CONSTRUCTION PHASE
DIGITAL TWIN MODEL

cogito-project.eu

e —

¥ 1 /F]
-l ol

§ 3 .""«—Jl A
L

T

:‘\u w107

Digital Twin

s - D7.10 -

Platform

- D7.10 Digital Twin Platform v2 1

D7.10 - Digital Twin Platform v2

Dissemination Level: Public
Deliverable Type: Demonstrator
Lead Partner: UCL
Contributing Partners: Hypertech, UPM
Due date: 31-10-2022
Actual submission date: 21-12-2022
Authors
Name ‘ Beneficiary ‘ Email
Kyriakos Katsigarakis UCL k.katsigarakis@ucl.ac.uk
Georgios N. Lilis UCL g.lilis@ucl.ac.uk
Dimitrios Rovas UCL d.rovas@ucl.ac.uk
Salvador Gonzalez-Gerpe UPM salvador.gonzalez.gerpe@upm.es
Raul Garcia-Castro UPM rgarcia@fi.upm.es
Giorgos Giannakis Hypertech g.giannakis@hypertech.gr
Apostolos Papafragkakis Hypertech a.papafragkakis@hypertech.gr
Reviewers
Name ‘ Beneficiary ‘ Email
Giorgos Giannakis Hypertech g.giannakis@hypertech.gr
Panos Andriopoulos QUE panos@que-tech.com

Version History

0.1 UCL 01.10.2022 ToC

0.3 UCL 10.10.2022 Draft version of sections 1,2,3,4,5
0.6 UCL, UPM 14.12.2022 Contributions in section 4

0.8 Hypertech, QUE 18.12.2022 Internal review

0.9 UCL 20.12.2022 Internal review comments addressed
1.0 UCL, Hypertech 21.12.2022 Submission to EC

Disclaimer

©COGITO Consortium Partners. All right reserved. COGITO is a HORIZON2020 Project supported by the European
Commission under Grant Agreement No. 958310. The document is proprietary of the COGITO consortium
members. No copying or distributing, in any form or by any means, is allowed without the prior written
agreement of the owner of the property rights. The information in this document is subject to change without
notice. Company or product names mentioned in this document may be trademarks or registered trademarks of
their respective companies. The information and views set out in this publication are those of the author(s) and
do not necessarily reflect the official opinion of the European Communities. Neither the European Union

w COnstruction phase

B S |
COGITO

- D7.10 Digital Twin Platform v2 2

institutions and bodies nor any person acting on their behalf may be held responsible for the use, which may be
made, of the information contained therein.

f <> e
/

S
COGITO - GA ID. 958310
COGITO

D7.10

Executive Summary

The COGITO Deliverable “D7.10 - Digital Twin Platform v2” documents the final version of the COGITO Digital
Twin Platform and reports the outcomes of work performed in “T7.5 - Digital Twin Platform Development and
Testing”. In summary, the Digital Twin Platform (DTP) is a cloud-based and semantically enabled data integration
middleware that includes a comprehensive suite of services offering a range of integration and connectivity
options to the COGITO tools. The DTP is responsible for: a) providing authentication and authorisation to COGITO
users, b) handling data from various input sources such as BIM authoring tools, project management tools,
cameras, LiDAR scanners and IoT devices, and c) responding to data requests performed by the other COGITO
tools. It offers enterprise features such as a Messaging Layer enabling asynchronous communication between
the DTP and the COGITO tools, a sophisticated routing system allowing developers to configure complex routing
scenarios and a runtime environment for running configurable data-driven modules serving the data
requirements of the various COGITO tools. The DTP follows a multi-layered architecture comprising six core
layers. Each layer contains a set of software components implementing the Service-Oriented Architecture (SOA)
design pattern and performing various business logic operations to support the main objectives of the COGITO
solution.

The primary output of the work conducted in “T7.5 - — Digital Twin Platform Development and Testing” is the
implementation, deployment and testing of the DTP that comprises a set of core components following the
Minimum Viable Product (MVP) approach. These components have been deployed in the various layers of the
DTP based on the outcomes of “T7.2 — Digital Twin Platform Design & Interface Specification v2”. This document
focuses on presenting the final version of the DTP and its components along with the functionalities they provide,
the technology stacks they build upon, the interfaces they use, the usage instructions, and the assumptions and
restrictions.

el [%T

- D7.10 Digital Twin Platform v2 4

Table of contents

EXECULIVE SUMIMIAIY oottt e et e e e e s e e e s e e s et aee e e e e e e et eeeeaaaeaeeaessssesasassnsssebesbabeaeseseaeeeaeaeaeens 3
TADIE OF CONTENTS ...ttt sttt s h e b e bt e b e ae ekt e a b e eb e e st e ehe e bt eheesbeeaeesbeeabesbeenbesbeenbesaeans 4
[o = U TSRS 6
LISt OF TADIES ettt ettt r e r et neenn e s nae s 7
[o Yol o] 1Y ' TN 8
L INTPOTUCTION ettt ettt a ettt s bt et s bt e bt shtesbe e st e s bt et e e bt en b e e b e et e eb b et e eneenbeenteebeenbeeaeenbeeaeen 9
1.1 Scope and Objectives of the DelIVErableooeoiiiii e 9
1.2 Relation to other Tasks and Deliverables ..o 10
1.3 Structure of the DelVerable.........coi i 10
1.4 Updates to the first version of the Digital Twin Platform.........ccccvveeiiiieciie e, 11

2 DiIgItal TWIN PLatfOrm ottt et e e et e e e ta e e e ta e e e ebaeeeseeeessbeeeaabaeeesseeeassaaeanteeannns 12
2.1 ComMPONENES ClasSIICATIONoveeiiitieieet ettt b bbbt et et e b et e saeeneas 12
2.2 Components Target PIatform ..o et e e et e e et e e e e sbaeeene 13

3 Authentication and Authorisation INfrastruCTurec.coceiiiiiiiiiiiic e 16
31 User Authentication and AULhOriSatioNcceeieiiiriiiii e 16
R0 0t O 1Y =T = TP 16
3.1.2 Technology Stack and Implementation TOOISccccuieiiieeeciee e et e e e e bae e 16
3.1.3 API DOCUMENTALIONciiiiiiiiitiiiitii e e 17
3.1.4 UsSAE WalKENIOUEN ..ottt et e e et e e e tte e e ate e e s bb e e e ataeeensaaesasaaean 18
3.1.5 APPlCAtION EXAMIPIE ittt sttt b et b et s ae b et ae et et e 19
20 T I o= o {1 o V- TP P TP PP PRI 19
3.1.7 INStallation INSTFUCTIONS ..c..veeeieeiiieieeeee ettt et sbe e st e saeeeaneene 19
3.1.8 Development and INteGration StAtUscccceereeriiiirieriie ittt s 20
3.1.9 RequUIremMeNtS COVEIAZE ...ccoouiiiiriiiiiiie ittt ettt sttt s e s e e e s st e s eare e e s r e e e s nreesennneesaneeeas 20
3.1.10 AsSUMPLIONS AN RESTIICHIONS ..ccouvieiiiiieiiee ettt e st e e sae e e st e e e saeeeenaaeeesaneeeen 20

4 Project Creation and ONtology POPUIATIONeeeiiiiiiiie ettt e e e e st e e e aae e eeaee e e 21
4.1 Input Data Management COMPONENTuiiiiiiiiiiieee et e e e e e e e e e e e e e s e s s s se s saabnbnennnes 21
o O R o o o 1Y/ o =B @ A=Y VT PSPPI 21
4.1.2 Technology Stack and Implementation TOOISccceceeciiiiiiee e et 22
4.1.3 Input, Output and APl DOCUMENTATION ...ccueeiiiieeeciiie ettt et e e e stre e e eatae e e aa e e e sare e e enaaeeeaaes 23
4.1.4 UsSage WalKENIOUI c...oeeeeiie et et e et e et e e e s te e e e bt e e eeatae e saaeeesateeeensaeeeasees 25
N S X o= o £ [o V- PP PPPPTPPPPN 28
4.1.6 InStallation INSTIUCTIONSoveiiiiiieieeteeee ettt sttt b e et sb e ebe e 28
4.1.7 Development and INtEGration SEAtUScciiriiirieiiiriee ettt sttt 28
4.1.8 RequIremMeENnts COVEIAGEciiiuiiiiiiiiiiiiiieiiee sttt st era e s e st e s eab e e e sne e e s snr e e s ebae e sannes 28

- - COGITO - GA ID. 958310

- D7.10 Digital Twin Platform v2 5

4.1.9 AssumMPLions and RESTIHCLIONS ...cccuviiiiiieeiiie ettt etee e et e e e ete e e s ta e e e ab e e e abaeesabeeeensbeeenranas 29

4.2 KNOWIEAEE Graph GENEIAtONviieiiiee ettt e et e et e e e ette e e s te e e e saeesbaeeesareeeeaseeesaraeean 30
421 PrOtOTYPE OVEIVIEWeeeiiiiei ettt ettt ettt e sttt e e s e s abe et e e e s s bae e e e s e ansbeeeeseaunbbteeeesannreeeeseeannnneen 30
4.2.2 Technology Stack and Implementation TOOIScccceeeieriiiiiiniieieeee e 30
4.2.3 Input, Output and API DOCUMENTATION ..c..eiruiiiiiieiiieitieeieeiee ettt et see e 31
424 APPlication EXAMPIE ..cooiiiiiiiiieeee e st b e st nnee e 32
N S W (o1~ 3 | o ¥ - T TP P PP POP PR 34
4.2.6 InStallation INSTFUCTIONScueiiiiiiiiiiceee et 34
4.2.7 Development and INtEZration STATUScccceiiciieeiiie et e e s e e e et e e saee e enaes 34
4.2.8 ReEQUIFEMENTS COVEIAZE ..uvtiiiiiuriieieeiiiiieteeeeeitteeessssarteessesatataeessasssaseesssassssaeessasssssseesssassseseessnsssnnees 34
4.2.9 Assumptions and RESTIHCTIONSccuviiiiiieiiiie ettt et e e s e e e sare e e saae e e sabeeeeseeeennneeas 35

5 Data Processing and Data DEIIVEIY.....coccuii ittt s e et e e e stae e s etae e e s sae e e e taeessseeesnseeeanseeennn 36
5.1 Digital TWin RUNTIME COMPONENT .. .uviiiiiiieciie ettt ettt e e rtae e e s te e e s aae e staeeesabeeesasaeesnsaeean 36
5.1.1 PrOtOtYPE OVEIVIEW .coiiiiiiiii ittt ettt et et e e e e e e e s e s s s et b e aeaaeaeeeeaaeaaeeasasesessesesasnsasnserennes 36
5.1.2 Technology Stack and Implementation TOOIScccciieiiieeeciie ettt e 37
5.1.3 Input, Output and APl DOCUMENTATIONoeiiiuiiiiciii et ettt ettt e e e te e e e eare e e e be e e eabeeenraeas 38
5.1.4 USABE WaAIKERIOUEN ..ottt st sbe e st e e s aaeebeesareenaeesnns 40
5.1.5 APPlICAtion EXAMPIE ..oueiiiiieieet ettt b et sttt et et ae et sae et st aas 49
o300 Y T I o= o {1 o V- PP PO POPPRPP 51
5.1.7 INStallation INSTrUCTIONS ..c..viiieiieiieitietee ettt ettt e bt st e saeesbe e sareesneennee 51
5.1.8 Development and INteGration Statusc.cceereeriiiirieniie ittt s 51
5.1.9 ReqQUIrEMENTS COVEIAEE oo ouueiiieiieiiiiiee e e siiitte e e e ettt e e e s sttt e e e s s ssbateeessesbaaeeesesssbteaessasanbaeaesssansraaeessns 51
5.1.10 AssUMPLIONS AN RESTIICTIONS ...couviieiiieeeciie e e e et e et e e st e e e e sateessnneeesnnneean 52

B CONCIUSIONS ..ottt ettt s b e h e s e b e a e e bt enn e e ae e s et e e e saeesnesatennesenenresanens 53
RETEIEINCES ...ttt h et e et e bt e et s bt et e bt e a e bt n e s h e n e s h e R e en e bt en e reean e reeaes 54

w COnstruction phase

B S |
COGITO

- D7.10 Digital Twin Platform v2 6

List of Figures

Figure 1 DTP’s overall architecture along with its software componentsccccceeeeiieeciieccciec e 12
Figure 2 Identity Provider’s user authentication ProCESSuieiiiiiriiie ittt s e e e e s e e sens 16
Figure 3 ldentity Provider’s USEr lOZiN PaEcueeiiuiieieiiieeciee sttt e ettt esee e e st e e e eta e e s saaee e st e e e s asaeesnnaaeessteeeensaeesnnees 18
Figure 4 |dentity Provider’s USer registration Pcccuiieciieeiiieeeiiie e e et e eetee e et e e e et e e e etaeeeaaeeesabeseenseeeeanens 18
Figure 5 Identity Provider’s Account Management CONSOIEcccuiiieiiieiiiie ettt see e s e et e e s 19
Figure 6 Identity Provider’s user authentication @Xamplecocuiieeiie et e 19
Figure 7 Example of a knowledge graph generated by the KGG cOmpPonentccccuevcvierieeiieenieenieenieeieesee e 21
Figure 8 IDM’s sub-components along with their interactions..........ccvevceeeeiie e 22
FIUre 9 VIEeW Of @ll USEI’S PrOjJECESuiiiiiiieeiiiecteee ettt ettt e et s e e et e e e eata e e saae e e bt eeeensaeesnssaeessteseensaeesnnees 25
Figure 10 Creation Of @ NMEW PrOJECTot ittt ettt ettt s h e et she e be s bt e b e e st e sbe e besbeenbesbeenee 25
Figure 11 Assignment of registered USErs t0 @ PrOJECT ...c.uiiiciieeiiie e see et e e e et e e e e e e st e e s eaeeennns 26
Figure 12 Creation of @ NeW Property in @ PrOJECTuiiciiiieiiee ettt ettt ettt eetve e e ete e e s v e e e e saveeeeaseeesabeeestaeeennes 26
Figure 13 Uploading the as-planned data using the IDM cOMPONENT.......ccieriiiiiiiiieiieieeeee e 27
Figure 14 View Of all FEZISTEIEA USEI'Suiiiiiiieciiee ettt et et e e s e e et e e e s et e e s aaeeesabeeeensaeesnseeeessseeeansaeesnnens 27
Figure 15 Assigning a role t0 the USEr @CCOUNTccuiiiiciii ettt ettt e et e e e ta e e saa e e e s tbeeeeaaeeeennes 28
Figure 16 High-level Architecture of Knowledge Graph GENErationccccovceeeeiieeiiiiie e it 30
Figure 17 Generation of COGITO’S TTLS @NA TDS ..eeciuiieeiiieeiieeeiieeeeiteeeeteeesteeeseaeessaseeesaseseasseesnssesessseeeansseesnnnns 32
Figure 18 Example of RDF generated by the ETL tools contained in the KGG component..........ccccceeeevieeeciveeenns 33
Figure 19 Example of Thing Description generated by the Thing Manager......ccccccveveieeerieeerciee e 33
Figure 20 Digital Twin Runtime component’s main iNteractionsccccccueeeiiieeeeiiii e e 37
Figure 21 Example of DT Runtime component’s configurable module and its IFC oUtPUL.......ccceevverierienieneneene 37
Figure 22 View of all USEr’'s @pPPliCAtIONS ...cicviiiiiiie ettt et e et e e s aa e e snaeeessbeeeensaeesnnnes 41
Figure 23 Creation of @ NEW apPliCatioN.....cccuii ettt e e e e et a e e s nae e e abeeeensaeeeannes 41
Figure 24 Assignment of a role to the applicationco.eoiiiiiiiniii e 42
Figure 25 Creation Of NEW ENAPOINT.....ciiiii ittt e et e e et e e e s aaeeesabeeesntaeesnnaeeessseeeansneesnnens 43
Figure 26 Creation of @ NeW Data CollECHIONeeeiiiiiciie ettt e e e et e e s aa e e e ab e e eeeaeeeanes 43
Figure 27 Uploading and annotating files in @ Data ColleCtioncoieiiiieriiiieie et 44
Figure 28 View Of all USEI’'S CONNECTIONS ...cccuiiiiiiieeciie ettt etee et e ettt e st e et e e et e e e e aaeeessbeeeensaeesnseeeessseeeansneesnnens 44
Figure 29 Creation 0f @ NEW CONNECLIONcccuiii ettt ettt et e e e te e e e at e e e s abeeeeabaeesasaeeessbeeeensaeesanees 45
Figure 30 Creation of @ NeW MeSSagiNg CANNE.......cc.eouiiiiriiiiee ettt sttt et sae e 45
Figure 31 Creation Of @ NEW ACTONciii i ceee ettt et e et e e et e e st e e e sateeeentaeesaeeeasseeeassaeeennseeessseeeansseesnens 46
Figure 32 Creation of @ NeW Property iN @n ACLOTccciiiiiiie e ettt ettt e e e stre e e ete e e sveeeetaeeeeaseeesabeeeetaeesnnes 46
Figure 33 View of all created modules

Figure 34 Creation 0f @ NEW MOAUIEcoiceiie e e e et s e e et e e e s ata e e sanaeeesateeeensaeeennees
Figure 35 Workspace for creating and configuring ModUIESccueeuieiiiiiienie e 49
Figure 36 DT Runtime component’s SYStEM CONSOIEccuuviiiiiieeiiie ettt e e s e et e e e naeesnes 49
Figure 37 Part of the UC1.1 SEQUENCE dI@gIami......cccuiieeiuieeiiieeeiiieeeeiteeeteeeestte e e etee e saaeeesaveeeensaeesnsaeeessseeeansaeesnnens 49
Figure 38 The module UC.1.1 — Return 6 which provides the as-planned 4D BIM data........c.ccccueeveereerveennennnenn 50

w COnstruction phase

B S |
COGITO

- D7.10 Digital Twin Platform v2 7

List of Tables

Table 1 Main characteristics of DTP’s sOftware COMPONENTSccccuiiieiiieeciie et ee e et e e eaaeeeaaee s 14
Table 2 Libraries and Technologies used in the [dentity ProVidercceeiiiieeeiiie i 16
Table 3 Identity Provider's AUtheNntiCAtion APloooiiii ittt ree e e e e aa e e eta e e e sareeesnsaeesnnnaeas 17
Table 4 Identity Provider's AdMIN APl ...ttt e e et e e e eett e e eeateeeeabeeeetaeesbseeeeabeeesnsaeesnseeean 17
Table 5 Identity Provider’s reqUir€MeENtS COVEIAZE ...uuuruuiiiriieeiiieeeiiieeireeesteeeeiteesstaeeeseteeesaaeessaeeessseessnsnessseeenn 20
Table 6 Libraries and Technologies used in the Input Data Management cOmpPoNeNntcccceeevveeecieeesineesnnennn 22
Table 7 Input Data Management compPonent’s REST APcoiiiiiiieiieiiienieeiteesteesieesaeesteesae e beesaeesseesbeesaeesaneas 23
Table 8 IDM component’s REQUIrEMENTS COVEIAZE . .cccuiiiiuieeriieeeiteeeireeesteeeesseeesssseeessseeessseeesssseessssesssssseesssenenn 28
Table 9 Libraries and Technologies used in the Thing Manager and the Wrapper modulecccccccovveeeiveeennnenn. 31
Table 10 Thing Manager’s REST APco.uoi ittt ettt sttt ettt et sae et s bt e be s bt e besbte b e estesbeenbeebeenee 31
Table 11 Thing Description DireCtory’s REST APluceiiiiiieiee e eete sttt e et s et e e st eeeste e ssnseeesnseeeensneesnneeas 32
Table 12 Knowledge Graph GENErator URLScccuiieeiiie ettt e e e tte e st e e e e ate e e e aaeeebaeeeeabeeeensseesnnaaeas 34
Table 13 KGG component’s REQUIreMENTS COVEIAZEcevueruuertiriertieienteenteeitesteetesieeeesieetesieesbesseesbeeneesbeeneesseenes 34
Table 14 Libraries and Technologies used in the Digital Twin Runtime componentccceccveevieeecieeeccevee s 38
Table 15 DT Runtime component’s REST APl ENAPOINTSccuuiiiiiiieeiiie et eeite et e evee e e e etaeeeevee e eaaeeeaaaeean 38
Table 16 DT Runtime component’s ReqUIremMents COVEIAZEuuiivuuiiiiieeeriieeriieeeireeesieeessaseesaeeeessseeessnessnseeees 51

COnstruction phase

B S |
COGITO

- D7.10 Digital Twin Platform v2 8

List of Acronyms

AAI
AMQP
API
BIM
COGITO
DB
DCC
DI

DT
DTP
ETL
GCC
GUI
IFC
loT

JSON
VM
mMC
MQTT
MVD
RDF
REST
SHACL
SOA
SSE
SSO
STEP
STOMP
D
TDD
VM
WwoDM
XML

- - COGITO - GA ID. 958310

Authentication and Authorisation Infrastructure
Advanced Message Queueing Protocol
Application Programming Interface
Building Information Model

Construction Phase diGltal Twin mOdel
Database

Digital Command Centre

Dependency Injection

Digital Twin

Digital Twin Platform

Extract, Transform and Load

Geometric Clash Checker

Graphical User Interface

Industry Foundation Classes

Internet of Things

Java Messaging System

JavaScript Object Notation

Java Virtual Machine

Model Checking

Message Queue Telemetry Transport
Model View Definition

Resource Description Framework
Representational State Transfer

SHapes Constraint Language

Service Oriented Architecture

Server Sent Events

Single-Sign On

Standard for the Exchange of Product Data
Streaming Text-Oriented Messaging Protocol
WoT Thing Description

Things Description Directory

Virtual Machine

Word Order Definition and Monitoring Tool

Extensible Markup Language

COnstruction phase
TD digital Twin mOdel

D7.10

1 Introduction

This deliverable reports on the final implementation of the DTP reflecting the outcomes of the work conducted
in “T7.5 - Digital Twin Platform Development and Testing”. It builds upon the detailed architecture of “T7.1 -
Digital Twin Platform Design & Interface Specification”, the overall COGITO system architecture of “T2.4 COGITO
System Architecture Design”, and the definition of the COGITO ontologies of “T3.2 - COGITO Data Model,
Ontology Definition and Interoperability Design”. This work presents the final version of the core software
components located in the various layers of the DTP.

In summary, the DTP consists of six core layers [1]. The Authentication Layer ensures that user access is restricted
to specific roles and groups. The Data Ingestion Layer is responsible for loading the input data and orchestrating
the execution of the Extract, Transform and Load (ETL) and Model Checking (MC) services to generate the
knowledge graph and populate the corresponding databases. At the same time, the Data Persistence Layer
provides a cloud-based data storage solution, including graph, relational and time-series databases. The Data
Management Layer satisfies the data needs of the COGITO applications by providing a runtime system, which
hosts a set of configurable modules performing well-defined business logic operations. At this point, a COGITO
application sends a request for data, and the Data Management Layer responds to the request using
asynchronous communication channels provided by the Messaging Layer. Finally, the Data Post-Processing Layer
provides software components responsible for performing ETL and MC operations on BIM data which conform
to the Industry Foundation Classes (IFC) standard [2].

Each of the above layers contains a set of core software components performing various business logic
operations to support the main objectives of the COGITO solution.

1.1 Scope and Objectives of the Deliverable

The main scope of this deliverable is to report on the final implementation of the core software components
located in the various layers of the DTP. These components are based either on existing open-source projects or
have been designed and developed from scratch. The final release of the DTP consists of the following software
components:

e Identity Provider: This component is part of the Authentication Layer and provides a fully functional
identity and access management solution based on the open-source project Keycloak. It ensures that
access is restricted to specific users and applications with the appropriate permissions.

e Input Data Management component: This component is part of the Data Ingestion Layer and is
responsible for registering external applications, configuring user roles, creating projects, and
supervising the internal business-logic operations of the DTP.

e BIM Management component: This component handles BIM models that conform to the Industry
Foundation Classes (IFC) standard. It performs various BIM related business-logic operations such as
serialising/deserialising, querying, updating, and merging IFC models.

e Knowledge Graph Generator: This component is part of the Data Ingestion Layer and is responsible for
populating COGITO’s ontologies, validating the generated knowledge graph and generating the Thing
Descriptions (TD)". 1t supports the transformation of heterogeneous data such as IFC, JSON, XML and
CSV coming from various input data sources.

e DT Runtime: This component is part of the Data Management Layer and is responsible for creating and
hosting various modules used for orchestrating the data processing operations. It ensures that the data
coming from the Persistence Layer are synchronised and harmonised before being forwarded to the
other COGITO applications.

e DT Library: This component is part of the Data Management Layer and provides a set of reusable ready-
made coding blocks facilitating COGITO developers to create their own data-driven modules using a
web-based graphical environment.

' The TDis an entity which contains meta-data of Things, where a Thing is an abstraction of physical or virtual objects.

el C%T

D7.10

e Message Broker: This component is part of the Messaging Layer and is responsible for transmitting
asynchronously messages and notifications between the COGITO applications and the DTP. It is based
on the Apache ActiveMQ Artemis message broker which supports various messaging protocols such as
AMQP, STOMP and MQTT.

e MVD Checker: This component is part of the Data Post-Processing Layer and is responsible for
performing MVD-based data completeness checking on the BIM model.

e B-Rep Generator: This component is part of the Data Post-Processing Layer and is responsible for
exporting the geometric information included in the BIM model and generating triangulated B-rep solids
of the structural and non-structural elements. It exports the geometric information using open formats
such as OBJ and gITF.

e |FC Optimiser: This component is part of the Data Post-Processing Layer and is responsible for
performing lossless compression of a BIM model that conforms to the IFC standard.

e Geometric Clash Checker (GCC): This component is part of the Data Post-Processing Layer and is
responsible for detecting clash and containment errors and creating additional semantic relationships
between existing entities of the unified knowledge graph.

1.2 Relation to other Tasks and Deliverables

This deliverable is the outcome of the “T7.5 — Digital Twin Platform Development and Testing”, which falls under
the activities of “WP7 — COGITO Digital Twin Platform”. There are several dependencies of this work on other
deliverables and tasks:

e The configuration of the Keycloak Identity Provider is based on the work performed in “T2.1 — Elicitation
of Stakeholder Requirements” and the corresponding deliverable “D2.1 Stakeholder requirements for
the COGITO system”.

e Thedesign and interface specification of the DTP and its core components based on the work performed
in “T7.1 — Digital Twin Platform Design & Interface Specification” and the corresponding deliverable
“D7.2 — Digital Twin Platform Design & Interface Specification v2”.

e The deployment and testing of the various ETL and MC components are based on the work performed
in “T7.2 — Extraction, Transformation and Loading tools (ETL) and Model-Checking” and the
corresponding deliverable “D7.4 — Extraction Transformation & Loading Tools and Model Checking v2”.

e The creation and deployment of DTP’s data-driven modules used for orchestrating the various data
processing operations are based on the work performed in “T2.4 — COGITO System Architecture Design”
and the corresponding deliverable “D2.5 — COGITO System Architecture v2”.

1.3 Structure of the Deliverable

This deliverable is organised according to the identified functional requirements of the DTP. As mentioned above,
the DTP is a cloud-based data integration middleware responsible for: i) providing an authentication and
authorisation mechanism to COGITO users and applications, ii) loading and validating information coming from
various input data sources, and iii) supervising and orchestrating data processing operations and data requests.
This deliverable is structured as follows:

e Section 1 summarises the outcomes of the work conducted in “T7.1 — Digital Twin Platform Design &
Interface Specification” and their relationships with the development activities of “T7.5 — Digital Twin
Platform Development and Testing”.

e Section 2 presents the DTP’s overall architecture and the deployment of its core components in the
different layers.

e Section 3 presents the Identity Provider, which is part of the Authentication Layer and is responsible for
authenticating COGITO’s users and applications.

e Section 4 presents the Input Data Management, the BIM Management, and the Knowledge Graph
Generator components, which are contained in the Data Ingestion Layer and are responsible for loading
data from various input data sources, managing projects, populating the COGITO ontologies, and
validating the unified knowledge graph.

el C%T

D7.10

e Section 5 presents the DT Runtime and the DT Library components, which are part of the Data
Management Layer and are responsible for handling the data requests and harmonising the data before
being delivered to the final destinations.

e Section 6 presents the conclusions along with a release plan for the final version of the DTP.

1.4 Updates to the first version of the Digital Twin Platform

The first version, “D7.9 — Digital Twin Platform v1”, presented the first release of DTP’s core components in detail.
As mentioned in the previous section, DTP plays a central role in COGITO’s solution as it is responsible for: i)
providing an authentication and authorisation infrastructure, ii) loading input data files from various sources such
as BIM authoring tools, project management tools, cameras, LiDAR scanners and loT devices, and iii) satisfying
the data needs of other COGITO applications by responding to data requests using configurable data-driven
modaules. Since the submission of the first version, software components have been added or updated providing
additional features to meet the functional and non-functional requirements of the COGITO solution. This
deliverable comprises the following changes:

e The Data Management Layer is responsible for responding to various data requests performed by the
COGITO applications. To achieve this, the DT Runtime is used for the execution of the available data-
driven modules and the DT Library is used for providing a set of ready-made coding blocks facilitating
COGITO’s developers to create and configure the data-driven modules. In the first release, the
functionality of the DT Library has been tested. In the final release, the DT Library contains the complete
list of coding blocks needed to support the various UCs.

e The Data Post-Processing Layer is responsible for hosting various time-consuming MC and ETL services
utilising asynchronous communication technologies. The first release of the DTP included: i) the MVD
Checker component for performing MVD-based data completeness checking, ii) the B-rep Generator
component for generating triangulated geometric solids of the structural and non-structural elements,
and iii) the IFC Optimiser for performing lossless compression on the BIM data. In the final release, the
Geometric Clash Checker (GCC) component has been added for detecting clash and containment errors
and creating additional semantic relationships in the knowledge graph.

e The Messaging Layer is responsible for transmitting messages and notifications between the DTP and
the other COGITO applications in an asynchronous manner. In the final release, the ActiveMQ Artemis
message broker has been fully integrated and tested. The final release of the DT Runtime component
offers a Graphical User Interface (GUI) for configuring DTP’s connectors and channels enabling
asynchronous communication with the other COGITO tools.

el C%T

- D7.10 Digital Twin Platform v2

2 Digital Twin Platform

The development activities performed in “T7.5 — Digital Twin Platform Development and Testing” followed the
Minimum Viable Product (MVP) approach. The final release of the DTP provides the necessary features to be
usable by the developers and the users of the COGITO system [3]. This section describes the overall architecture
and the deployment characteristics of the core software components installed in the various layers of the DTP.
Some of these components are based on open-source projects, while others are developed from scratch.

2.1 Components Classification

As mentioned in the previous section, the DTP is responsible for loading the as-planned and as-built data,
populating the ontology network, validating the knowledge graphs, and handling the data requests performed
by the other COGITO applications. DTP’s architecture design is based on a multi-layered approach comprising of
six core layers. Each layer has different deployment characteristics and contains a set of software components,
as shown in Figure 1.

COGITO Applications
Health & Safety Visualization Process Modeling Quality Control

T L L

Authentication Layer Data Management Layer Messaging Layer

Identity Provider DT Library DT Runtime “ Message Broker

T L

Data Persistence Layer Data Post-Processing Layer
Triplestore Timeseries DB File Storage
MVD Checker
Relational DB Key-Value DB Thing Directory
B-rep Generator

T

- IFC Optimizer
Data Ingestion Layer
P BIM Management Knowledge Graph Generator m‘fd‘
Input Data Management
1} o
External Tools COGITO Tools
BIM Authoring Tools Project Management Tools p":;Tr:i:.m pmﬁrﬁh

Figure 1 DTP’s overall architecture along with its software components

The software components are deployed into the DTP layers implementing various business-logic operations to
support the main objectives of the COGITO system. Based on their non-functional requirements they are
classified into the following categories:

e Monolithic Applications: This category contains standalone applications in which the various
components of the different layers, such as the business logic, the data access, and the graphical user

12

COnstruction phase

B S |
COGITO

D7.10

interface, are included in a single package deployed on a specific target platform. These applications can
interact with others through static endpoints implementing various protocols and security standards.
For instance, the Identity Provider, the Input Data Management, and the Message Broker are deployed
in the various layers of the DTP as standalone applications.

e Service-Oriented Architecture (SOA): This category contains applications implementing the SOA design
pattern. Their software components are often packaged and deployed as individual modules on specific
target platforms. In this case, the internal software components exchange data through a central
messaging system enabling asynchronous communication based on enterprise messaging specifications
and protocols. For instance, MVD Checker, the B-rep Generator, the IFC Optimiser, and the Geometric
Clash Checker (GCC) are following the SOA design pattern.

e Microservices: This category contains applications configured to run on multiple computational nodes.
Their software components are packaged as container images and deployed in a cloud-computing
infrastructure, providing flexibility, high-availability, and horizontal scalability. In contrast with the SOA,
they do not use a central messaging system for exchanging messages. Each application is responsible
for providing its endpoints and communication channels. For instance, the data-driven modules
installed in DTP’s Runtime component are based on the microservices architecture.

e Software Libraries: This category contains low-level software packages such as parsers and algorithms
used to support other components and applications. They often provide multithread processing and
exchange information through well-defined APIs. For instance, the BIM Management component is used
in DTP’s Data Ingestion Layer as internal dependency package.

2.2 Components Target Platform

Most DTP’s software components have a single instance deployed on dedicated computational nodes of a cloud-
native environment. In this case, the Nginx server is in charge of forwarding the HTTP requests to the local
destinations of the deployed services. For instance, the Identity Provider, the Input Data Management, and the
Message Broker use Nginx as a reverse proxy server. On the other hand, some software components can have
multiple instances simultaneously. These components utilise the SOA design pattern, exchange data with the
DTP through a message broker using asynchronous protocols and offer load-balancing and high-availability
capabilities. For instance, the MVD Checker, the B-rep Generator, the IFC Optimiser and the Geometric Clash
Checker use such technology. The software components included in the different layers of the DTP are the
following:

The Authentication Layer contains the Identity Provider that offers a central identity and access management
solution for COGITO users. It's based on the open-source project Keycloak, an industry-standard implementation
supporting various authentication protocols such as OpenID Connect and SAML 2.0.

The Messaging Layer contains an advance Message Broker that offers an integrated solution enabling
asynchronous bi-directional communication between DTP and other COGITO applications. It is based on the
open-source project Apache ActiveMQ Artemis’ offering a high-performance message broker that supports
multiple messaging protocols.

The Data Ingestion Layer contains the final releases of the following core software components:

e The Input Data Management component provides a Graphical User Interface (GUI) and a REST APl which
offers core functionalities such as project creation, user management, and loading of the as-planned
data.

e The BIM Management component offers a Java-based API for serialising/deserialising, querying,
updating, and merging IFC data.

e The Knowledge Graph Generator includes a) the final release of the various ETL tools described in “D7.4
- Extraction, Transformation & Loading Tools and Model Checking v2” and, b) the Thing Manager,

2 ActiveMQ Artemis https://activemg.apache.org/

el C%T

https://activemq.apache.org/

- D7.10 Digital Twin Platform v2 14

responsible for supervising the data transformation processes, validating the knowledge graphs and
generating the Thing Descriptions.

The Data Persistence Layer contains the following core software components:

e The File Storage System offers an API for storing, retrieving, and deleting files.

e The Relational Database is used for storing metadata related to projects, users, roles, registered
applications, and data collections.

e The Timeseries DB is used for storing loT data generated by the loT Data Pre-Processing tool.

e The Key-Value DB is used for storing the IFC objects.

e The Triplestore is used for storing the RDF data generated by the various.

e The Thing Description Directory is used for storing the Thing Descriptions generated by the Thing
Manager.

The Data Management Layer contains the final releases of the following core software components:

e The DT Runtime component is responsible for i) hosting and supervising data-driven modules
performing various data processing operations and, ii) providing configurable endpoints and messaging
channels for the interaction with the other COGITO tools.

e The DT Library contains a set of ready-made coding blocks allowing external developers to create their
own data-driven modules.

The Data Post-Processing Layer contains a set of components that utilise the SOA design pattern and use the
asynchronous messaging channels provided by the Messaging Layer. Depending on the complexity of the input
data, these components can have higher execution times than other components. Currently, the Data Post-
Processing Layer contains the following software components:

e The MVD Checker validates IFC data in terms of completeness and semantic consistency by applying
predefined rules created by the MVD specification.

e The B-rep Generator uses the geometric information included in the IFC and generates triangulated B-
rep solids of the structural and non-structural elements.

e The IFC Optimiser performs lossless compression of an IFC to speed up loading and data processing
operations. It's generating a new IFC with a reduced file size.

e The Geometric Clash Checker detects clash and containment errors to create additional semantic
relationships between existing entities of the knowledge graph.

Table 1 summarises the main characteristics of the software components that have been analysed previously.

Table 1 Main characteristics of DTP’s software components

Core Layers Software Components Type Origin

Authentication Layer

Identity Provider

Monolithic Application

Open source

Data Ingestion Layer

Input Data Management

Monolithic Application

Developed from scratch

BIM Management

Software Library

Developed from scratch

Knowledge Graph Generator

Microservices

Developed from scratch

Data Persistence
Layer

Relational DB (data model)

Monolithic Application

Developed from scratch

File Storage System

Monolithic Application

Developed from scratch

- - COGITO - GA ID. 958310

COnstruction phase
TD digital Twin mOdel

- D7.10 Digital Twin Platform v2

15
Triplestore (server) Monolithic Application Open source
Thing Directory Monolithic Application Developed from scratch
Timeseries DB (server) Monolithic Application Open source
Key-Value DB (server) Monolithic Application Open source
DT Runtime M.onOIIthIF AR Developed from scratch
Data Management Microservices
Layer
DT Library Software Library Developed from scratch
MVD Checker SOA Developed from scratch
B-rep Generator SOA Developed from scratch
Data Post-Processing
Layer
IFC Optimiser SOA Developed from scratch
Geometric Clash Checker SOA Developed from scratch
Messaging Layer Message Broker Monolithic Application Open source

- - COGITO - GA ID. 958310

TO

- D7.10 Digital Twin Platform v2 16

3 Authentication and Authorisation Infrastructure

The COGITO tools can be classified based on their functional requirements. Some applications require a central
system to authenticate and authorise the users, while others require authentication to access DTP’s REST APIs.
The final version of the Authentication Layer provides an Authentication and Authorisation Infrastructure (AAl),
enabling DTP to authenticate and authorise COGITO users. The User Authentication and Authorisation
component, aptly named Identity Provider, manage the users and their roles by providing the necessary
functionalities to the COGITO applications, such as registration, password recovery, authentication, and
authorisation endpoints.

3.1 User Authentication and Authorisation

The AAI solution of the DTP relies on the Keycloak open-source identity and access management solution.
Keycloak is an industry-standard identity and access management implementation supporting various protocols
such as OpenlID Connect and SAML 2.0. Most applications within COGITO use the OpenID Connect protocol,
which offers Single Sign-On (SSO) capabilities. On the other hand, PMS uses the SAML 2.0 protocol. The Identity
Provider issues an assertion to PMS when a user is authenticated. Then, PMS can grant the user access to its
resources based on this assertion. Like OpenID Connect, SAML 2.0 enables SSO capabilities and facilitates secure
information sharing within the COGITO system.

3.1.1 Overview

The Identity Provider has been deployed as a standalone software application behind the Nginx reverse proxy
server and offers an integrated solution for access management. The authentication process of a user is divided
into three main parts:

1. The COGITO application redirects the user to Keycloak to perform the authentication process.

2. The user provides the credentials, and if the authentication is successful, Keycloak redirects the user
back to the COGITO application.

3. The COGITO application performs a new request to the Keycloak service for retrieving the Access, ID,
and Refresh tokens.

. Auth Request . User Authentication

Access, Refresh, ID Toke ns—|

Application
lient ID, Secret

Figure 2 Identity Provider’s user authentication process

3.1.2 Technology Stack and Implementation Tools

The Identity Provider is based on the open-source project Keycloak. The work conducted in T7.5 is related to the
installation and configuration of the service. The service is behind the Nginx reverse proxy server, which handles
the SSL encryption and forwards the HTTP requests to the local destination.

Table 2 Libraries and Technologies used in the Identity Provider

Technology Name Version License

w COnstruction phase

B S |
COGITO

- D7.10 Digital Twin Platform v2 17

Keycloak 16.1.1 Apache Licence 2.0
Nginx 1.20.2 BSD
Certbot 1.22 Apache Licence 2.0

3.1.3 API Documentation

The Keycloak server is configured to provide i) an Authentication REST API responsible for granting access to
users based on their credentials and ii) an Admin REST API that allows administrator users to access the
management resources that are provided by Keycloak’s Admin Console.

3.1.3.1 Authentication REST API

Each COGITO application that requires authentication through the Identity Provider has a unique ClientID and a
Secret generated by DTP developers during the configuration of Keycloak. The endpoints and the parameters
required for preparing external applications to connect to the Keycloak server are listed in Table 3.

Table 3 Identity Provider’s Authentication API

Name Method | Endpoint

OpenID Endpoint GET http?://aujch.coglto-pmject.com/auth/realms/coglto/.welI-known/openld-
configuration

Auth URL GET https://auth.cogito-project.com/auth/realms/cogito/protocol/openid-connect/auth

Access Token URL GET https://auth.cogito-project.com/auth/realms/cogito/protocol/openid-
connect/token

The OpenlD Endpoint provides the main configuration parameters of the authentication server. The response is
a JSON object which includes all available endpoints, scopes, and signing algorithms. The Auth URL is the
endpoint of the authorisation server. It is used to retrieve an authorisation code which is included in the
redirected URL after a successful login. On the other hand, the Access Token URL is the endpoint of the
authentication server. It is used by the COGITO application to request the Access, ID and Refresh Tokens.

3.1.3.2 Admin REST API

The Identity Provider offers a fully functional Admin REST API, which offers access to all features provided by the
Keycloak’s Admin Console. This APl is mainly used within the Input Data Management component by the DTP
Identity Manager for retrieving the complete list of registered users and roles. This information is required for
assigning or removing roles from the registered users. The endpoints and their parameters are listed in Table 4.

Table 4 Identity Provider’s Admin API

Name Method Endpoint
Get Users GET https://auth.cogito-project.com/auth/admin/realms/cogito/users
Get Roles GET https://auth.cogito-project.com/auth/admin/realms/cogito/roles

https://auth.cogito-project.com/auth/admin/realms/cogito/users/{user-id}/role-

Get User Roles GET !
mappings/realm

Assign a Role to https://auth.cogito-project.com/auth/admin/realms/cogito/users/{user-id}/role-

POST
User mappings/realm
Remove a Role DELETE https://auth.cogito-project.com/auth/admin/realms/cogito/users/{user-id}/role-
from a User mappings/realm

COGITO - GA ID. 958310 '
COGITO

D7.10

The requests Assign a Role to User (POST) and Remove a Role from a User (DELETE) require the list of the selected
roles as body parameters. Each user role is defined as a JSON object that contains the Role Id and the Role Name.
The detailed documentation® and the Postman collection of this API are available online.

3.1.4 Usage Walkthrough

The COGITO applications automatically redirect the unauthenticated users to the main page of the Identity
Provider. If the user has valid credentials, he/she can proceed with the authentication process using the login
page, as shown in Figure 3.

COGITO

Figure 3 Identity Provider’s user login page

Otherwise, a registration process is required. The Identity Provider offers a registration page for registering new
users, as shown in Figure 4.

COGITO

Figure 4 Identity Provider’s user registration page

After the registration process, the users still have no access to the COGITO system. The DTP Identity Manager
should assign the proper roles to grant users access to COGITO applications. Furthermore, each user has access

3 Digital Twin Platform API documentation https://api.cogito-project.com

i S

el

https://api.cogito-project.com/

D7.10

to Keycloak’s Account Management Console, which provides access to a basic account management system, as
shown in Figure 5. The URL" of this console is open to the internet and offers an alternative way for users to
register without accessing the COGITO applications. It also provides pages for updating the users’ account
information and resetting their passwords.

B oo oo

Welcome to Keycloak Account Management

Personal Info

s "

Figure 5 Identity Provider’s Account Management console

3.1.5 Application Example

As shown in the example of Figure 6, the user authentication process has three steps. Initially, the COGITO
application redirects the user (1) to Keycloak to perform the authentication process. Next, the user provides the
credentials, and if the authentication is successful, Keycloak redirects (2) the user back to the COGITO application.
Finally, the COGITO application performs a new POST request to the Keycloak (3) for retrieving the Tokens.

grant_type:

code:

redirect_uri:

client_id:

Figure 6 Identity Provider’s user authentication example

3.1.6 Licensing

The Identity Provider is based on the open-source project Keycloak and provides an identity and access
management solution which is released under the Apache License 2.0.

3.1.7 Installation Instructions

This component is deployed as a standalone software application in the Authentication Layer. It provides various
endpoints which are open to the internet. No file download, installation or maintenance is required by the
COGITO users.

4 Account Management Console https://auth.cogito-project.com/auth/realms/cogito/account/#/

https://auth.cogito-project.com/auth/realms/cogito/account/#/

- D7.10 Digital Twin Platform v2 20

3.1.8 Development and Integration Status

As mentioned previously, the work performed in this component was focused mainly on installation and
configuration activities. Currently, the service is fully functional, and the configuration is aligned with the
outcomes of the “T2.1 — Elicitation of Stakeholder Requirements” and “T2.4 — COGITO System Architecture
Design”. The stakeholders identified in T2.1 [4] are configured in the Identity Provider as realm roles.
Furthermore, the COGITO tools, which offer GUI and user authentication, are registered in the Identity Provider
as realm clients.

3.1.9 Requirements Coverage

The Identity Provider covers some of DTP’s functional and non-functional requirements defined in T2.4 and the
corresponding deliverable “D2.5 — COGITO System Architecture v2”. The functional and non-functional
requirements which are related to this component are presented in Table 5. The Reqg-1.1 is fully covered thanks
to the central identity and access management solution. Additionally, Reg-2.3 is achieved by using the Nginx
server to offer SSL encryption.

Table 5 Identity Provider’s requirements coverage

Type ID Description Status
Functional Reg-1.1 Authenticates COGITO users and applications Achieved
Non-Functional Reg-2.3 Security Achieved

3.1.10 Assumptions and Restrictions

The ldentity Provider is a monolithic application based on the open-source project Keycloak. It has been
configured to manage a single realm instance dedicated to the COGITO system. The various COGITO tools have
been configured as realm clients, and their corresponding credentials (Client ID, Secret) have been generated
and delivered to COGITO’s tools developers. Furthermore, the user roles have been introduced as realm roles
based on the outcomes of “T2.1 - Elicitation of Stakeholder Requirements”. Currently, most of COGITO’s tools
developers have tested the core functionalities provided by the Identity Provider. The full integration of the
Identity Provider is expected to take place as part of “T8.1 - End-to-end ICT System Integration, Testing and
Refinement”, when all involved tools should be capable of providing their full functionality.

w COnstruction phase

B S |
COGITO

D7.10

4 Project Creation and Ontology Population

One of the core functionalities of the DTP, is to load the as-planned data and populate the corresponding
knowledge graphs and databases. Before the construction works start, the as-planned data of a project are
loaded into the DTP through the Input Data Management component. Within COGITO, the as-planned data come
from three different sources: a) BIM authoring tools such as Autodesk Revit and Autodesk Civil 3D, providing the
3D BIM model along with the 4D semantics; b) project management tools such as Microsoft Project and
Primavera P6, providing the detailed schedule of the construction works; and c) ERP solutions, providing the as-
planned resources.

When the as-planned data are available, data quality checking and file-size optimisation operations are
performed to ensure that the input files meet the requirements of the various transformation tools. Once the
data are ready, the Knowledge Graph Generator (KGG) can generate the complete knowledge graph, which
represents a network of physical and virtual entities (i.e., workers, machinery, equipment, zones, building
elements, activities) and illustrates the relationships between them as shown in the example of Figure 7 [5].
Furthermore, it generates and stores the corresponding Thing Descriptions in the Thing Description Directory. A
Thing Description is an object which follows the WoT Thing Description specification and provides a set of meta-
data and interfaces of Things, where a Thing is an abstraction of physical or virtual entities.

Figure 7 Example of a knowledge graph generated by the KGG component

In this section, we present the final release of the components involved in the processes of project initialisation,
data loading and ontology population and validation.

4.1 Input Data Management component

The final release of the Input Data Management (IDM) component has been successfully deployed in the Data
Ingestion Layer. It provides a web-based GUI that allows users with proper permissions to create new projects,
assign users to projects, and upload the as-planned data. Furthermore, it offers a REST APl allowing other COGITO
applications to access information related to the projects, users, and roles.

4.1.1 Prototype Overview

The IDM component is deployed as a standalone application into the Data Ingestion Layer. It uses modern web
technologies to deliver a rich GUI and offers authorised access to COGITO users through the Identity Provider.

] [%}D

- D7.10 Digital Twin Platform v2 22

The implementation of this component is based on Spring Boot technology which is built on top of the Spring
Framework. It contains an embedded version of the Apache Tomcat, which hosts all required software packages.
The web application follows the Model-View-Control (MVC) approach and uses the Spring Security Framework
with the Spring Keycloak Adapter for managing the access policies of the COGITO users.

The IDM component also provides a REST API allowing the COGITO applications to interact with the DTP for
project creation, user management and loading the as-planned data. In the same way as before, the Spring
Security Framework is used to authenticate requests performed by the various COGITO tools using APl Keys. The
API Key is a unique string that identifies HTTP requests associated with a COGITO tool and ensures that only
authorised clients can access the APl. COGITO's tool owners and developers can use the IDM component to
generate or remove API| keys from their accounts. Figure 8 shows the main interactions between the IDM
component and the other entities of the DTP.

Figure 8 IDM’s sub-components along with their interactions

4.1.2 Technology Stack and Implementation Tools

The IDM component is based completely on open-source technologies. As mentioned previously, it is built on
top of the Spring Framework and is deployed as a standalone application. It’s installed behind the Nginx reverse
proxy server, which handles the SSL encryption and forwards the HTTP requests to the correct destination.

Table 6 Libraries and Technologies used in the Input Data Management component

Technology Name Version License

Spring Framework 5.3.1 Apache Licence 2.0
Spring Boot 2.3.0 Apache Licence 2.0
Spring Security 5.5.0 Apache Licence 2.0
Thymeleaf 3.0.15 Apache Licence 2.0
Hibernate 5.6.9 LGPL2.1

MySQL 8.0.24 GPLV2

Nginx 1.20.2 BSD

Certbot 1.22 Apache Licence 2.0

w COnstruction phase

B S |
COGITO

- D7.10 Digital Twin Platform v2 23

4.1.3 Input, Output and APl Documentation

The IDM component provides a REST APl enabling the COGITO applications to access data related to the projects.
This APl is used by various COGITO applications such as the Digital Command Centre (DCC), the Process Modeling
and Simulation (PMS), and the Work Order Definition and Monitoring (WODM) to retrieve data related to the
available projects and their users. The endpoints, along with their parameters, are listed in Table 7.

Table 7 Input Data Management component’s REST API

PP = Path Parameter
FP = Form Parameter

Method Endpoint

Get all Projects GET https://dtp.cogito-project.com/api/projects N/A

. https://dtp.cogito- . .
Get a Project GET T iy e o an A (PP) projectld: GUID
Get all Users of a https://dtp.cogito- . .
Project GET project.com/api/projects/{projectid}/users {PP) projectld: GUID
Get all Properties https://dtp.cogito- . .
of a Project GET project.com/api/projects/{projectld}/properties () rregeeitieh LI
Get all Users GET https://dtp.cogito-project.com/api/users N/A
Get all Roles of a https://dtp.cogito-)
User GET project.com/api/users/{userld}/roles (PP) userld: GUID
Get a User GET https://dtp.cogito-project.com/api/users/{userid} (PP) userld: GUID
Get all Projects of a https://dtp.cogito-)
User GET project.com/api/users/{userld}/projects (FiFlsifteh U1

The following are examples of JSON responses returned by the GET requests of the IDM’s REST API. For some
requests, the responses have no body content. In this case, the HTTP status code is used: i) the "200 - OK" is
returned if the request is successful, the "404 - Not Found" is returned if the resource is unavailable, and iii) the
response "400 - Bad Request" is returned if an error has occurred.

Get all Projects

[
{
"name": "DEMO_01",
; "jd": "1cf55b98-db69-46f8-ab4e-a531d512d4d3"
{
"name": "DEMO_02",
} "jd": "c69407ff-2f81-4138-85d1-21a5e9e24550"
]

Get a Project

"name": "DEMO_01",
"description": "4D BIM provided by UEDIN",
"jd": "1cf55b98-db69-46f8-a64e-a531d512d4d3"

Get all Users of a Project

[

{
"firstname": "Kyriakos",
"id": "1b20a241-c5fe-422e-8043-01461dala2c3",
"email": "katsigarakis@gmail.com",

} "lastname": "Katsigarakis"

w COnstruction phase

B S |
COGITO

- D7.10 Digital Twin Platform v2

24
| |
Get all Properties of a Project

[
{
"name": "country",
"value": "GR"
i
{
"name": "datastore",
. "value": "https://his.cogito-project.com/demo_01"
{, " n " : "
name": "triplestore",
: "value": "https://triplestore.cogito-project.com/demo_01"
]
Get all Users
[
{))
"firstname": "Kyriakos",
"id": "1b20a241-c5fe-422e-8043-01461dala2c3"”,
"email": "katsigarakis@gmail.com",
) "Tastname": "Katsigarakis"
O .
"firstname": "Georgios",
"id": "685d8e70-8f7d-4c23-9719-69dffd52677d",
"email": "g.lilis@ucl.ac.uk",
) "lastname": "Lilis"
(N s
"firstname": "Frédéric",
"id": "47e5af5c-832c-472c-abcb-88d3bc80efcc"”,
"email": "f.bosche@ed.ac.uk",
) "lastname": "Bosché"
O .
"firstname": "Giorgos",
"id": "4d3f182e-997a-4d63-a843-81d498d2240c",
"email": "g.giannakis@hypertech.gr",
) "lastname": "Giannakis"
]
Get all Roles of a User
[
{
"name": "DTP Developer",
"id": "95f260f6-880a-4899-abfc-0777a07e2a36"
%,
"name": "DTP Project Manager",
; "id": "90080412-bd71-4397-92a0-d01415c463b7"
]
Get a User
{))
"firstname": "Kyriakos",
"id": "1b20a241-c5fe-422e-8043-01461dala2c3",
"email": “katsigarakis@gmai].com",
; "lastname": "Katsigarakis"
Get all Projects of a User
[
{
"name": "DEMO_01",
; "jd": "1cf55b98-db69-46f8-ab4e-a531d512d4d3"
]
RIE]

- - COGITO - GA ID. 958310

TO

D7.10

4.1.4 Usage Walkthrough

As shown in Figure 9, when the COGITO users sign into the IDM component through the DTP’s Identity Provider,
they see the table of projects created in the past and some of their details, such as the project description and
creation date. On the right side of the table, the Actions column contains a button for deleting a project after
confirmation. By clicking on any project, they can see further information and perform additional actions.
Depending on their roles, users may have access to projects they created or the entire list. The role DTP Project
Manager provides access to all projects, while the role Project Manager to projects created by the active user.

3 Modules

Projects
B3 Projects
L Users
Projects
i Applications
& Connections Name Alias Description Creation Date Actions
Set) ’ van
L e Karlshue Karlshue Pre-Validation 9/1222:24 /X

Actors

File Extensions

Figure 9 View of all user’s projects

On the same page, the users can create a new project by clicking the “+ Project” button. As shown in Figure 10,
a modal popup window appears, which allows the users to provide basic information such as the project name
and the project description. At any time, users can cancel the project creation process by clicking on the Close
button.

COGITO

Add Project

Name

S Modules

Project gchool

B Projects
Description
a Users
i Demo Project

Projec
2 Applications
& Connections Nan on Date Actions

.
£ Setiings

Kar 12294 AE
Actors

File Extensions

Figure 10 Creation of a new project

Once the project is created, the users can proceed with the configuration. They need to define the project
members and, if required, add global project parameters. On the main page of a project, the users with proper
roles can assign project members by clicking the “+ User” button. As shown in Figure 11, a modal window
containing a combo box element with all registered users appears. The assighment of the selected user with the
project is done by clicking the Assign button. At any time, users can cancel the assignment process by clicking on
the Close button.

[%['HTD

D7.10

Assign User

Kyriakos Katsigarakis

&= Modules
Project
Bl Projects
2 Users CLOSE
Schot
i Applications
4 Connections Identifier Creation Date
£t Settings
Actors
File Extensions .
Assigned Users

Figure 11 Assignment of registered users to a project

Following the assignment process, users with proper roles can create global properties by clicking the “+
Property” button. As shown in Figure 12, a modal popup window appears allowing users to fill in the property
name and its value. There are no restrictions on the creation of project properties.

COGITO Add Property
Name
= Modules Assig
country
B Projects
Firs value Actions
2 Users
Kyri o _
i Applications

& Connections

-
Project Properties

0 Settings
Actors

File Extensions

Name Value Actions
graph.u htips://graph.cogito-project.com/Schoo / x
project.alias school ;s x

Figure 12 Creation of a new property in a project

On the same page, users can upload the as-planned data by clicking the “Browse” button as shown in Figure 13.
Currently, the as planned data consist of three different files:

1. The 3D BIM is provided in IFC, particularly in versions IFC4 or IFC4x3. The DTP has specific data
requirements described in "D7.4 - Extraction, Transformation & Loading Tools and Model Checking v2".
For instance, the 4D information for each element, such as the construction zone and the task identifier.

2. The construction schedule is provided in CSV or MS Project XML file format, which contains the tasks
and their properties.

3. The as-planned resources are provided in a CSV file format, containing the resource types and their
properties.

el ?ﬁm

D7.10

The detailed data structures of the as-planned data are presented in “D7.4 — Extraction, Transformation &
Loading Tools and Model Checking v2”. Upon the upload process, the IDM will store these files in DTP’s File
Storage System, and it will send an internal notification to DTP’s Data Management Layer for initialising a
sequence of various data processing operations.

=B Modules

Applications Input Data Management Upload the as-planned data 9/1222:38
B Projects
a Users
R Data Collection Job Identifier Project Identifier
i Applications
& Connections Completed
£ Setiings
Files Upload file Browse

Figure 13 Uploading the as-planned data using the IDM component

In the left sidebar of the IDM application, the link “Users” is visible only to users who have the role of DTP Identity
Management, as shown in Figure 14. This role allows users to manage the access policies of the registered users.

.

()

i

Name Email Verified

Figure 14 View of all registered users

By clicking on any account, they can view its data and roles. The users with the role DTP Identity Management
can assign roles to any account by clicking the “+ Role” button. As shown in Figure 15, a modal window that
contains a combo box element with the available roles appears. It is worth mentioning that all roles are
predefined and configured directly in Keycloak. The assignment of the selected role with the user account is done
by clicking the Assign button. At any time, users can cancel the assignment process by clicking on the Close
button.

[%[;”O

- D7.10 Digital Twin Platform v2 28

DTP Developer

B2 Projects
Users = Kyri
2 Users
User Info
User Id 451119-41 3a-4c42-91 da-e9ad4ch402d2 Email katsigarakis@gmx.com
FirstName Kyriakos LastName Katsigarakis
User Roles e
Name Container Actions
DTP Project Manager cogito .

Figure 15 Assigning a role to the user account

4.1.5 Licensing

The IDM is a closed source component. The lead group in charge of the development of the DTP is receiving
requests for providing access to the component within the project.

4.1.6 Installation Instructions

This component is deployed as a monolithic application in the Data Ingestion Layer. It provides a rich GUl and a
REST APl which are open to the internet. No file download, installation or maintenance is required by the COGITO
users.

4.1.7 Development and Integration Status

As mentioned previously, the final release of the IDM component has been deployed in the Data Ingestion Layer.
Currently, the service is fully functional, and it provides all core functionalities that have been identified in “D7.2
— Digital Twin Platform Design & Interface Specification v2”. The development team will continue providing
support and maintaining the IDM component as part of the “T8.1 - End-to-end ICT System Integration, Testing
and Refinement” activities.

4.1.8 Requirements Coverage

This component covers some of the DTP’s functional and non-functional requirements defined in T2.4 and the
corresponding deliverable “D2.5 — COGITO System Architecture v2”. The functional and non-functional
requirements related to the IDM component are presented in Table 8. The Req-1.2 is fully covered by the
embedded web-based application that enables users to create, load and manage projects, users, and files.
Additionally, the Reg-2.3 and Req-2.4 are achieved with the help of Nginx reverse proxy server which offers SSL
encryption and load balancing capabilities.

Table 8 IDM component’s Requirements Coverage

Type [») Description NETY

Receives as-planned data (BIM models, construction schedule,

. Achieved
available resources)

Functional Reg-1.2

COGITO - GA ID. 958310 '
COGITO

- D7.10 Digital Twin Platform v2 29

Reg-2.3 Security Achieved

Non-Functional
Reqg-2.4 High availability Achieved

4.1.9 Assumptions and Restrictions

The IDM component is a monolithic application developed from scratch following the MVP approach providing
core functionalities essential for creating and managing projects. Currently, it supports both IFC4 and IFC4x3
versions of the IFC specification, although more tests are required. The full integration is expected to take place
as part of “T8.1 - End-to-end ICT System Integration, Testing and Refinement”, when all involved tools should be
capable of providing their full functionality and data from the pilot sites will be available.

% COnstruction phase

B S |
COGITO

D7.10

4.2 Knowledge Graph Generator

The Knowledge Graph Generator (KGG) component is part of the Data Ingestion Layer and oversees: i) the
execution of the various ETL tools, which are responsible for transforming COGITO’s as-planned input files to
Resource Description Framework® (RDF) data, ii) the validation of the semantic links included in these RDF data
and, iii) the generation of the Thing Descriptions. The ETL tools included in the KGG component have been
described in “D7.4 - Extraction, Transformation & Loading Tools and Model Checking v2”. The final release of the
KGG contains various sub-components and ETL tools that have been packaged as containerised services using
Docker and deployed in a cloud computing environment.

In this section, we present the final release of the core KGG components involved in the orchestration of the ETL
tools and the generation of the Thing Descriptions.

4.2.1 Prototype Overview

The main functionalities of the KGG component are the population and validation of COGITO’s knowledge graph
and the generation of the Thing Descriptions. For this purpose, the KGG contains two core sub-components, the
Thing Manager, and the Wrapper module, as shown in Figure 16.

Thing Description File Storage

Directory

@ el

System

1

Generates, UpdatesTD

"

Populates KG

[

. . Requests, Receives Raw Files .

—SSE Event—¥

-Response—

)
@

Input Data
Management

Sends
M eta-Dznz_’

Thing Manager Wrapper module

| File Pre-Processing |

| ETL Execution |

v

| RDF Validation |

Figure 16 High-level Architecture of Knowledge Graph Generation

A quick overview of Figure 16, shows that the starting point for generating the final knowledge graph and the
Thing Descriptions is the IDM component. The users with proper roles upload the as-planned data of a project
via IDM’s GUI. Once the files are loaded and stored in the File Storage System, the IDM component performs a
request (1) to the Thing Manager for creating an empty container for the specific project. Next, the Thing
Manager sends asynchronous messages to the Wrapper module (2) via the Server-Sent Event (SSE) protocol for
invoking the various ETL tools. The Wrapper module is responsible for i) retrieving the as-planned input data files
(3) from the File Storage System, ii) if required, executing pre-processing operations on the files, iii) triggering
the executions of the various ETL tools and, iv) performing data validation operations on the generated RDF data
by applying SHACL rules. Finally, the Thing Manager stores the returned TTL files to the Triplestore (4) and
generates and stores the corresponding Thing Descriptions to the Thing Description Directory (TDD) (5).

4.2.2 Technology Stack and Implementation Tools

The Thing Manager and the Wrapper module, which are the core sub-components of the KGG, have been
developed in Python using a set of open-source technologies and libraries listed in Table 9.

> The RDF is a general framework for representing interconnected data on the web https://www.w3.org/RDF/

SOGITO

https://www.w3.org/RDF/

- D7.10 Digital Twin Platform v2

31
Table 9 Libraries and Technologies used in the Thing Manager and the Wrapper module
Technology Name Version ‘ License
Flask 2.11 BSD 3-Clause License
requests 2.27.1 MIT License
wheezy.template 3.1.0 MIT License
Flask-SSE 1.0.0 MIT License
APScheduler 3.9.1 MIT License
rdflib 6.1.1 BSD 3-Clause License
SPARQLWrapper 2.0.0 W3C® SOFTWARE NOTICE AND LICENSE
4.2.3 Input, Output and APl Documentation
The Thing Manager component provides a REST API allowing other DTP components, such as the IDM and the
DT Runtime, to trigger the various generation and validation operations and to retrieve the generated RDF data
in TTL and the corresponding Thing Descriptions. The endpoints containing the project extension are relative to
the use of a project in a 1-1 relation with the project defined in the IDM component, which is the one reflected
in the ontology. In addition, this component will be of internal use for the DTP, so there will be no collision with
other endpoints that contain the term project in their definition. The endpoints provided, along with their
parameters, are listed in Table 10.
Table 10 Thing Manager’s REST API
. . PP = Path Parameter
Description Method Endpoint
FP = Form Parameter
Creates a new project, its respective POST /project/{projectld} (PP) projectld: GUID
triples and thing description (FP) name: Text
(FP) description: Text
Updates an existing project, its PUT /project/{projectid} (PP) projectld: GUID
respective triples and thing (FP) name: Text
description (FP) description: Text
Deletes an existing project, its DELETE /project/{projectld} (PP) projectld: GUID
respective triples and thing
description, and the thing
descriptions associated to it in
cascade mode
Retrieves the thing description ofan | GET /project/{projectid} (PP) projectld: GUID
existing project
Adds files to an existing project, POST /project/{projectld}/file (PP) projectld: GUID
creates respective triples and thing (FP) format_of _file: Text
descriptions (FP) type_of_file: Text
(FP) uri_of_file: Text
(FP) metatada: Text
Deletes file from project and its DELETE /project/{projectid}/file (PP) projectld: GUID
respective triples and thing (FP) format_of _file: Text
descriptions (FP) type_of file: Text
(FP) uri_of_file: Text
(FP) metatada: Text
Retrieves from KGG the respective GET /project/{projectld}/file/ttl (PP) projectld: GUID
TTL file generated, saves it into the (FP) format_of_file: Text
triple store and generate respective (FP) type_of_file: Text
thing descriptions for specific (FP) name_of_file: Text
elements of the graph

- - COGITO - GA ID. 958310
C

o

GITO

- D7.10 Digital Twin Platform v2

The TDD is a persistence service that contains the Thing Descriptions created by the Thing Manager component.
It uses the WoT Hive implementation, compliant with the W3C Web of Things Directory standard specification.
The TDD component provides a REST API allowing other DTP components to discover, create, retrieve, update,
and delete Thing Descriptions. The endpoints provided, along with their parameters, are listed in Table 11.

Table 11 Thing Description Directory’s REST API

. . PP = Path Parameter
Description Method | Endpoint
FP = Form Parameter

Provides the Thing Description of the GET /.well-known/wot-thing- N/A
WoT Hive directory description
Creates an anonymous Thing Description, | POST /api/things (body) : JSON-LD

provided in the body as JSON-LD framed.
The generated id is output in the
response headers

Partially updates an existing Thing PATCH /api/things/{id} (PP) id: GUID
Description, the updates must be
provided in JSON-LD framed

Solves a SPARQL query following the GET /api/search/sparql?{query} (PP) query: Text
standard. The response is formatted in
JSON. Other formats supported by the
APl: XML, CSV, and TSV.

Deletes an existing Thing Description DELETE | /api/things/{:id} (PP) id: GUID

4.2.4 Application Example

An example of the operations performed by the KGG is illustrated in Figure 17. Initially, the IDM component
creates a project entry into the Thing Manager, which includes the project id, project name, and project
description. Next, the IDM uploads the as-planned input data files, and the Thing Manager, through the Wrapper
module triggers, the execution of the various ETL tools.

Thing Description .
Directory E Triplestore

| T T [
et Generates TO B Populates KG
ML |

1FC

]

Figure 17 Generation of COGITO’s TTLs and TDs

Input Data
Management

The outputs of the KGG component consist of the TTL data illustrated in Figure 18, and the corresponding JSON-
LD data illustrated in Figure 19.

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#> .

@prefix data: <http://data.cogito.iot.linkeddata.es/resources/> .
@prefix xsd: <http://www.w3.0rg/2001/xMLSchema#> .

@prefix facility: <https://cogito.iot.linkeddata.es/def/facility#> .
@prefix process: <https://cogito.iot.linkeddata.es/def/process#> .
@prefix resource: <https://cogito.iot.linkeddata.es/def/resource#> .

data:Project_cogito:project:1
a facility:Project ;
facility:hasName "testl"AA<http://www.w3.org/2001/XMLSchema#string> ;

32

COnstruction phase

B S |
COGITO

D7.10

facility:hasDescription "test description"AA<http://www.w3.org/2001/XMLSchema#string> ;
facility:projectID "cogito:project:1"AA<http://www.w3.0rg/2001/XMLSchema#string> ;
facility:isRelatedToProcess process:data/17898B04B-1A16-EC11-9EF0-BO0CD17291CA .

data:Process_cogito:project:1_1789804B-1A16-EC11-9EF0-B0O0CD17291CA

a process:Process ;

process:processID '1789B04B-1A16-EC11-9EF0-BO0CD17291CA" ;

process:hasName '20210916_pPlanificacion_UTE_SOT.xml' ;

process:hasCreationDate '2020-07-31T09:00:00'AA<http://www.w3.0rg/2001/XMLSchema#dateTime>;
process:hasCost data:cost/1789B04B-1A16-EC11-9EF0-B0O0CD17291CA ;

process:isPlannedIn data:interval/1789B04B-1A16-EC11-9EF0-BO0CD17291CA .

data:Task cogito-project'l 1789B04B-1A16-EC11-9EF0-BO0CD17291CA_0O

a process:Task ;

process:taskId 18893043 1A16-EC11-9EF0-BO0CD17291CA" ;

process:taskuid '0' ;

process:hasName 'SOT-MURCIA'AA<http://www.w3.org/2001/XMLSchema#string> ;
process:hasCreationDate ''AA<http://www.w3.0rg/2001/XMLSchema#dateTime> ;
process:isPlannedIn data:interval/1889B04B-1A16-EC11-9EF0-BO0CD17291CA ;
process:hasPriority '500'AA<http://www.w3.0rg/2001/XMLSchema#integer> ;
process:hasProgress 'PTOHOMOS'AA<http://www.w3.0rg/2001/XMLSchema#string> ;
process:hasStatus 'PTOHOMOS'AA<http://www.w3.0rg/2001/XMLSchema#string> ;
process:hasCost data:cost/1889B04B-1A16-EC11-9EF0-BO0CD17291CA .

data:ResourceType_cogito:project:1 _1789B04B-1A16-EC11-9EFO-
BO0CD17291CA_Truck_mounted_concrete_boom_pump_1

a resource:ResourceType ;

a resource:EquipmentType ;

resource:resourceTypeld 1 ;

resource:name 'Truck_mounted_concrete_boom_pump'AA<http://www.w3.0rg/2001/XMLSchema#string> ;
resource:initials 1 ;

resource:masunit 2 ;

resource:costPerHour 2000 .

Figure 18 Example of RDF generated by the ETL tools contained in the KGG component

{
”@context : "https: //www w3.org/2019/wot/td/v1",
"id": cog1to prOJect 1"
"title": "dem
"descr1pt1on”'"/ap1/th1ngs/uu1d project:0c8c5e40-dbdf-484f-b563-dcf550f84d90"
secur1tyDef1n1t1ons
"nosec_sc" {"scheme"'"nosec"}
”éecurity": ["nosec_sc"],
"properties":
"demo": {
; "forms": [
”href"' "/f11es/uu1d f11e 3741aa23-c870-4937-bfa7-2fbfec971c0a",
"contentType": "json"
1}f’
”href"' "/f11es/uu1d file:3741aa23-c870-4937-bfa7-2fbfec971cOb",
"contentType": "
%,
"href": " /f11es/uu1d file:3741aa23-c870-4937-bfa7-2fbfec971cOc",
"contentType": "xml"
}E,
"href": "/files/uuid:file:3741laa23-c870-4937-bfa7-2fbfec971c0d",
} "contentType": "csv"
, .]
"h ttp //openmetr1cs eu/openmetrics#Space_1157": {
"forms": [
"href"'"/sparq17query http://openmetrics.eu/openmetrics#Space_1354",
"contentType": "ttl1"
: 1
"h ttp //0penmetr1cs eu/openmetrics#Space_1354": {
"forms": [
"href"'"/sparq17query— http://openmetrics.eu/openmetrics#Space_1354"
'contentType": "tt1"
]
1,
}

Figure 19 Example of Thing Description generated by the Thing Manager

COGIT

digital Twin mOdel

- D7.10 Digital Twin Platform v2 34

4.2.5 Licensing

As mentioned previously, the KGG component consists of i) the Thing Manager, which handles the requests done
by other DTP components and generates the Thing Descriptions, ii) the Wrapper module, which is called
internally by the Thing Manager and performs the requests to the ETL tools for generating and validating the RDF
data, and iii) the various ETL tools, which are responsible for transforming the raw input data files to RDF triples.
All these sub-components are open-source and licenced under the Apache Licence 2.0.

4.2.6 Installation Instructions

The installation process is deploying a Docker container and configuring a docker-compose file indicating the
endpoints of the Thing Directory (TDD), the Triplestore and the Thing Manager (TM). The KGG has been deployed
on a private cloud environment, and the provided services are online and open to the internet. The
corresponding URLs are listed in Table 12.

Table 12 Knowledge Graph Generator URLs

KGG Component Description URL

Handles the requests done
Thing Manager by the DTP and generates https://data.cogito.iot.linkeddata.es/tm/
the Thing Descriptions.

Stores the Thing

Thing Directory Description generated by https://data.cogito.iot.linkeddata.es/tdd/api/
the Thing Manager.
Triplestore Stores the RDF data. https://triplestore.cogito.iot.linkeddata.es/

Performs the requests to
the ETL tools for generating = https://data.cogito.iot.linkeddata.es/tm/stream?channel=
and validating the RDF project-id,bim-file,schedule-file,resources-file

data.

Wrapper module

4.2.7 Development and Integration Status

The KGG component implementation and deployment activities are completed. The final version of the Thing
Manager and the Wrapper modules have been tested and deployed in DTP's Data Ingestion Layer. They support
the generation of the knowledge graph covering the data requirements of the identified UCs. Furthermore, the
Thing Manager supports automatic validation of the knowledge graph using SHACL shapes created based on the
as-planned data requirements and the generation of the Thing Descriptions based on the RDF data produced by
the various ETL tools.

4.2.8 Requirements Coverage

As shown in Table 13, the KGG component covers one of the functional requirements of the DTP included in
“D2.5 — COGITO System Architecture v2”. The Reqg-1.5 is fully covered by the KGG sub-components and the
involved ETL tools. The final release of the Thing Manager can orchestrate the data transformation processes
and store the output RDF data in the Triplestore.

Table 13 KGG component’s Requirements Coverage

Functional Reg-1.5 Populates COGITO’s ontology Achieved

w COnstruction phase

B S |
COGITO

- D7.10 Digital Twin Platform v2 35

4.2.9 Assumptions and Restrictions

The operation of the Knowledge Graph Generator tool relies on the following assumptions and restrictions:

e The Docker configuration file must always contain the endpoints required for the deployment on a
cloud-based environment such as the Thing Manager endpoint, the Triplestore endpoint and the Thing
Directory endpoint.

e The information sent to the Thing Manager must always be in JSON format, if the sender is not a
Wrapper.

e Thing Descriptions follow the structure defined in the W3C standard.

COGITO

- - COGITO - GA ID. 958310

D7.10

5 Data Processing and Data Delivery

Once the as-planned data are loaded to the DTP’s Data Persistence Layer and the knowledge graphs are
generated, the COGITO applications can interact with the DTP for a) providing the as-built data, which consists
of imagery and location tracking information along with their meta-data, and b) performing data requests that
require special handling due to the diversity of the various domains included in COGITO.

Within COGITO, the Data Pre-Processing tools are responsible for providing the as-built data to DTP. More
specifically, this category contains the following tools:

e The IloT Data Pre-Processing tool is responsible for pre-processing raw location tracking data coming
from various loT sensors.

e The Visual Pre-Processing tool is responsible for pre-processing raw visual data and point clouds coming
from cameras and LiDAR scanners.

On the other hand, the remaining COGITO tools are interacting with DTP’s Data Management Layer and are
classified as follows:

e The Health and Safety tools are responsible for generating hazard mitigation measures and producing
warning notifications to the on-site workers for their proximity to hazardous areas.

e The Workflow Modeling and Simulation tools are responsible for monitoring and optimising the
construction processes.

e The Quality Control tools are responsible for comparing the as-designed and as-built data and detecting
potential defects.

e The Visualisation tools are responsible for retrieving and visualising various data stored in the DTP, to
support on-site and off-site activities of relevant stakeholders.

The Data Management Layer manages the data requests of these tools by offering an actor-based runtime
environment and a web-based application for the configuration of the various endpoints required. This section
presents the final release of the DT Runtime component, which is responsible for orchestrating the internal data
processing operations, harmonising their responses, and sending them to the COGITO tools.

5.1 Digital Twin Runtime component

The Digital Twin (DT) Runtime component is a lightweight data integration container for hosting configurable
modules implemented to perform various data processing operations. It is based on the open-source framework
Akka® that offers a toolkit for simplifying the deployment of concurrent and distributed applications. In other
words, Akka is a powerful reactive high-performance framework optimised for running on the Java Virtual
Machine (JVM). Within COGITO, this implementation can handle multiple requests simultaneously performed by
the various COGITO tools and respond through the provided REST API.

5.1.1 Prototype Overview

This component contains a set of ready-made software actors for facilitating tool developers to design and
deploy dynamic modules that can handle complex requests. An actor is an extensible program-code template
containing configurable parameters for interacting with other components, executing its business-logic
operations, and forwarding the response to the next actors using the framework’s embedded lightweight
messaging system. Thus, the actors are created once by the DTP developers, packaged in the DT Library, and
then reused in the various configurable modules of the DT Runtime component, as shown in Figure 20. Within
COGITO, most of the provided actors are responsible for executing sequences of SPARQL queries to extract
information from the knowledge graph and merge the responses into a single JSON file. These actors implement
the different data processing operations defined in COGITO’s UCs to satisfy the data needs of the various COGITO
tools.

® Akka Actor Model https://www.akka.io

el C%T

https://www.akka.io/

- D7.10 Digital Twin Platform v2 37

5 Persistence Layer

Figure 20 Digital Twin Runtime component’s main interactions

For instance, the generation of an IFC file from the corresponding 4D BIM information for a given time frame has
a two-step process:

e Execution of a SPARQL query for retrieving the identifiers of the BIM elements that are involved in active
tasks.

e Filtering of the original IFC with the identifiers returned from the first step.

The output of this module is an IFC file that contains only the BIM elements of the active tasks, as shown in Figure
21.

EndpointListener

output1 ¥

Print
input 1

SelectFile

input1 Outputl P

QueryGraph

Ioput1 Output1 P

GenerateBimModel

nput1 outputy P

StoreFile

Input 1

Figure 21 Example of DT Runtime component’s configurable module and its IFC output

The final release of the DT Runtime component includes a fully functional REST API for interacting with the
COGITO tools and various adapters allowing asynchronous communication through the Messaging Layer utilising
enterprise messaging protocols such as AMQP, KAFKA, STOMP and MQTT.

5.1.2 Technology Stack and Implementation Tools

The DT Runtime component is based on open-source technologies. It is built on top of the Spring Framework and
is deployed as a standalone web-based application. It has been installed and configured to run behind the Nginx

%ﬁ COnstruction phase

B S |
COGITO

- D7.10 Digital Twin Platform v2 38
reverse proxy server, which handles the SSL encryption and forwards the HTTP requests and the web-socket
packets to the correct destination.

The integration between Spring and Akka frameworks is possible through the Akka Extension mechanism. This
technology enables external Dependency Injection (DI) frameworks like Spring to manage the lifecycle of the
actor instances.
Table 14 Libraries and Technologies used in the Digital Twin Runtime component

Technology Name Version License

Spring Framework 5.3.1 Apache Licence 2.0

Spring Boot 2.3.0 Apache Licence 2.0

Spring Security 5.5.0 Apache Licence 2.0

Spring Integration 5.5.5 Apache Licence 2.0

Akka 2.6.15 Apache Licence 2.0

Apache Jena 3.13.0 Apache Licence 2.0

Thymeleaf 3.0.15 Apache Licence 2.0

Hibernate 5.6.9 LGPL2.1

MySQL 8.0.24 GPLV2

Nginx 1.20.2 BSD

Certbot 1.22 Apache Licence 2.0
5.1.3 Input, Output and API Documentation
The DT Runtime component provides a REST APl enabling the COGITO applications to request data fetched by
actors interacting with the Data Persistence Layer. The application developers register their tools to the DT
Runtime component and configure the endpoints of each tool as defined in the “D2.5 — COGITO System
Architecture v2”. On the other hand, the lead group in charge of the development of DTP is responsible for
deploying and connecting these endpoints with the proper modules. The REST API allows the COGITO tools to
manage their data collections for each endpoint. Thus, the COGITO tools can perform requests for handling data
collections and the contained files. The endpoints provided, along with their parameters, are listed in Table 15.
The detailed documentation and the Postman collections of DTP’s REST APIs are available online’.

Table 15 DT Runtime component’s REST API Endpoints
. PP = Path Parameter
Method | REST Endpoint
FP = Form Parameter

Get the Application | GET https://dtp.cogito-project.com/api/application N/A

Get all Endpoints of GET https://dtp.cogito- N/A

the Application project.com/api/application/endpoints

Get all Data .

Collections of an GET https.//dtp.cogl.to- . .) (PP) endpointld: GUID

. project.com/api/endpoints/{endpointid}/collections

Endpoint

Get aII.Data htt;?s://dtp.cogl.to- . . (PP) endpointld: GUID

Collections of an GET project.com/api/endpoints/{endpointld} (PP) projectld: GUID

Endpoint by Project /projects/{projectld}/collections proj ’

Get a Data https://dtp.cogito- . .

Collection ey project.com/api/collections/{collectionld} Py e e &k e
’ Digital Twin Platform API documentation https://api.cogito-project.com

- - COGITO - GA ID. 958310 ;
COGI

TO

https://api.cogito-project.com/

D7.10

Create a new Data

(FP) endpointld: GUID

Collection POST https://dtp.cogito-project.com/api/collections/create (FP) projectld: GUID

Update the Status https://dtp.cogito- (PP) collectionld: GUID
. POST i . . .

of a Data Collection project.com/api/collections/{collectionld}/status (FP) status: Text

Delete a Data https://dtp.cogito- . .

Collection DELETE project.com/api/collections/{collectionld}/delete Py el B

Get all Files of a https://dtp.cogito- . .

Data Collection Elay project.com/api/collections/{collectionld}/files P e fesitem ek EUD

Upload Files into a POST https://dtp.cogito- (PP) collectionld: GUID

Data Collection project.com/api/collections/{collectionld}/upload (FP) files: File

Update the Type of) (PP) fileld: GUID

a File POST https://dtp.cogito-project.com/api/files/{fileld}/type (FP) type: Text

Delete afile DELETE https://dtp.cogito-project.com/api/files/{fileld}/delete (PP) fileld: GUID

The following are examples of JSON responses returned by the GET requests of the REST API. For some requests,
the responses have no body content. In this case, the HTTP status code is used: i) the "200 - OK" is returned if
the request is successful, the "404 - Not Found" is returned if the resource is unavailable, and iii) the response
"400 - Bad Request" is returned if an error has occurred.

Get the Application

{

"name": "Demo",
"jd": "36ea91a9-d2a8-4916-8de3-8a8ecdaddfeb"

Get all Endpoints of the Application

[
{
"name": "4D",
"description": "4D",
} "id": "8lcffOea-1bf0-4a22-8903-ac5374c02436"
]

Get all Data Collections of an Endpoint

[
{
"project": "1cf55b98-db69-46f8-a64e-a531d512d4d3",
"jd": "47368c01-1d50-459a-997d-f8635e3c0511",
"creation_date": "2022-05-03 11:46:12.0",
"status": "completed"
}L_,
"project": "c69407ff-2f81-4138-85d1-21a5e9e24550",
"id": "Ob781566-2dee-4120-bbd7-ec3895e67f67",
"creation_date": "2022-05-03 12:54:14.0",
} "status": "incomplete"
]

Get all Data Collections of an Endpoint by Project

[
{
"project": "1cf55b98-db69-46f8-a64e-a531d512d4d3",
"jd": "47368c01-1d50-459a-997d-f8635e3c0511",
"creation_date": "2022-05-03 11:46:12.0",
"status": "completed"
]

Get a Data Collection

| ¢ |

el S?B”

D7.10

"project": "c69407ff-2f81-4138-85d1-21a5e9e24550",
"jd": "5425dcld-a9e2-4d52-89fd-5732013b84ff",
"creation_date": "2022-05-03 11:49:46.0",
"status": "completed"

Get all Files of a Data Collection

[
{
"date": "2022-05-03 11:49:58.0",
extens10n : "csv"
"name": "rst_advanced _sample_project_MSP2010_v2",
"jd": "b4984a23-1feb-45fc-9d79-3b03436b8f63"
"type": "CONSTRUCTION_SCHEDULE",
) "url": "https://dtp.cog1to—prOJect.com/f11e/b4984a23—1feb—45fc—9d79—3b03436b8f68/down1oad"
{
"date": "2022-05-03 11:49:55.0"
extens1on : "esv'
ame": "resources”
"id"' "f2a52a51- 8Fc2-4f2f- a7d9-f3fe4968bed3”,
"type": "AS_PLANNED_RESOURCES"
; "url": "https://dtp.cog1to—pro;ect.com/f11e/fZaSZaS1—8fc2—4f2f—a7d9—f3fe4968bed3/down1oad"
]

5.1.4 Usage Walkthrough

The DT Runtime component offers a GUI for configuring and managing DTP’s functional modules and their
interfaces with the other COGITO tools. Thus, the GUI consists of three main parts: i) The “Registration of COGITO
Applications” used for registering the COGITO applications and configuring their access policies, endpoints, and
notification channels, ii) The “Registration of COGITO Actors” used for configuring the meta data of the actors
and their properties, and iii) The “Deployment of COGITO Modules” used to create the data processing workflows
required by the COGITO applications. These three parts are presented in detail in the following subsections.

5.1.4.1 Registration of COGITO Applications

The users who have a developer role can sign into the DT Runtime component through the DTP’s Identity
Provider. The “Applications” button shows the list of applications added in the past, as shown in Figure 22. On
the right side of the screen, the “Actions” column contains buttons for deleting the applications after
confirmation via a popup window. By clicking on any application name, the users can see further information
and perform additional actions. Users may have access only to their applications or the entire list, depending on
their roles. The role of the DTP Developer allows access to all applications. In contrast, various composite roles
like DCC Developer, PMS Developer, WODM Developer and others with access to applications are created by the
specific user.

el C%T

D7.10

= Modules

Applications
B Projects

L Users

Applications T Import ¥ Export

s Applications

& Connections Name Description Actions

EERSCURKE DCce Digital Command Centre PR
Demo Generic Application ’ x
DigiTAR Digital Twin Visualisation with Augmented Reality s X

GeometricQC 7 %
Input Data Management DTP's core component 7 X
oT Data Pre-Processing Data Pre-Processing Application /s x

Figure 22 View of all user’s applications

On the same page, users who have a developer role can add a new application by clicking the “+ Application”
button. As shown in Figure 23, a modal window appears, which allows users to provide the application name and
a short description. At any time, users can cancel the application registration process by clicking on the Close
button.

Add Application

Name

B Modules .

Applica virtual Safety
B Projects

Description

2 Users

Applic Provides personalised safety education and trammcj Sz | 26w
i Applications
o Connections Nan Actions

B3 -

¢ Setiings Dol —_—

Figure 23 Creation of a new application

Once the application is added, the users can proceed with the configuration process. Based on COGITO's system
architecture described in D2.5, they must configure the REST endpoints and, if required, the asynchronous
channels. Furthermore, the users can grant access to other users who have different roles by clicking the "+ Role"
button. As shown in Figure 24, a modal window appears that contains a combo box element with all available
roles.

2] el

- D7.10 Digital Twin Platform v2 42

COGITO

Assign a role to WODM

DTP Project Manager

= Modules

B Projects
2 Users Nan CLOSE Actions
5 Applications UC1.2N2 cogito/ucl_2/n2 X

o Connections)
UC1.2 N1 cogito/uci_2/n1 x

£ Setiings

Roles AP Keys

Name Actions User Actions

DTP Developer = Andrej Demko g -

WODM Developer _ Kyriakos Katsigarakis " -
Marian Harbist o -
Martin Straka g -

Figure 24 Assignment of a role to the application

The assignment of the selected role to the application is done by clicking the Assign button. The users can cancel
the assignment process by clicking on the Close button. Continuing with the configuration, users can create new
endpoints by clicking the “+ Endpoint” button. As shown in Figure 25, a modal window appears, allowing the
users to fill in a name and a short description. At any time, users can cancel the endpoint creation process by
clicking on the Close button.

COGITO - GA ID. 958310 :
COGITO

D7.10

Add Endpoint

Name

=B Modules .
Applica yc11R25
B Projects
Alias
2L users
ucl_1_r25
- Applic
=i Applications
Descriptior
& Connections
Request process model including as-planned resources and 0T data stat
£3 Settings
Endpc =+ Endpoint
(- O
Nar . Actions
JC1.1 ucl_1_r35 Send work orders with allocated resources, tag ids and types ;%
R35
UC1.2 ucl_2.r20 Sends the updated process model /4 %
R20
UC1.2 ucl_2.r25 Send updated work orders with allocated resources, tag ids and types ;s %
R25
UC1.1 ucl_1.r25 Request process medel including as-planned resources and loT data static / x
R25 configuration

Figure 25 Creation of new endpoint

Once the endpoint is added, the COGITO users and tools can create data collections using this GUI or the REST
API| accordingly. As shown in Figure 26, a modal window appears that contains a combo box element with the
available projects. This action is identical to the request “Create a new Data Collection” of the REST API described
in the previous section.

New Data Collection Job

School
=B Modules
Applica
B3 Projects
= Users Create [EwIv
uci.2

i Applications

& Connections Endpoint Identifier 535ca-6062-4467-b21b-b66a51b27

£2 Settings

Data Collections + Collection

Figure 26 Creation of a new Data Collection

Once the data collection is created, the COGITO users and tools can upload files, annotate the file types, and
update the data collection status. The annotation of the files is essential in case of the data collection contains
multiple files that have with the same format and different data structures. For instance, as shown in Figure 27,
the data collection contains multiple CSV files with different data structures. In this case, the type is used to
differentiate the files. Furthermore, the status parameter is used as a triggering mechanism that produces

7

2] el

D7.10

notifications to the active data processing services of the DTP. As mentioned previously, the REST API contains
all the functionalities demonstrated here using the web-based application.

COGITO

= Modules
P 1 it D N ad lan a
B3 Proj
2 U
o Data Collection Job Identifier Project Identifier
i Applications
2 Setti
Files Upload file Browse
Name Type Size Extension Date Actions

T €s AS_PLANNED_RESOURCES

rst_advar Imple lle_v4 CONSTRUCTION_SCHEDULE

Figure 27 Uploading and annotating files in a Data Collection

The final release of the DT Runtime component can transmit messages and notifications using various
asynchronous messaging protocols. The users who have the Developer role can sign-in to the DT Runtime
component through the DTP’s Identity Provider. The “Connections” button shows the list of the connections
configured in the past, as shown in Figure 28.

B Modules
Connections m » Start

B Projecis
2 Users
Connections
i Applications
& Connections Name Description Type Channels Actions
£ Settings

Messaging Brokel DTP's Messaging Layer ARTEMIS_AMQP 6 =

®

Figure 28 View of all user’s connections

On the right side of the screen the “Actions” column contains buttons for deleting a connection after
confirmation and for changing the status of the corresponding connector. By clicking on any connection name,
the users can see further information and perform additional actions. The role of the DTP Developer allows access
to the complete list of configured connections. In contrast, the other developer roles allow access to connections
created by the specific users. The final release of the DT Runtime component allows users with the proper roles
to configure AMQP, STOMP, KAFKA and MQTT connections. This functionality is essential for various COGITO
tools. For instance, the IoT Data Pre-Processing module uses this technology for streaming real-time location
tracking data into the DTP.

D7.10

COGITO

& Modules
B Projects

A Users

2 Applications

& Connections

€& Settings

New Connection

Name

Connet Tegt

Description

Test

Conne
Server
Nan Channels
tcp://86.888.88.888:61616
Mes 6

ActiveMQ Artemis MATT

Username

cogito

Figure 29 Creation of a new connection

Actions

On the same page, users who have a developer role can add a new connection by clicking the “+ Connection”
button. As shown in Figure 29, a modal window appears, which allows users to provide the name, the description,
the server, the type, and the credentials. Users can cancel the connection creation process at any time by clicking
on the Close button. Once the connection is created, the users can create the messaging channels to enable
asynchronous communication between the DT Runtime component and the Messaging Layer. As shown in Figure
30, the users can create messaging channels by clicking the “+ Channel” button. A modal window appears, which
allows the users to provide the name, the topic, and the type of the messaging channel. At any time, users can

cancel the process by clicking on the Close button.

COGITO

& Modules
B2 Projects

= Users

i Applications
& Connections

£t Settings

Add Channel

Name

connecti Test

Topic

cogito/m2m/ucl_2.n1
Connec

Inbound
Mame s Messa Laye

Server
Usernar
Channels
Name Topic Type
2.1 N2 cogito/uc2_1/n2 OUTBOUND

Figure 30 Creation of a new messaging channel

=3

Actions

el

D7.10

5.1.4.2 Registration of COGITO Actors

The DT Runtime component allows users with proper roles to configure new actors through GUI. These actors
are reusable ready -made blocks of code with specific names and behaviours that implement business logic
operations and can be placed and interconnected into the modules. The users can create new actors by clicking
the “+ Actor” button. As shown in Figure 31, a modal window appears, allowing the users to fill in the actor’s
name and some necessary metadata such as the Java class name of the actor as well as the number of inputs and
outputs. The creation of the actor is done by clicking the Save button. At any time, the users can cancel the
creation process by clicking on the Close button.

COGITO

New Actor

Name

B Modules .
Actors Test
B2 Projects
Class Name
& Users
Actor: OMActorTest * Import ¥ Export
i Applications
Number of Inputs Number of Outputs
& Connections Nan Number of Outputs Actions
1 1
£t Settings 1
Cor x
Actors
) Cre: 1 x
File Extensions m CLOSE
Createriopery UMACLUILTEALEFTOPEI LY 1 0 %
EndpointListener OMActorEndpointListener 0 1 x
GenerateBimModel OMActorGenerateModel 1 1 x
Logger OMActorLogger 1 0 %

Figure 31 Creation of a new Actor

Once the actor is created, the users can proceed with the definition of its properties. Each actor can have a set
of configurable properties. The values of these properties are set during the configuration of the module.
Optionally, the DT Runtime component allows users to set default values to the properties in the modal window,
as shown in Figure 32.

COGITO

New Property

Name

B Modules

Actors value
B3 Projects
Default value
2 Users
0
Proph
i Applications

& Connections MNan Actions

-

£2 Settings b

@
x

Actors

) name x
File Extensions

Figure 32 Creation of a new property in an Actor

el E%m

D7.10

Next, the users must provide and load the Java code that implements the business logic of the actor. For instance,
a simple actor in charge to say “Hello <receiver>!" has a code as follows.

@Component
@scope(ConfigurableBeanFactory.SCOPE_PROTOTYPE)
public class OMActorSayHello extends OMActorBase {

private static final Logger log = LoggerFactory.getLogger(OMActorSayHello.class);
private String receiver;

public OMActorSayHello(Entity entity) {
super(entity);
log.info("say hello actor, path=" + getSelf().path().tostring();
receiver = entity.getProperty("receiver").getvalue();

}

@override
public void onReceive(Object message) throws Throwable {
if(message instanceof String) {
String msg = (String) message;
if(msg.equals("launch")) {
OMBody omBody = new OMBody();
omBody.setBody("Hello " + receiver + "!");
tel1(omBody) ;

The above actor is designed to accept the string “launch” as an input message. In this case, it will produce an
output string “Hello <receiver>!". The <receiver> is an actor property that the users will provide later during the
module’s configuration. The loading of the above code into the DT Runtime component is done, through the Java
ClassLoader mechanism. This technology allows developers to load Java classes dynamically into the Java Virtual
Machine (JVM).

5.1.4.3 Deployment of COGITO Modules

The users who have the DTP Developer role can sign-in to the DT Runtime component through the DTP’s Identity
Provider. The “Modules” button, which is located on the left side of the screen, shows the complete list of
modules created in the past, as shown in Figure 33. On the right side of the table, the “Actions” column contains
buttons for deleting and changing the status of the installed modules. On the top of the screen, there is the main
switch for starting and stopping the entire actor system, and it can be used to perform a manual restart of the
active modules. This action is needed when the users demand activation, deactivation, or module installation.

= Modules
Modules m » Start
Ea Projects
A Users
Modules * Import ® Export
i Applications
& Connections Name Description Actions
Settings I R
o g DCC-UC4.] Receives 4D BIM szl
Actors
DEMO - Query 1 Receives a date interval in JSON and generates an IFC snapshot that /s x

®

File Extensions
S includes elements related to the active tasks

DEMO - Test Demo ’

Receives the as-planned data and generates the knowledge graph / x

®

3QC - UCZ.1 ROZ GeometricQC 7

Figure 33 View of all created modules

%ﬁ’ i 2
COGITO

D7.10

On the same page, users can create a new module by clicking the “+ Module” button. As shown in Figure 34, a
modal window appears, which allows users to provide a module name and a short description. At any time, users
can cancel the module creation process by clicking on the Close button.

= Modules
Modules m » Start
B3 Projects
2 Users
Modules * Import ¥ Export
iz Applications
& Connections Name Description Actions
) EEE DCC-UC4.1 Receives 4D BIM ol s
Actors
DEMO - Query 1 a date interval in JSON an nerates an IFC snapshot that ®
File Extensions : o ' S) ' 1' " =)<
lements related to the ac asks
ge Graph Receives the as-planned data and generates the knowledge graph s X @
GQC - UC2.1 RO2 GeometricQC /s X @
GOC-UC21 ROS GeometricQC /s X @
GQC- UC2.1 RO6 GeometricQC /s X @
loT DPP - Static Data Receives the static configuration data of the loT system ;s X @

Figure 34 Creation of a new module

By clicking on the “Say Hello” module we just created, the users can view the workspace for editing and
configuring the module's logic. On the left side of the screen, there is a list of the available actors, as shown in
Figure 35. The users can drag and drop actors from the list to the empty area and define their interlinks. For
instance, the actor “SayHello” presented previously has one input connected with the actor “Scheduler”, which
triggers the execution and one output connected with the actor “Logger”, which prints the content of the
messages into the system’s console. As shown in Figure 35, a modal window appears if any actor is selected,
allowing the users to fill in or edit the actor properties. The values of these properties are stored in the module
and not in the actor type. This means that if the same actor is reused in multiple modules, the values of the
properties are not shared between the different module instances.

SayHello
Scheduler y

»
. . @ Delete B Save
- . \L“Cayhe'o
o " »
1Lo—ggey

D7.10

Figure 35 Workspace for creating and configuring modules

Going back to the example, when the “SayHello” actor is selected using the cursor, the property “receiver” is
listed in the modal window. After filling the textbox and clicking the Save button, the module is ready for
deployment. Figure 36 shows that when the actor system is restarted, the message “Hello COGITO!” appears
periodically on the console.

Figure 36 DT Runtime component’s system console

5.1.5 Application Example

Within “UC1.1 — Efficient and detailed project workflow planning using the project’s construction schedule and
as-planned BIM model”, the PMS tool requests (5) and receives (6) from the DTP the as-planned 4D BIM of the
project, including the as-planned resources as shown in Figure 37. Although the geometric information is not
required, the response includes semantically linked information of a) building elements with their construction
zones, b) tasks with their properties and, c) as-planned resource types with their properties.

When a new project is configured, and the users upload the as-planned data to the DTP, the IDM component
triggers the Thing Manager, which manages the execution of the ETL tools and generates the knowledge graph
of the project. At this stage, PMS can request the as-planned non-geometric 4D BIM data because this
information is already included in the knowledge graph.

‘ PM3 UI ‘ ‘ PMS ‘ ‘ WOoDM Ul ‘ ‘ WODM ‘ ‘ SLAM ‘ ‘ BC3C ‘ [DT Platform J

PMISM

'
-

1. login

2. reguest gecess

' 3 return (list nfipmjer.ts)
4 selsctproject M |

5. request as-planned 4D BIM daia
{non-geometric, including as-planned resources)

7. return

6. retumn

Figure 37 Part of the UC1.1 sequence diagram

As shown in Figure 38, a dedicated application-driven module is connected to the endpoint of the DTP which is
responsible for handling the request and providing the response to PMS.

SThe o
cogro EEERIEET

D7.10

EndpointListener

t »
it il lh',f’d:\l)e(lf)atn
nsion inoint
y o (1 h
StoreFile

Figure 38 The module UC.1.1 - Return 6 which provides the as-planned 4D BIM data

The response is a JSON file containing data extracted from the knowledge graph using a series of SPARQL queries.

The structure of the JSON is designed to meet the input requirements of the PMS tool.

"project_id": "05ed3739-2c37-432c-9bfc-ffabb8e13653",

"elements"
"2$mt2h0XL62099U1LRJHNS"' {
v "1H47rA2LHBst1b8uffHd2"
name "safety guardrail"
"type": "SAFETY_ELEMENT"
"0 hronIQnBnguI1DdVgKa”' {
'zo ne" "0C17quZ]6WuWE1 RIwWQjv"
"name": "sSafety guardrail",
} "type": "SAFETY_ELEMENT"
"resources": {
"11": {
"cost_per_hour": 300,
"quant1ty HE
"name": S1te superv1sor s
"type": "Human'
"2ms g
"cost_per_| hour": 200,
quant1ty 1,
"name" : Foreman y
"type": "Human"
Vo
"project_name": "School_4",
"zones":
"3Bw$szQfA2thyNthf3y"' {
Tinked_zones": [
] "1uCOoqcAFj0zRWkxpoV1Hug"
"name": "Fall_Hazard_Space",
. "type": "SAFETY_ZONE"
"1Qquu80EfEQ0RngtHku6e"- {
inked_zones": [
] "1uC0chFj02Rkapov1HwK"
"name": "Fall_Hazard_Space",
} "type": "SAFETY_ZONE"
I
"tasks": {
wEn, g

"end_date": "2009-11-20T17:00:00",
"previouazaask_1ist": [

15
"work_quantity_unit": "m2",
"element_list":
"action": "ADDED'
) "element_id": "lXYlA5V154_Qn$$bw1ZKPq"
{,

"action": "ADDED",
"element_id": "OYplk128fErofnriuHAM6S"

f? el

- D7.10 Digital Twin Platform v2 51

}i

15

"name": "Floor Slab (Floor 0)",
"parent_task": "4",

"type": "NORMAL_TASK",

"start_date": "2009-11-09T08:00:00",
"work_quantity": 200

5.1.6 Licensing

The DT Runtime is a closed-source component. On the other hand, the DT Library component which contains the
actors defined based on the UCs of COGITO are open source. The COGITO developers can extend the
functionalities of the DTP by creating, implementing, and deploying new actors and modules. The lead group in
charge of development provides access to additional documentation and scripts to help developers implement
new actors and deploy new modules.

5.1.7 Installation Instructions

This component is deployed as a standalone web-based application in a Virtual Machine (VM) and is part of the
Data Management Layer. It provides a GUI and a REST API open to the internet. No file download, installation or
maintenance is required by the users.

5.1.8 Development and Integration Status

The final release of the DT Runtime component has been deployed in the Data Management Layer. This
component provides all core functionalities that have been identified in “D7.2 — Digital Twin Platform Design &
Interface Specification v2”. During the integration activities in T8.1 the team in charge of the development will
maintain the DT Library to ensure that the data processing operations implemented in the various actors meet
the final requirements of the COGITO system.

5.1.9 Requirements Coverage

The DT Runtime component covers most of DTP’s functional and non-functional requirements listed in “D2.5 —
COGITO System architecture v2”. The complete list of the functional and non-functional requirements related to
the DT Runtime component is presented in Table 16. The Reg-1.3 and Reqg-1.7 are fully covered by the DT
Runtime component’s REST API, which allows the COGITO tools to upload and download files from the DTP. The
Req-1.4 is fully covered by the various messaging adapters implemented in the DT Runtime component, which
are configured via the GUI and are in charge of routing the streaming data to the active modules. The Reg-1.6 is
achieved by the actor-based system, which, on one hand, provides data integration and a real-time execution
environment allowing developers to define complex routing scenarios using the defined actors. On the other
hand, the actor-based system used within the DT Runtime component covers all non-functional requirements.
The Akka Framework provides the Akka Cluster technology that allows the deployment of the actor system in
multiple machines offering horizontal scalability and high availability. The Akka Framework has a good
performance of ~50 million messages per second on a single machine and around ~2.5 million actors per GB of
heap memory.

Table 16 DT Runtime component’s Requirements Coverage

Type [») ‘ Description ’ Status
Reg-1.3 Receives as-built data (video, images, and point-clouds) Achieved

Functional Reg-1.4 Handles real-time data of location tracking sensors Achieved
Reg-1.6 Orchestrates the execution of the included ETL services Achieved

w COnstruction phase

B S |
COGITO

- D7.10 Digital Twin Platform v2 52

Req-1.7 Man'ages the data requests of the COGITO tools by providing Achieved
configurable API and the execution environment
Reg-2.1 Scalability Achieved
Reqg-2.2 Responsiveness Achieved
Non-Functional
Reg-2.3 Security Achieved
Reg-2.4 High availability Achieved

5.1.10 Assumptions and Restrictions

The final release of the DT Runtime component has been deployed under certain assumptions and restrictions
listed below:

e It has been developed from scratch following the MVP approach providing the core functionalities
essential for responding to data requests performed by the other COGITO tools.

e The DT Library contains actors supporting the requests of all defined UCs. These actors are used in the
data-driven modules defined in the DT Runtime component. Based on the needs, additional modules
can be added or updated during the integration phase.

e It handles real-time location tracking data and notifications coming from Messaging Layer in various
messaging protocols. The integration of the DTP with the |oT Data Pre-Processing component will allow
realistic testing of the KAFKA streaming technology, possibly requiring adaption or fine-tuning.

COnstruction phase

B S |
COGITO

D7.10

6 Conclusions

This demonstrator deliverable presented in detail the final release of COGITO’s DT Platform. The DTP plays a
central role in COGITO’s system as it is responsible for i) providing an authentication and authorisation
mechanism to COGITO users and applications, ii) handling input data from various external sources such as BIM
authoring tools, project management tools, cameras, LiDAR scanners and loT devices, and iii) responding to data
requests performed by the other COGITO tools. In the final version of this deliverable, all core components of
the DTP were presented along with the functionalities they provide, the technology stacks they build upon, the
interfaces they use, the usage instructions, and the assumptions and restrictions.

The DTP is based on a multi-layered architecture comprising six core layers following the “D7.2 — Digital Twin
Platform Design & Interface Specification v2”. The components presented in this demonstrator deliverable have
been deployed in the various layers of the DTP based on their functional and non-functional requirements. More
specifically, the final release of the DTP includes i) the Identity Provider contained in the Authentication Layer,
responsible for providing an identity and access management solution, ii) the Input Data Management
component contained in the Data Ingestion Layer, responsible for managing users, roles, projects and loading
the as-planned input data, iii) the Knowledge Graph Generator contained in the Data Ingestion Layer, responsible
for generating COGITO’s knowledge graphs and Thing Descriptions, and iv) The DT Runtime component and the
DT Library contained in the Data Management Layer, responsible for creating and hosting various application-
driven modules used in the various data processing operations.

The development of DTP is fully aligned with all defined end-user and functional/non-functional requirements as
defined in “D2.1 - Stakeholder requirements for the COGITO system” and “D2.5 - COGITO System Architecture
v2” respectively. The final version implements all the required functionality and features. The full integration
between DTP and the rest of the COGITO tools is expected to take place as part of the “T8.1 - End-to-end ICT
System Integration, Testing and Refinement” where any required adaption will be addressed.

el C%T

- D7.10 Digital Twin Platform v2 54

References

[1] COGITO, “D7.2 - COGITO Digital Twin Platform v2,” 2022.

[2] ISO 16739, “Industry Foundation Classes (IFC) for data sharing in the construction and facility management
industries (1ISO 16739:2013),” CEN, 2016.

[3] COGITO, “D2.5 - COGITO System Architecture v2,” 2022.
[4] COGITO, “D2.1 - Stakeholder requirements for the COGITO system,” 2021.

[5] COGITO, “D3.3 - COGITO Data Model & Ontology Definition and Interoperability Design v2,” 2022.

%ﬁ COnstruction phase

B S |
COGITO

CONSTRUCTION PHASE
DIGITAL TWIN MODEL

cogito-project.eu

A
®
THE UNIVERSITY 0 | POUTECNICA

of EDINBURGH e bocgroup.om

construction

S N Novitech
TECHNOLOGIES
d NEW INFORMATION TECHNOLOGIES

OAYMIIA RHOMBERG
0A0Y Senan /!

This project has received funding from the European Union's Horizon 2020 research and
innovation programme under grant agreement No 958310

	Executive Summary
	Table of contents
	List of Figures
	List of Tables
	List of Acronyms
	1 Introduction
	1.1 Scope and Objectives of the Deliverable
	1.2 Relation to other Tasks and Deliverables
	1.3 Structure of the Deliverable
	1.4 Updates to the first version of the Digital Twin Platform

	2 Digital Twin Platform
	2.1 Components Classification
	2.2 Components Target Platform

	3 Authentication and Authorisation Infrastructure
	3.1 User Authentication and Authorisation
	3.1.1 Overview
	3.1.2 Technology Stack and Implementation Tools
	3.1.3 API Documentation
	3.1.3.1 Authentication REST API
	3.1.3.2 Admin REST API

	3.1.4 Usage Walkthrough
	3.1.5 Application Example
	3.1.6 Licensing
	3.1.7 Installation Instructions
	3.1.8 Development and Integration Status
	3.1.9 Requirements Coverage
	3.1.10 Assumptions and Restrictions

	4 Project Creation and Ontology Population
	4.1 Input Data Management component
	4.1.1 Prototype Overview
	4.1.2 Technology Stack and Implementation Tools
	4.1.3 Input, Output and API Documentation
	4.1.4 Usage Walkthrough
	4.1.5 Licensing
	4.1.6 Installation Instructions
	4.1.7 Development and Integration Status
	4.1.8 Requirements Coverage
	4.1.9 Assumptions and Restrictions

	4.2 Knowledge Graph Generator
	4.2.1 Prototype Overview
	4.2.2 Technology Stack and Implementation Tools
	4.2.3 Input, Output and API Documentation
	4.2.4 Application Example
	4.2.5 Licensing
	4.2.6 Installation Instructions
	4.2.7 Development and Integration Status
	4.2.8 Requirements Coverage
	4.2.9 Assumptions and Restrictions

	5 Data Processing and Data Delivery
	5.1 Digital Twin Runtime component
	5.1.1 Prototype Overview
	5.1.2 Technology Stack and Implementation Tools
	5.1.3 Input, Output and API Documentation
	5.1.4 Usage Walkthrough
	5.1.4.1 Registration of COGITO Applications
	5.1.4.2 Registration of COGITO Actors
	5.1.4.3 Deployment of COGITO Modules

	5.1.5 Application Example
	5.1.6 Licensing
	5.1.7 Installation Instructions
	5.1.8 Development and Integration Status
	5.1.9 Requirements Coverage
	5.1.10 Assumptions and Restrictions

	6 Conclusions
	References

