ETL service derives the transformation rules needed to convert the original data

into RDF graph data automatically.

The ETL tools will be implemented as backend services with two layers:

• The business logic layer containing the logic behind the execution of the transformation rules. The Flask

micro web framework and Helio will be used for the development. Helio is a framework that allows the

translation of data into RDF and the publication of RDF data as a Linked Data Service.

• The data access layer storing the mapping files and additional internal configuration files. This layer will

utilise a Postgress database.

4.3.4 RDF Graph Linker

The RDF Graph Linker component will be responsible for linking different resources belonging to different RDF

datasets. When two RDF resources refer to the same real-world entity, such as the same individual, or identical

items, it is possible to establish a link reflecting this identity relationship. This way, heterogeneous data provided

by the various COGITO applications can be linked, obtaining greater effectiveness. Potential advantages of the

linked data approach include improved precision and robustness by cancelling possible errors in the data;

efficiency in terms of time and space, minimising the search time between different resources; and versatility,

applying to various datasets and domains. The positive benefits of this linked data approach will be evaluated in

the context of the COGITO applications.

4.3.5 RDF Data Validator

The RDF Data Validator aims to detect, through the validation process, the different possible errors that may

exist within the previously generated knowledge graph. A recent development, the Shapes Constraint Language

(SHACL) can help achieve this.

SHACL is a language for validating RDF graphs against a set of requirements provided as shapes and other

constructs expressed in the form of an RDF graph (shapes graphs). SHACL shape graphs are used to validate the

data graph, and they can be a description of the data graphs that satisfy a set of conditions or requirements. RDF

graphs that pass validated against a shapes graph are called "Application Profiles".

 D7.2 Digital Twin Platform Design & Interface Specification v2 33

COGITO – GA ID. 958310

COnstruction phase

dIgital Twin mOdel

5 Data Persistence Layer

The Data Persistence Layer of the DTP contains different types of datastores for storing structured data. Based

on the architecture specification of the platform, the Persistence Layer consists of i) a file storage system for

storing files generated by other COGITO applications, ii) a relational database for storing project and user data,

iii) a key-value database for storing IFC objects, iv) a time-series database for storing IoT sensor data, v) a

triplestore for storing COGITO's unified knowledge graph, and vi) a Things Description Directory for storing

COGITO’s Thing Descriptions. The following subsections describe these datastores and their functionalities.

5.1 File Storage System

The File Storage system provides a file storage solution enabling other COGITO applications to access shared files.

It supports file system semantics and a permission model applying access policies such as role-based access

control on the registered users. The proposed software implementation includes a REST API for accessing and

managing files stored on a DTP cloud provider.

5.2 Project Database

The Project database includes various tables and relationships representing a relational data model which stores

the information required by the Input Data Management component. The tables related to users and user roles

are populated and synchronised by the Identity Provider of the Authentication Layer, as shown in Figure 18.

Figure 18 Relational data-model of the Input Data Management component

The GUI and the REST API use the information stored in the Project database and the relationships among the

different tables to support core functionalities of the Data Ingestion Layer, which are described as follows:

1. Storing user accounts defined by Keycloak in the Authentication Layer.

2. Storing user roles defined by Keycloak in the Authentication Layer.

3. Assigning user accounts to a specific COGITO project.

4. Storing meta-data of the uploaded files and assigning them to a specific COGITO project.

5. Applying access policies to the uploaded files using a permission scheme connected with the user

roles.

6. Monitoring the various COGITO applications and the progress of their executions.

7. Applying access-policies on the output resources of the executions of the various COGITO

applications.

 D7.2 Digital Twin Platform Design & Interface Specification v2 34

COGITO – GA ID. 958310

COnstruction phase

dIgital Twin mOdel

The Input Data Management component uses the Spring Java Persistence API (JPA) and the Hibernate framework

for automatic deployment of the Project database. In this context, Java classes represent the tables, while the

fields inside the classes represent properties and the relations between different tables. The Spring JPA

framework supports all types of relations, such as one-to-one, many-to-one, one-to-many and many-to-many.

When using this approach, the relational database can bet transparently managed from Java, increasing the

abstraction level of the persistence layer.

The Input Data Management requires a connection to a MySQL server. MySQL server is a Relational Database

Management Systems (RDBMS) that supports multi-tenancy. The Hibernate framework utilises the MySQL

dialect to access the Project database for performing transactional operations and queries. The Spring JPA

entirely manages the generation and execution of the SQL queries used mainly for providing the necessary

information to the GUI and the REST API.

5.3 Key-Value Database

As mentioned in a previous section, the IFC Library provides an object-oriented representation of the IFC model.

The STEP-data are parsed and loaded in memory using the IFC Java classes generated by the EXPRESS Schema

Compiler. Based on their scope, the generated IFC Java classes implement various interfaces to achieve the

desired level of abstraction. The IFC EXPRESS schema contains a set of different data types for storing IFC data

described as follows:

• ENTITY is equivalent to the Java class. It can be defined as an abstract or concrete class, including

attributes and implementing various interfaces.

• ENUMERATED is equivalent to the Java Enum. It represents a group of unchangeable STRING values.

• SELECT is equivalent to the Java interface. It defines a choice or an alternative between different

options.

• SIMPLE is equivalent to the Java basic data types such as Integer, Double, Boolean and String.

The IFC Library defines a set of high-level interfaces to handle the above data types, as shown in Figure 19.

Figure 19 High-level interfaces defined in the IFC Library

The IFC parser of the BIM Management component includes a HashMap collection to store the key-value pairs

of the loaded IFC data in memory. Each key contains the EXPRESS Id, and the corresponding value contains the

IFC object that implements the IFC Library's high-level interfaces. After parsing the IFC, the BIM Management

component stores the collection of the key-value pairs in Redis DB. Redis DB provides a distributed and high-

performance key-value database system that offers additional functionalities than the Java HashMap collection,

such as remote instances, persistence, concurrent read/write and more.

5.4 Timeseries Database

For storing location tracking data coming from sensorial IoT devices installed on workers and machinery in the

construction site, the Persistence Layer of the DTP contains a time-series database based on InfluxDB. This

database is optimised for storing high-volume data produced from various IoT devices. The IoT Data Pre-

Processing tool feeds the DTP with timestamped location tracking data identified by a unique Tag ID. On the

 D7.2 Digital Twin Platform Design & Interface Specification v2 35

COGITO – GA ID. 958310

COnstruction phase

dIgital Twin mOdel

other hand, the Data Management Layer contains the DT Runtime component responsible for hosting various

data-driven modules. Among others, it hosts the IoT Data Logger module, which populates the time-series

database using event-based data compression, and the IoT Data Retriever module, which queries the time-series

database and applies linear interpolation on the returned time-series data. For instance, when the Process

Modeling and Simulation (PMS) requests time-series data for specific resource instances, the DT Runtime

component performs SPARQL queries to the knowledge graph to retrieve the corresponding Tags' IDs. Then, it

performs a second request using the IoT Data Retriever module to retrieve the interpolated time-series data.

5.5 Graph Database

The Graph Database will store the RDF data generated by the Knowledge Graph Generation component. The RDF

data will be stored under different namespaces (graphs) on different domains. The graph database will include

the graph network representing the various aspects of the construction digital twin. The Graph database will

support read, update, write and delete operations through its SPARQL endpoint. This endpoint will not be

accessed directly by the applications or by the Thing Manager performing predefined SPARQL queries. However,

this data will be linked utilising common concepts in the models. The triple store is deployed independently as a

Docker container and will be implemented using the GraphDB
3
 database.

5.6 Thing Description Directory

The Thing Description Directory is a persistence service that contains the Thing Descriptions (TD) created by the

Thing Manager component in the Knowledge Graph Generator. The directory will support the discovery,

creation, retrieval, update, and deletion of TD’s. The Thing directory uses the WoT Hive implementation,

compliant with the W3C Web of Things Directory standard specification. The RDF4J triplestore will be used.

3GraphDB https://graphdb.ontotext.com/

https://graphdb.ontotext.com/

 D7.2 Digital Twin Platform Design & Interface Specification v2 36

COGITO – GA ID. 958310

COnstruction phase

dIgital Twin mOdel

6 Data Management Layer

The Data Management Layer satisfies the data needs of the COGITO applications by offering an actor-based

runtime system and a web-based application for configuring the endpoints and the various data-driven modules.

The final design of the Data Management Layer contains the following components:

• The DT Runtime component facilitates the COGITO developers to configure: i) dynamic endpoints

allowing COGITO applications to interact synchronously or asynchronously with the DTP and ii) data-

driven modules for performing various data processing and routing operations. The DT Runtime

component is responsible for hosting and executing the data-driven modules. It contains a few message

adapters for sending notifications to the COGITO applications through the Messaging Layer utilising the

AMQL, MQTT and STOMP protocols.

• The DT Library component provides a set of ready-made actors allowing COGITO’s developers to create

custom data-driven modules using the available actors.

Figure 20 shows the main interactions between the core components included in the Data Management Layer

and the COGITO applications.

Figure 20 Data Management Layer’s core components interactions

The Data Management Layer performs and supervises data query operations, ensuring that data have been

correctly retrieved from the Data Persistence Layer (1) and efficiently delivered to their destinations. It provides

a set of ready-made actors for abstracting the interfaces between the databases of the Persistence Layer and the

COGITO applications (2). The actor-based runtime system (3) supervises the execution of the configured data-

driven modules, which perform various data processing operations, ensuring that the data coming from the

different databases are synchronised correctly before being forwarded to the data consumers through the

available interfaces (4,5). In addition, some data-driven modules often use the Messaging Layer (6) for invoking

various components deployed in the Data Post-Processing Layer to perform MVD checking, IFC optimisation, B-

rep geometry exportation and geometric clash detection.

 D7.2 Digital Twin Platform Design & Interface Specification v2 37

COGITO – GA ID. 958310

COnstruction phase

dIgital Twin mOdel

6.1 DT Library

For interacting with the Persistence Layer and the Data Post-Processing Layer, the Data Management Layer

contains a set of ready-made actors which encapsulate routines to facilitate the reusability and minimise the

relevance of the expertise in the development of the required modules. The final list of DT Library’s packages is

presented in Table 5.

Table 5 DT Library’s actor packages

Name Description

DTP’s system actors
This package contains actors implementing the message translations, message
routers, data filters, etc.

DTP’s business logic actors
This package contains actors implementing various data processing operations
for supporting the smooth running of the COGITO system.

REST connectors
This package contains actors implementing various clients for interacting with
the databases of the Data Persistence Layer.

Message adapters
This package contains actors implementing the various subscribers and
producers for interacting with the massage broker of the Messaging Layer.

6.2 DT Runtime

The DT Runtime component offers a web-based application to configure DTP’s modules and the dynamic

endpoints used to interact with the other COGITO tools. The web-based application provides three main

functionalities: i) registration of the COGITO tools and configuration of their access policies, endpoints, and

notification channels, ii) installation of new actors using external JAR libraries, and iii) creation of the data-driven

modules and configuration of their parameters. In addition, the DT Runtime component provides a REST API

allowing the COGITO tools to manage their data collections for each configured endpoint.

The actor-based runtime system is a lightweight container for hosting data-driven modules deployed to

synchronise data responses from the Persistence Layer and harmonise the data before being delivered to the

final destinations. It is based on the open-source project Akka4 which provides a toolkit and a runtime

environment for simplifying the construction of concurrent and distributed applications. In other words, Akka is

a powerful reactive high-performance framework optimised for running on the Java Virtual Machine (JVM) that

can handle multiple queries simultaneously and respond to COGITO applications through the available adapters.

6.2.1 Architecture

The proposed architecture includes several packages of ready-made coding blocks which implement COGITO’s

business logic operations using a system abstraction provided by the DT Library. This solution implements a

conceptual model for concurrent asynchronous data requests and enables communication between primitive

software units named actors. An actor is an extensible program-code template that uses an abstraction for

interacting with the Persistence Layer, executes its business-logic operations and forwards the results to other

actors by producing asynchronous messages.

4 Akka Actor Model https://www.akka.io

https://www.akka.io/

 D7.2 Digital Twin Platform Design & Interface Specification v2 38

COGITO – GA ID. 958310

COnstruction phase

dIgital Twin mOdel

Figure 21 Example of a module deployment in the DT Runtime component

By way of example, see Figure 21. The involved actors are wired together in a sequence for handling the complex

request of querying 4D BIM data from the DTP. First, a system actor (1) handles the incoming request and triggers

the executions of the following actors (2,3) for retrieving the construction schedule and the corresponding IFC

objects. These actors use the abstraction provided by the provided system actors for interacting with the Data

Persistence Layer. Next, the last actor (4) is responsible for synchronising, merging, and delivering the results to

the correct destination through the Messaging Layer. This is one way of creating responses to complex queries.

Such actors can be created and re-used depending on application needs and information requirements.

6.3 Interface Specification

Based on the work performed in “T2.4 COGITO System Architecture Design” and the corresponding deliverable

“D2.5 COGITO System Architecture v2”, the main data exchange requirements between the DTP and the various

COGITO applications have been identified [6]. Within COGITO, the multiple tools can be categorised as follows:

• Data Pre-Processing tools are responsible for a) pre-processing raw visual and location tracking data, b)

annotating the processed data, and c) storing the data into DTP’s Persistence Layer.

• Health and Safety tools are responsible for generating hazards mitigation measures and producing

warning notifications to the on-site crew for their proximity to hazardous areas.

• Workflow Modeling and Simulation tools are responsible for monitoring and optimising the

construction processes.

• Quality Control tools are responsible for comparing the as-designed and as-built data and detecting

potential defects.

• Visualisation tools are responsible for retrieving data from the DTP and visualising it to support on-site

and off-site activities of relevant stakeholders and training of the workers.

As shown in Table 6, the COGITO applications with their high-level data exchange requirements are grouped into

the identified categories.

Table 6 Data exchange requirements of COGITO applications

Categories COGITO Tools Input Data Output Data

 D7.2 Digital Twin Platform Design & Interface Specification v2 39

COGITO – GA ID. 958310

COnstruction phase

dIgital Twin mOdel

Data

Pre-processing

tools

IoT Data Pre-
processing

- ▪ Timestamped measurements of
location tracking devices (longitude,
latitude, altitude, tags)

Visual Data
Pre-processing

▪ Authentication Tokens
▪ Semantically linked data (geometric

representations of building elements,
building element objects, task objects)
filtered by (camera location, time
range)

▪ Annotated imagery datasets. (building
element objects, images)

▪ Annotated point clouds. (building
element objects, point cloud
datasets)

Health and Safety

VirtualSafety

▪ Semantically linked data (geometric
representations of building elements,
building element objects, geometric
representations of H&S elements, H&S
elements, tasks) filtered by (time
range)

▪ Training KPIs for workers (actual
resource objects, performance
metrics objects)

SafeConAI

▪ Authentication Tokens
▪ Semantically linked data (geometric

representations of building elements,
building element objects, task objects)
filtered by (time range)

▪ Semantically linked data (geometric
representations of H&S elements,
H&S elements)

ProActiveSafety

▪ Semantically linked data (geometric

representations of building elements,

building element objects, geometric

representations of H&S elements, H&S

elements, tasks) filtered by (time

range)

▪ Timestamped measurements of actual
resources (longitude, latitude,
altitude, actual resource objects)

▪ Notification (actual resource objects,
safety warning objects)

Workflow

Modeling and

Simulation

WODM

▪ Authentication Tokens
▪ Semantically linked (actual resource

objects, tags)
▪ Semantically linked data (as-planned

resources ,task objects, building
element objects)

▪ Semantically linked data (actual
resource objects, task objects,
building element objects)

WOEA ▪ Authentication Tokens -

PMS

▪ Authentication Tokens
▪ Initial data (as-planned resources)
▪ Initial linked data (building element

objects, construction schedule)

▪ Timestamped measurements of actual
resources. (longitude, latitude,
altitude, actual resource objects)

▪ Semantically linked data (geometry
quality control objects, building
element objects)

▪ Semantically linked data (visual defect
objects, building element objects,
images)

▪ Semantically linked data (geometric
representations of H&S elements, H&S
elements)

▪ Defect Notification (building element
objects, images, type of remedial
works)

▪ Hazard Notification (building element
objects, images, type of mitigation
works)

▪ Semantically linked data (as-planned
resources, task objects, tag objects,
building element objects)

▪ Semantically linked data (actual

resource objects, task objects, tag
objects, building element objects)

Quality Control

Geometry QC

▪ Semantically linked data (geometric
representations of building elements,
annotated point clouds) filtered by
(time range)

▪ Semantically linked data (geometry
quality control objects, building
element objects)

Visual QC
▪ Semantically linked data (geometric

representations of building elements,
tasks) filtered by (camera location)

▪ Semantically linked data (visual defect
objects, building element objects,
images)

 D7.2 Digital Twin Platform Design & Interface Specification v2 40

COGITO – GA ID. 958310

COnstruction phase

dIgital Twin mOdel

Visualisation

DigiTAR

▪ Authentication Tokens
▪ Semantically linked data (geometric

representations of building elements,
building element objects, geometric
representations of H&S elements, H&S
elements) filtered by (AR
glasses/tablets location)

▪ Semantically linked data (geometry
quality control objects, building
element object)

▪ Semantically linked data (visual defect
objects, building element objects,
images)

▪ Defect Notification (building element
objects, images, type of remedial
works)

▪ Hazard Notification (building element
objects, images, type of mitigation
works)

DCC

▪ Authentication Tokens
▪ Semantically linked data (geometric

representations of building elements,
building element objects, geometric
representations of H&S elements, H&S
elements, tasks) filtered by (time
range)

▪ Semantically linked data (geometry
quality control objects, building
element object)

▪ Semantically linked data (visual defect
objects, building element objects,
images)

▪ Timestamped measurements of actual
resources. (longitude, latitude,
altitude, actual resource objects)

-

To meet the diverse data needs of the various COGITO applications, the Data Management Layer asynchronously

bridges the different data stored in the Persistence Layer via a set of dedicated interfaces. Table 7 shows the

identified interfaces of the DTP with their high-level specifications. These interfaces have been processed and

merged based on the type and applied filters.

Table 7 DTP’s external interfaces

Type Data Exchange Protocol API Data Type

Input Data

Timestamped measurements of location tracking devices
(longitude, latitude, altitude, tags)

MQTT - JSON

Annotated imagery datasets. (building element objects,
images)

HTTPS REST JSON

Annotated point clouds. (building element objects, point
cloud datasets)

HTTPS REST JSON

Training KPIs for workers (actual resource objects,
performance metrics objects)

HTTPS REST JSON

Semantically linked data (geometric representations of H&S
elements, H&S elements)

HTTPS REST IFC

Semantically linked data (as-planned resource objects, task
objects, building element objects)

HTTPS REST JSON

Semantically linked data (actual resource objects, task
objects, building element objects)

HTTPS REST JSON

Semantically linked data (geometry quality control objects,
building element objects)

HTTPS REST JSON

Semantically linked data (visual defect objects, building
element objects, images)

HTTPS REST JSON

Defect Notification (building element objects, images, type of
remedial works)

AMQP JMS Images, JSON

Hazard Notification (building element objects, images, type of
mitigation works)

AMQP JMS Images, JSON

Output Data Authentication Tokens HTTPS REST JSON

 D7.2 Digital Twin Platform Design & Interface Specification v2 41

COGITO – GA ID. 958310

COnstruction phase

dIgital Twin mOdel

Semantically linked data (geometric representations of
building elements, building element objects, task objects)
filtered by (location, time range)

AMQP JMS OBJ, IFC, JSON

Semantically linked data (geometric representations of
building elements, building element objects, geometric
representations of H&S elements, H&S elements, task
objects) filtered by (location, time range)

AMQP JMS OBJ, IFC, JSON

Timestamped measurements of actual resources (longitude,
latitude, altitude, actual resource objects)

HTTPS REST JSON

Semantically linked (actual resource objects, tags) HTTPS REST JSON

Semantically linked data (as-planned resources ,task objects,
building element objects)

HTTPS REST JSON

Initial data (as-planned resources) HTTPS REST JSON

Initial linked data (building element objects, construction
schedule)

HTTPS REST JSON

Semantically linked data (geometry quality control objects,
building element objects)

HTTPS REST JSON, BCF

Semantically linked data (visual defect objects, building
element objects, images)

HTTPS REST JSON, BCF

Semantically linked data (geometric representations of H&S
elements, H&S elements)

HTTPS REST IFC

Defect Notification (building element objects, images, type of
remedial works)

AMQP JMS Images, JSON

Hazard Notification (building element objects, images, type of
mitigation works)

AMQP JMS Images, JSON

Semantically linked data (geometric representations of
building elements, annotated point clouds) filtered by (time
range)

AMQP JMS Point Cloud, JSON

 D7.2 Digital Twin Platform Design & Interface Specification v2 42

COGITO – GA ID. 958310

COnstruction phase

dIgital Twin mOdel

7 Messaging Layer

The Messaging Layer is responsible for transmitting data asynchronously between the various components of

the Data Management Layer and the Data Post-Processing Layer. In addition, the Messaging Layer is responsible

for delivering the notifications produced by the DTP to the COGITO applications. Since the COGITO applications

will be implemented using different technologies and communication protocols, a system that provides the

infrastructure compatible with these technologies is required. For this purpose, the Messaging Layer provides

the Apache ActiveMQ Artemis message broker, which enables asynchronous data transmission utilising the

publish/subscribe pattern and supports multiple messaging protocols such as Advanced Message Queueing

Protocol (AMQP), Streaming Text Oriented Messaging Protocol (STOMP) and Message Queue Telemetry

Transport (MQTT).

The primary reason for using a message broker is to increase the performance and reliability of the COGITO

system. The message broker supports service-oriented communication approaches and offers a service allowing

bi-directional communication between the various components with fault-tolerance capabilities. Supposing that

any time consumer happens to be offline for a short period due to connectivity issues, the message broker will

continue accepting messages by storing them in the embedded queues. On the other hand, the DT Runtime

component of the Data Management Layer provides the integration framework needed for configuring inbound

and outbound gateways and hosting the defined message routers, message translators and endpoints. Figure 22,

shows the messaging functionalities provided by the Data Management Layer and the Messaging Layer.

Figure 22 Messaging functionalities provided by the Data Management and Messaging layers

As shown in Figure 22, the DT Runtime component provides the integration framework, which offers dynamic

message routing patterns. There are cases where the producers do not know the exact channel that the message

to the consumer will get, but the producer sends the message to the DT Runtime, determining how to deliver

the message to the consumer. In addition, if the COGITO applications do not agree on the format of the messages,

DT Runtime offers a set of filters for converting message payloads that contain the same conceptual information

from one form to another.

 D7.2 Digital Twin Platform Design & Interface Specification v2 43

COGITO – GA ID. 958310

COnstruction phase

dIgital Twin mOdel

8 Data Post-Processing Layer

The Data Post-Processing Layer comprises components for handling time-consuming processes such as IFC

optimisation, MVD model checking, B-rep geometry generation and geometric clash detection. These

components are modular, and additional can be included in an extensible manner. They contain a set of low- and

high-level libraries to perform their business logic operations. The low-level libraries support multithread

processing and exchange information with the high-level libraries through the Java Native Interface (JNI)

programming framework.

Figure 23 Data flow between Data Post-Processing and the Data Management layers

The components are packaged as Software as a Service (SaaS) applications and deployed in a private cloud

computing infrastructure. In the proposed architecture design, we defined the following components as a basis

of the Data Post-Processing Layer:

• The Model-View Definition (MVD) Checker helps the BIM Manager to validate IFC files in terms of data

completeness and semantic consistency against predefined rules following the MVD specification. This

component reports the detected issues using machine-readable data storage formats such as JSON and

XML.

• The B-rep Generator reads the geometric information generated from the IFC Geometry Exporter to

generate triangulated B-rep solids of the structural and non-structural elements. This component

exports the geometric information using open formats such as OBJ and glTF.

• The IFC Optimiser performs lossless compression of an IFC file to speed up loading and data

transformation processes. This component generates a new IFC with reduced file size.

• The Geometric Clash Checker detects clash and containment errors to create additional semantic

relationships between existing entities of the unified knowledge graph.

As shown in Figure 23, each of these components exchanges information asynchronously through the Messaging

Layer using data structures which conform to openBIM standards. Depending on the complexity of the BIM

model, these services require more time to perform their business logic operations. For instance, the B-rep

Generator generates triangulated B-rep solids of the structural and non-structural building elements, optimised

for web-based graphic viewers, avoiding verbosity. The integration framework provided by the DT Runtime

controls the biding between the components of the Data Post-Processing Layer and various data-driven modules

which consume the processed data.

 D7.2 Digital Twin Platform Design & Interface Specification v2 44

COGITO – GA ID. 958310

COnstruction phase

dIgital Twin mOdel

8.1 Architecture

The three main components of the Data Post-processing Layer are deployed as lightweight standalone Spring

Boot applications, following the microservice architecture design pattern. Because they don’t have GUI and

persistence, some Spring Framework components, such as Spring MVC, Spring JPA, and Spring Security are not

included in the final packages. Instead, a looser of coupling is used through the Spring JMS component, enabling

asynchronous communication between the Data Post-processing Layer and the Data Management Layer.

Security in message passing is assured through various encryption protocols and the connection credentials

defined by the message broker.

A methodology for achieving a significant reduction in the executions times is the separation of their business

logic operations into two groups a) high-level operations such as IFC data handling using high-level programming

environments such as Java, and b) low-level geometric operations such as B-rep generation and mesh

triangulation using low-level programming environments such as C/C++.

Figure 24 Stack-diagram of Data Post-Processing Layer components

Each component of the Data Post-Processing Layer provides an API including several indicators to inspect the

health of running processes, memory usage, error logging and more. Figure 24 illustrates the stack diagram of

these components.

8.2 Model View Definition (MVD) Checker

The IFC specification includes a multi-domain information model for capturing building data such as geometry,

materials, components, properties and more. To support specific data exchange requirements between different

tools and processes, only a subset of the IFC specification is required in terms of user entities and properties. The

Model View Definition (MVD) specification allows the definition of reusable Concept Templates and Rules to

describe the data exchange requirements precisely. Along with the maintenance of the IFC specification,

buildingSMART has published the following general-purpose Model View Definition schemes:

• IFC Reference View is mainly used by tools and services that do not require geometry modifications.

The geometric representation is optimised for analysis and display purposes but excludes the

parametric geometry definitions.

• IFC Design Transfer View supports the editing of geometric representations of structural and non-

structural building elements. It is the preferred MVD in COGITO solution because it enables the

enrichment of the BIM model with new properties and geometric objects.

The DTP provides the MVD completeness checking component to help COGITO users validate the BIM model's

completeness against predefined concepts using the mvdXML specification. For instance, completeness checking

is essential to ensure that each structural building element of the IFC model has a property used to create the

semantic link between the element and the construction schedule.

 D7.2 Digital Twin Platform Design & Interface Specification v2 45

COGITO – GA ID. 958310

COnstruction phase

dIgital Twin mOdel

Figure 25 Example of a concept template for validating IFC properties

As shown in Figure 26, three steps are needed to achieve automatic MVD validation of a BIM model: a) The

creation of the mvdXML file using the IfcDoc tool; b) The application of the concept rules on the IFC objects using

the algorithms provided by the IFC Library, and c) The generation and the visualisation of the error reports.

Figure 26 MVD model checking process

BuildingSMART International has developed IfcDoc to improve the computer-interpretable implementation of

the IFC specification. The user can create custom definitions and assign new concepts to them. Each concept

contains a) a connection to an IFC entity, b) an additional concept to filter the instances by validating the

applicability of the relational diagram, and c) the rules along with their parameters and logical operations.

8.3 B-rep Generator

The IFC data have geometric representations which are not in a graphics-friendly format. Therefore, the B-rep

Generation component of DTP transforms the IFC geometric data into triangulated Boundary representations,

which are optimised for graphic viewers, avoiding verbosity and without losing critical information. In this

transformation process, all geometric representations of the structural and non-structural building elements are

transformed into 3D triangle surface sets in a two-step conversion process. In the first step, the IFC Geometry

Exporter exports the geometric information in XML format. Then, in the second step, the geometry data are

loaded into and processed by the B-rep generation component using the JNI programming interface. The output

of the B-rep generation component (the generated B-rep objects), is exported in an optimised graphic data

format such as OBJ and glTF, containing triangulated polygon surfaces.

 D7.2 Digital Twin Platform Design & Interface Specification v2 46

COGITO – GA ID. 958310

COnstruction phase

dIgital Twin mOdel

The B-rep generation component transforms the geometric representation of every element in the input IFC data

file into a triangulated surface set. Suppose the geometric representation of the element is parametric. In that

case, the B-rep generation component applies all the necessary geometric operations to transform it to a

boundary representation first (set of outward-oriented polygon surfaces) and then applies a triangulation

process to every polygon surface to create a final triangle set. Multiple parametric geometric descriptions are

supported for every element in the BIM file, including extruded area solids, half-space solids, and CSG boolean

operations on these descriptions of finite depth. If the element has a non-parametric description, then only a

triangulation process is applied on its boundary polygonal surfaces to transform them into a triangle set.

8.4 IFC Optimiser

The IFC exportation plugins of the BIM authoring tools perform the serialisation of the IFC objects and generate

the final IFC using the STEP data format. The generated IFC data often contain duplications of the same

information. The IFC Optimisation component performs lossless compression of IFC data to speed up loading and

data transformation processes such as the B-rep Generation and Knowledge Graph Generation. It uses the IFC

objects loaded by the BIM Management component and performs the following steps: a) converts the content

of each object into a hash value, b) reduces the size of the generated hash table by removing the duplications,

and c) updates the references of the removed entries in the remaining entries.

8.5 Geometric Clash Checker

Due to the fact that IFC files can be exported by various BIM authoring tools which are operated by users of

variable levels of expertise, the relationship between construction elements and their associated construction

zones, which is required for the complete formation of the knowledge graph of the COGITO data model, might

be missing in these exported IFC files. To overcome this obstacle, the Geometric Clash Checker (GCC), is an ETL

tool that is designed to perform enrichment of input IFC files with this required (construction element) –

(construction zone) containment relationship. The enrichment is performed using pure geometric clash detection

methods, without any prior knowledge. In short, GCC links a construction element A with a construction zone B

only if their geometric boundary representations intersect.

 D7.2 Digital Twin Platform Design & Interface Specification v2 47

COGITO – GA ID. 958310

COnstruction phase

dIgital Twin mOdel

9 Conclusions

This deliverable analysed in detail the final architecture of COGITO’s DTP. The DTP plays a central role to COGITO’s

architecture, as it is responsible not only for performing user management tasks but also for handling and

processing all incoming data traffic and for converting COGITO’s input data to suitable data formats for all

COGITO applications. A top-down approach was used to describe each component thoroughly, starting from an

overview of the identified layers to a detailed description of the contained software components. The DTP has

been divided into six layers each serving a specific functional purpose:

• The Authentication Layer performs user management tasks according to the open-source project

Keycloak’s specification.

• The Data Ingestion Layer includes operational blocks for transforming the incoming data into a unified

knowledge graph and other necessary COGITO data models.

• The Data Persistence Layer provides data storage functionality.

• The Data Management Layer responds to COGITO applications data requests, synchronising the

multiple parallel responses to data queries from these applications in a fast and efficient manner.

• The Messaging Layer coordinates the asynchronous data transmittance of data and notifications

between the DTP and the other COGITO applications.

• The Data Post-Processing Layer to perform ETL and Model Checking operations on COGITO’s BIM data.

We also described the interfaces and the data exchanges among these layers. In addition, we present the detailed

technology stack used for the final implementation of the software components and define the data flows and

the interface specifications. Many components of the above layers (Data Post-processing Layer, Data Ingestion

Layer, Data Management Layer) can act as standalone services enabling parallel executions in a highly

containerised environment following a Service-Oriented Architecture (SOA) pattern. This is an efficient design

approach, achieving minimum response time to queries of variable processing load. Furthermore, the

communication among the different subcomponents of the defined layers is performed efficiently, transparently,

and well-structured using an appropriate message routing scheme provided by the Data Management and

Messaging layers. The final design of the DTP is fully aligned with the requirements defined in the deliverables

“D2.1 - Stakeholder requirements for the COGITO system” and “D2.5- COGITO System Architecture v2”.

 D7.2 Digital Twin Platform Design & Interface Specification v2 48

COGITO – GA ID. 958310

COnstruction phase

dIgital Twin mOdel

References

[1] “SPHERE project,” 2020. [Online]. Available: https://sphere-project.eu/technology/.

[2] “BIMprove project,” 2021. [Online]. Available: https://www.bimprove-h2020.eu/project/.

[3] “ASHVIN project: D1.1 Launch version of ASHVIN platform,” 2021. [Online]. Available: https://ashvin.eu.

[4] COGITO, “D3.2 - COGITO Data Model & Ontology,” 2021.

[5] COGITO, “D2.1 - Stakeholder requirements for the COGITO system,” 2021.

[6] COGITO, “D2.5 - COGITO System Architecture V2,” 2022.

This project has received funding from the European Union's Horizon 2020
research and innovation programme under grant agreement No 958310

	Executive Summary
	List of Figures
	List of Tables
	List of Acronyms
	1 Introduction
	1.1 Scope and Objectives of the Deliverable
	1.2 Relation to other Tasks and Deliverables
	1.3 Structure of the Deliverable
	1.4 Updates to the first version of the DT Platform Design & Interface Specification

	2 Overall Architecture
	2.1 Multi-layered Architecture
	2.2 Components and High-Level Interfaces
	2.3 Service Orchestration

	3 Authentication Layer
	3.1 Identity and Access Management
	3.2 User Roles
	3.3 Interface Specification

	4 Data Ingestion Layer
	4.1 Input Data Management
	4.1.1 Architecture
	4.1.2 Interface Specification

	4.2 BIM Management
	4.2.1 Architecture
	4.2.2 EXPRESS Schema Compiler for Java
	4.2.3 IFC Java Library
	4.2.4 IFC Consistency Checker
	4.2.5 IFC Geometry Exporter
	4.2.6 IFC Revision Control

	4.3 Knowledge Graph Generator
	4.3.1 Architecture
	4.3.2 Thing Manager
	4.3.3 Wrapper Module
	4.3.4 RDF Graph Linker
	4.3.5 RDF Data Validator

	5 Data Persistence Layer
	5.1 File Storage System
	5.2 Project Database
	5.3 Key-Value Database
	5.4 Timeseries Database
	5.5 Graph Database
	5.6 Thing Description Directory

	6 Data Management Layer
	6.1 DT Library
	6.2 DT Runtime
	6.2.1 Architecture

	6.3 Interface Specification

	7 Messaging Layer
	8 Data Post-Processing Layer
	8.1 Architecture
	8.2 Model View Definition (MVD) Checker
	8.3 B-rep Generator
	8.4 IFC Optimiser
	8.5 Geometric Clash Checker

	9 Conclusions
	References

