
	
	
	

	

D5.3	–	Deep	-
Learning	-based	

Visual	QC	
component		

v1	
	

	
	 D5.3	 Deep-Learning	-based	Visual	QC	component	v1	 1	

	
	

	
	

	
COGITO	–	GA	ID.	958310		

COnstruction	phase	

diGUtal	Twin	mOdel	

	
	

D5.3	–	Deep-Learning	-based	Visual	QC	component	v1	
	

Dissemination	Level:		 Public	

Deliverable	Type:	 Demonstrator	

Lead	Partner:		 CERTH	

Contributing	Partners:	 Hypertech,	UCL	

Due	date:		 31-03-2022	

Actual	submission	date:	 31-03-2022	

	

Authors	

Name	 Beneficiary	 Email	
Athanasios	Tsakiris	 CERTH	 atsakir@iti.gr	
Apostolia	Gounaridou	 CERTH	 agounaridou@iti.gr	
Vasileios	Karkanis	 CERTH	 epantrak@iti.gr	
Tasos	Sinanis	 CERTH	 sinanis@iti.gr	
Vasileios	Dimitriadis	 CERTH	 vdimitriadis@iti.gr	
Anastasia	Tsita	 CERTH	 atsita@iti.gr	
Evangelia	Pantraki	 CERTH	 epantrak@iti.gr		
Apostolos	Papafragkakis	 Hypertech	 a.papafragkakis@hypertech.gr		
Kyriakos	Katsigarakis	 UCL	 k.katsigarakis@ucl.ac.uk		
Georgios	Lilis	 UCL	 g.lilis@ucl.ac.uk		
	

Reviewers	

Name	 Beneficiary	 Email	
Jochen		 AU	 teizer@cae.au.dk		
Martin	Straka	 NT	 straka@novitechgroup.sk		
Giorgos	Giannakis	 Hypertech	 g.giannakis@hypertech.gr		
	

Version	History	

Version	 Editors	 Date	 Comment	
0.1	 CERTH	 04.02.2022	 Table	of	Contents	
0.2	 CERTH	 25.02.2022	 Sections	1,	2,	3,	5.1,	5.2,	5.5,	5.6,	5.8	
0.3	 CERTH	 11.03.2022	 Update	Sections	1,	2,	3,	5.1,	5.2,	5.5,	5.6,	

5.8,	5.9	
0.4	 CERTH	 19.03.2022	 Sections	3.1.4,	3.3,	4,	5.3,	5.4,	5.7,	6	
0.6	 CERTH	 21.03.2022	 Final	draft	for	internal	review	
0.8	 AU,	NT,	Hypertech	 28.03.2022	 Deliverable	internal	review	
0.9	 CERTH	 30.03.2022	 Review	comments	addressed	
1.0	 CERTH,	Hypertech	 31.03.2022	 Submission	to	the	EC	Portal	
	

	

	
	 D5.3	 Deep-Learning	-based	Visual	QC	component	v1	 2	

	
	

	
	

	
COGITO	–	GA	ID.	958310		

COnstruction	phase	

diGUtal	Twin	mOdel	

	
	

Disclaimer	

©COGITO	Consortium	Partners.	All	right	reserved.	COGITO	is	a	HORIZON2020	Project	supported	by	the	
European	Commission	under	Grant	Agreement	No.	958310.	The	document	is	proprietary	of	the	COGITO	
consortium	members.	No	copying	or	distributing,	in	any	form	or	by	any	means,	is	allowed	without	the	prior	
written	 agreement	 of	 the	 owner	 of	 the	 property	 rights.	 The	 information	 in	 this	 document	 is	 subject	 to	
change	without	notice.	Company	or	product	names	mentioned	 in	 this	document	may	be	 trademarks	or	
registered	trademarks	of	their	respective	companies.	The	information	and	views	set	out	in	this	publication	
are	those	of	the	author(s)	and	do	not	necessarily	reflect	the	official	opinion	of	the	European	Communities.	
Neither	 the	European	Union	 institutions	and	bodies	nor	any	person	acting	on	 their	behalf	may	be	held	
responsible	for	the	use,	which	may	be	made,	of	the	information	contained	therein.	

	
	 D5.3	 Deep-Learning	-based	Visual	QC	component	v1	 3	

	
	

	
	

	
COGITO	–	GA	ID.	958310		

COnstruction	phase	

diGUtal	Twin	mOdel	

	
	

Executive	Summary	

The	COGITO	Deliverable	D5.3	“Deep-Learning	-based	Visual	QC	component	v1”	documents	the	first	version	
of	the	COGITO	Visual	Quality	Control	(QC)	component	and	presents	the	development	activities	concerning	
the	T5.2	“Deep	Learning	Image	Processing	for	Visual	Quality	Control”.	Overall,	the	as-built	data	(2D	images)	
acquired	on	site,	is	processed	by	the	Visual	Data	Pre-processing	Module	and	then	sent	to	the	Digital	Twin	
(DT)	Platform	for	digesting	by	other	COGITO	components.	The	Visual	QC	component	receives	the	processed	
as-built	 data	 (2D	 images)	 from	 the	 DT	 Platform,	 analyse	 it	 and	 detect	 potential	 defective	 areas	 of	 the	
construction.		

The	Visual	QC	component	is	a	backend	service	developed	using	a	set	of	well-known	open-source	libraries.	
It	is	composed	of	four	sub-components:	the	DT	Platform	connector,	the	Structural	type-based	selector,	the	
Defect	detector	and	the	QC	report	generator.	The	DT	Platform	connector	manages	the	communication	and	
the	data	exchange	with	the	DT	Platform.	The	Structural	type-based	selector	aims	at	loading	the	appropriate	
trained	model	for	defect	detection	based	on	the	type	of	the	structure	(concrete	or	steel)	while	the	Defect	
detector	classifies	the	image	into	specific	categories.	Finally,	the	QC	report	generator	returns	the	results	
(predicted	 class	 and	 confidence	 level)	 to	 the	 DT	 Platform	 for	 further	 exploitation	 from	 other	 COGITO	
visualization	components.		

The	present	documentation	of	the	COGITO	Visual	QC	component,	along	with	its	sub-components,	is	oriented	
towards	the	functionalities	of	the	tool,	the	technology	stacks,	the	inputs,	outputs	and	implemented	APIs,	the	
installation	instructions,	the	assumptions	and	restrictions,	the	applications	examples,	the	development	and	
integration	status,	and	the	requirements	coverage.	In	this	first	release,	the	COGITO	Visual	QC	component	
implements	a	set	of	functionalities	(i.e.,	structural	type-based	selection,	defect	detection	etc.)	focusing	on	
concrete	surfaces.	Its	usage	is	illustrated	and	evaluated	with	examples	obtained	during	the	development	of	
the	sub-components.	In	the	second	release,	more	functionalities	will	be	implemented	(i.e.,	defect	detection	
on	steel	surfaces)	or	existing	functionalities	will	be	refined.		

	
	 D5.3	 Deep-Learning	-based	Visual	QC	component	v1	 4	

	
	

	
	

	
COGITO	–	GA	ID.	958310		

COnstruction	phase	

diGUtal	Twin	mOdel	

	
	

Table	of	contents	

Executive	Summary	..	3	
Table	of	contents	..	4	
List	of	Figures	..	6	
List	of	Tables	..	7	
List	of	Acronyms	..	8	
1	 Introduction	...	9	
1.1	 Scope	and	Objectives	of	the	Deliverable	..	9	
1.2	 Relation	to	other	Tasks	and	Deliverables	..	9	
1.3	 Structure	of	the	Deliverable	..	9	

2	 Methodology	...	11	
2.1	 Theoretical	Background	...	11	
2.1.1	 Image	Classification	..	11	
2.1.2	 Object	Detection	...	11	
2.1.3	 Deep	Learning	...	11	
2.1.4	 Transfer	Learning	..	12	

2.2	 Typical	Types	of	Defects	on	Site	...	13	
2.3	 State	of	the	Art	..	14	

3	 Dataset	Construction	...	16	
3.1	 Concrete	Defects	Dataset	...	16	
3.1.1	 Existing	Datasets	...	16	
3.1.2	 Additional	Data	...	18	
3.1.3	 Data	Augmentation	Technique	..	19	
3.1.4	 Final	Concrete	Defects	Dataset	Properties	...	20	

3.2	 Steel	Defects	Dataset	...	21	
3.2.1	 Existing	Datasets	...	21	
3.2.2	 Additional	Data	and	Final	Dataset	...	22	

3.3	 Structure	Type	Dataset	...	22	
4	 Deep	Learning	Model	..	24	
4.1	 Training	...	24	
4.1.1	 1st	stage:	Structure	Type	Classifier	..	24	
4.1.2	 2nd	stage:	Multiclass	Concrete	Defect	Classifier	...	25	

4.2	 Evaluation	...	26	
5	 Deep	-Learning	-based	Visual	QC	component	..	28	
5.1	 Prototype	Overview	...	28	
5.1.1	 DT	Platform	connector	sub-component	..	29	
5.1.2	 Structural	type-based	selector	sub-component	...	29	

	
	 D5.3	 Deep-Learning	-based	Visual	QC	component	v1	 5	

	
	

	
	

	
COGITO	–	GA	ID.	958310		

COnstruction	phase	

diGUtal	Twin	mOdel	

	
	

5.1.3	 Defect	detector	sub-component	..	29	
5.1.4	 QC	report	generator	sub-component	...	29	

5.2	 Technology	Stack	and	Implementation	Tools	..	29	
5.3	 Input,	Output	and	API	Documentation	..	30	
5.3.1	 Input	Data	...	30	
5.3.2	 Output	Data	..	30	
5.3.3	 API	Documentation	...	30	

5.4	 Application	Example	..	32	
5.4.1	 Structure	Type	Classifier	..	32	
5.4.2	 Multiclass	Concrete	Defect	Classifier	..	33	

5.5	 Licensing	...	38	
5.6	 Installation	Instructions	...	38	
5.7	 Development	and	integration	status	..	38	
5.8	 Requirements	Coverage	...	38	
5.9	 Assumptions	and	Restrictions	...	39	

6	 Conclusions	..	40	
References	...	41	
	

	
	 D5.3	 Deep-Learning	-based	Visual	QC	component	v1	 6	

	
	

	
	

	
COGITO	–	GA	ID.	958310		

COnstruction	phase	

diGUtal	Twin	mOdel	

	
	

List	of	Figures	

Figure	1	-	Categorizing	general	computer	vision	methods	(top)	and	specific	methods	to	defect	detection,	
classification	and	assessment	of	civil	infrastructure	[4]	...	12	
Figure	2	-	The	architecture	of	a	Transfer	Learning	model	...	13	
Figure	3	-	Dataset	examples.	From	left	to	right:	Blistering,	Crack,	Honeycomb,	Moss,	Normal	class	16	
Figure	4	-	Dataset	examples.		Top	row	from	left	to	right:	Efflorescence,	Crack,	Non-defective	Background.	
Bottom	row	from	left	to	right:	Spalling,	Corrosion,	Exposed	Rebar	...	17	
Figure	5	-	Dataset	examples.		Top	row	from	left	to	right:	Crack,	General	defect,	No	defect,	Scaling,	Spalling.	
Bottom	row	from	left	to	right:	Efflorescence,	Exposed	Rebar,	Corrosion	...	17	
Figure	6	-	Dataset	examples.	From	left	to	right:2	healthy	and	2	potentially	unhealthy	..	18	
Figure	7	-	Segmentation	of	the	large	image	in	smaller	and	labelling	the	smaller	pieces	18	
Figure	8	-	Expanding	an	existing	dataset	using	offline	data	augmentation	technique	...	19	
Figure	 9	 -	 Offline	 data	 augmentation-	 exposed	 rebar.	 Left:	 Original	 image.	 Right:	 augmented	 images	
artificially	produced	..	20	
Figure	 10	 -	 Offline	 data	 augmentation-	 honeycomb.	 Left:	 Original	 image.	 Right:	 augmented	 images	
artificially	produced	..	20	
Figure	11	-	Final	Concrete	Defect	Dataset.	Top	row	from	left	to	right:	3	blistering,	3	cracks.	Bottom	row:	3	
efflorescence	...	21	
Figure	12	-	Final	Concrete	Defect	Dataset.	Top	row	from	left	to	right:	1	exposed	rebar,	2	honeycomb,	and	2	
no	defect.	Bottom	row	from	left	to	right:	1	exposed	rebar,	1	no	defect	..	21	
Figure	 13	 –	 NEU	Dataset	 examples.	 From	 left	 to	 right:	 Rolled-in	 scale,	 Patches,	 Crazing,	 Pitted	 surface,	
Inclusion	and	Scratches	...	22	
Figure	14	-	Severstal	Dataset	examples.	From	left	to	right:	Non-defective,	defective	steel	surface	22	
Figure	15	-	Final	Structure	Type	Dataset.	Top	row	from	left	to	right:	2	concrete	surfaces,	and	1	steel	surfaces.	
Bottom	row	from	left	to	right:	2	steel	surfaces	..	23	
Figure	16	-	On	the	fly	data	augmentation	technique	...	25	
Figure	17-	Visual	QC	component	overall	architecture	...	28	
Figure	18	-	Workflow	in	the	Visual	QC	tool	...	28	
Figure	19	-	API	endpoint	for	defect	detection-	request	...	31	
Figure	20	-	API	endpoint	for	defect	detection-	response	..	31	
Figure	21	–	 (a)	Accuracy	 training/	Validation	accuracy,	 and	 (b)	Loss	 training/	Validation	 loss	 curves	of	
InceptionV3	...	32	
Figure	22	-	Classification	report	of	InceptionV3	...	33	
Figure	23-	Confusion	matrix	of	Inception	V3	...	33	
Figure	24	-	(a)	Accuracy	training,	(b)	Validation	accuracy,	(c)	Loss	training,	and	(d)	Validation	loss	curves	
of	the	four	models	..	34	
Figure	 25	 -	 Training/	 Validation	 accuracy	 and	 Training/	 Validation	 loss	 curves	 of	 (a)	 InceptionV3,	 (b)	
MobileNet,	(c)	VGG19	and	(d)	ResNet50	..	34	
Figure	26	-	Classification	report	-	Top	row	from	left	to	right:	(a)	InceptionV3,	(b)	MobileNet.	Bottom	row	
from	left	to	right:	(c)	VGG19,	(d)	ResNet50	..	35	
Figure	27	-	Confusion	matrix	-	Top	row	from	left	to	right:	(a)	InceptionV3,	(b)	MobileNet.	Bottom	row	from	
left	to	right:	(c)	VGG19,	(d)	ResNet50	..	35	
Figure	28-	Performance	of	InceptionV3	for	9	unseen	images	..	36	
Figure	29	-	Performance	of	MobileNet	for	9	unseen	images	...	36	
Figure	30	-	Performance	of	VGG19	for	9	unseen	images	...	37	
Figure	31	-	Performance	of	ResNet50	for	9	unseen	images	...	37	

	

	
	 D5.3	 Deep-Learning	-based	Visual	QC	component	v1	 7	

	
	

	
	

	
COGITO	–	GA	ID.	958310		

COnstruction	phase	

diGUtal	Twin	mOdel	

	
	

List	of	Tables	

Table	1	–	Famous	CNN	architectures	used	as	pre-trained	models	...	13	
Table	2	-	Typical	defects	based	on	the	type	of	the	structure	...	14	
Table	3	–	Final	concrete	defects	dataset's	summary	...	21	
Table	4	-	Final	structure	type	dataset's	summary	..	23	
Table	5	-	Customized	layers	architecture	for	the	type	classifier	..	24	
Table	6	-	Hyper-parameters	in	training	the	type	of	classifier	...	25	
Table	7	-	Customized	layers	architecture	for	the	concrete	classifier	...	26	
Table	8	-	Hyper-parameters	in	training	the	multiclass	concrete	classifier	...	26	
Table	9-	Confusion	matrix	of	the	multiclass	problem	..	27	
Table	10	–	Libraries	and	Technologies	used	in	Visual	QC	component	..	30	
Table	11	–	Visual	QC	component:	Stakeholders'	Requirements	coverage	from	D2.1	..	38	
Table	12	–	Visual	QC	component:	Functional	and	Non-Functional	Requirements	coverage	from	D2.4	39	
	

	
	 D5.3	 Deep-Learning	-based	Visual	QC	component	v1	 8	

	
	

	
	

	
COGITO	–	GA	ID.	958310		

COnstruction	phase	

diGUtal	Twin	mOdel	

	
	

List	of	Acronyms	

Term	 Description	
API	 Application	Programming	Interface		

CNN	 Convolutional	Neural	Network	
COGITO	 Construction	Phase	diGItal	Twin	mOdel	
CPU	 Central	Processing	Unit	
DCC	 Digital	Command	Centre	
DigiTAR	 Digital	Twin	visualisation	with	Augmented	Reality	
DL	 Deep	Learning	
DNN	 Deep	Neural	Network	
DT	 Digital	Twin	
FC	 Fully	Connected	
GPU	 Graphics	Processing	Unit	
ML	 Machine	Learning	
QC	 Quality	Control	
UAV	 Unmanned	Aerial	Vehicle		
URI	 Uniform	Resource	Identifier	
URL	 Uniform	Resource	Locator	
	

	
	 D5.3	 Deep-Learning	-based	Visual	QC	component	v1	 9	

	
	

	
	

	
COGITO	–	GA	ID.	958310		

COnstruction	phase	

diGUtal	Twin	mOdel	

	
	

1 Introduction	

1.1 Scope	and	Objectives	of	the	Deliverable	
This	deliverable	reports	on	the	work	conducted	from	M9	to	M17	on	the	Deep	Learning	Image	Processing	
for	Visual	Quality	Control	component	that	is	developed	as	part	of	T5.2.	The	scope	of	this	component	is	to	
perform	an	 automatic	Quality	 Control	 compliance	 and	detect	 construction	defects	 by	 expanding	 on	 the	
state-of-the-art	 deep	 learning-based	 detection	 and	 recognition	 models.	 The	 detection	 includes	 basic	
structural	construction	types	such	as	concrete	and	steel	surfaces,	as	well	as	various	defect	types	(e.g.	cracks,	
blistering	etc.)	that	usually	occur	in	new	constructions.			

More	 specifically,	 this	 deliverable	 reports	 on	 the	 development	 of	 the	 first	 release	 of	 the	 Visual	 Quality	
Control	component	focusing	on	its	main	sub-components	listed	below:		

• DT	Platform	connector	 sub-component:	manages	 the	 communication	 and	 the	 data	 exchange	
with	the	DT	Platform.	

• Structural	 type-based	 selector	 sub-component:	 is	 in	 charge	 of	 recognizing	 the	 type	 of	 the	
structure	 (concrete	 or	 steel)	 in	 order	 to	 load	 the	 appropriate	 trained	model	 for	 detecting	 the	
defects.	 	

• Defect	detector	sub-component:	processes	the	as-built	data	(2D	image)	and	classifies	it	 into	a	
defect	category.	In	addition,	it	returns	the	confidence	of	the	model’s	decision	for	this	specific	data.		

• QC	report	generator:	returns	the	results	to	the	DT	Platform	for	further	exploitation.		

1.2 Relation	to	other	Tasks	and	Deliverables	
T5.2	“Deep	Learning	Image	Processing	for	Visual	Quality	Control”	and	consequently	D5.3	“Deep-Learning-
based	Visual	QC	component	v1”	are	related	to	the	following	COGITO	tasks	and	deliverables:		

• The	first	version	of	the	COGITO	architecture	in	the	corresponding	deliverable	“D2.4	COGITO	System	
Architecture	 v1”	 provided	 an	 overview	 on	 the	 Visual	 QC	 component,	 its	 requirements	 and	 the	
communication	with	other	components.	

• The	Visual	QC	component,	similarly	to	all	components,	relies	on	a	shared	ontology	and	a	common	
data	model	developed	within	T3.2	“COGITO	Data	Model,	Ontology	Definition	and	Interoperability	
Design”;	the	first	version	of	COGITO	ontologies	and	data	models	have	been	documented	in	D3.2	
“COGITO	Data	Model,	Ontology	Definition	and	Interoperability	Design	v1”.	

• The	Visual	Data	Pre-processing	Module	provides,	via	the	DT	Platform,	the	as-built	data	(2D	images)	
for	Visual	Quality	Control	to	the	Visual	QC	component	(D3.7	“Visual	Data	Pre-processing	Module	
v1”).	

• The	DigiTAR	module	(D5.7	“User	interface	for	Construction	Quality	Control	v1”)	uses	as	input	the	
results	generated	by	the	Visual	QC	component	to	visualize	and	confirm	on	site	the	detected	defects	
and	their	location.	

• The	DCC	module	(D7.7	“Construction	Digital	Twin	3D	Visualisation	module	v1”)	uses	as	input	the	
results	 generated	by	 the	Visual	QC	component	 to	visualize	 the	detected	defects	within	 the	BIM	
model.		

1.3 Structure	of	the	Deliverable	
The	rest	of	the	deliverable	is	organised	as	follows:			

• Section	2	presents	the	methodology	followed,	the	theoretical	background,	typical	defects	occurred	
on	site,	and	the	relevant	state	of	the	art.		

• Section	 3	 describes	 the	 dataset	 preparation,	 introduces	 already	 existing	 datasets,	 analyses	 the	
process	of	collecting	additional	data	and	generating	new	data	to	construct	a	new	dataset	for	both	
concrete	and	steel	defects.		

• Section	4	notes	the	implementation	and	network	training.		

	
	 D5.3	 Deep-Learning	-based	Visual	QC	component	v1	 10	

	
	

	
	

	
COGITO	–	GA	ID.	958310		

COnstruction	phase	

diGUtal	Twin	mOdel	

	
	

• Section	 5	 includes	 the	 technology	 stack,	 implementation	 tools,	 the	 input/output	 data,	 and	 API	
documentation,	 application	 examples,	 licensing,	 installation	 instructions,	 development	 and	
integration	status,	requirements	coverage,	as	well	as	assumptions	and	restrictions	of	the	Visual	QC	
component.		

• The	document	concludes	with	Section	6,	where	the	progress,	the	next	steps	and	the	contribution	to	
the	overall	COGITO	objectives	are	being	reported.	

	
	 D5.3	 Deep-Learning	-based	Visual	QC	component	v1	 11	

	
	

	
	

	
COGITO	–	GA	ID.	958310		

COnstruction	phase	

diGUtal	Twin	mOdel	

	
	

2 Methodology	

This	section	presents	the	basic	concepts	of	computer	vision	such	as	classification,	object	detection,	Deep	
Learning	etc.	In	addition,	the	typical	types	of	defects	are	noted,	based	on	the	literature	review,	as	well	as	the	
current	state	of	the	art	regarding	Machine	and	Deep	Learning	techniques	for	defect	detection.		

2.1 Theoretical	Background	
2.1.1 Image	Classification	
Image	classification	problem	requires	determining	the	category	(class)	that	it	belongs	to.	The	problem	is	
considerably	complicated	with	the	growth	of	categories’	count:	 if	several	objects	of	different	classes	are	
present	at	the	image,	then	the	image	could	belong	to	several	categories	simultaneously	[1].		

2.1.2 Object	Detection	
Detection	problem	is	more	general	in	sense	that	it	requires	not	only	to	determine	whether	the	object	of	
interest	 is	present	 in	 image	but	also	define	where	all	 its	 instances	are	 located.	Object	detection	 is	still	a	
challenging	problem	due	 to	several	 factors	 that	must	be	handled:	variety	of	possible	objects’	 forms	and	
colours,	occlusions,	lighting	conditions,	perspective	etc.	[1].	

2.1.3 Deep	Learning	
Deep	 Learning	 (DL)	 considers	 being	 the	wider	 part	 of	 the	Machine	 Learning	 (ML)	 and	 becomes	more	
popular	day	by	day.	It	takes	a	lot	of	data	and	then	can	make	decisions	about	new	data.	The	data	is	passed	
through	Neural	Networks,	known	as	Deep	Neural	Networks	(DNN).	The	Convolutional	Neural	Networks	
(CNN)	is	a	popular	type	of	DNN.	CNNs	are	very	popular	and	wide-used	in	DL,	while	they	eliminate	the	need	
for	manual	feature	extraction	like	traditional	features	extraction	algorithms	(Figure	1).		

A	CNN	architecture	typically	consists	of	several	convolutional	blocks	and	a	Fully	Connected	(FC)	layer.	Each	
convolutional	 block	 is	 composed	 of	 a	 convolutional	 layer,	 an	 activation	 unit,	 and	 a	 pooling	 layer.	 A	
convolutional	layer	performs	convolution	operation	over	the	output	of	the	preceding	layers	using	a	set	of	
filters	or	kernels	to	extract	the	features	that	are	important	for	classification	[2].	

The	CNN	directly	extract	the	features	from	a	set	of	raw	image	data.	Related	features	are	not	pre-trained;	
they	 learn	 when	 the	 networks	 are	 on	 the	 train	 on	 a	 group	 of	 images.	 This	 automated	 way	 of	 feature	
extraction	 is	 the	 most	 accurate	 learning	 models	 for	 computer	 vision	 tasks	 such	 as	 object	 detection,	
classification,	 recognition.	 To	 conclude,	 in	 DL	 approaches	 the	 network	 itself	 extracts	 the	 features	 and	
classifies	the	objects	without	user	interpretation,	while	in	traditional	ML	approaches	the	feature	extraction	
is	done	manually	and	the	classification	algorithm	classifies	the	objects	separately	[3].		

	
	 D5.3	 Deep-Learning	-based	Visual	QC	component	v1	 12	

	
	

	
	

	
COGITO	–	GA	ID.	958310		

COnstruction	phase	

diGUtal	Twin	mOdel	

	
	

	

Figure	1	-	Categorizing	general	computer	vision	methods	(top)	and	specific	methods	to	defect	
detection,	classification	and	assessment	of	civil	infrastructure	[4]	

2.1.4 	Transfer	Learning	
Although	the	development	of	a	Deep	Learning	model	for	defect	detection	in	construction	sites	is	the	key	
part	of	this	task,	training	a	model	from	scratch	takes	a	considerable	amount	of	time	even	with	computers	
with	parallel	CPUs.	This	long	training	time	prevents	quick	validation	of	the	trained	classifier	with	various	
training	options.	While	in	Deep	Learning	the	model	is	trained	with	a	large	volume	of	data	and	learns	model	
weight	 and	bias	during	 training,	 these	weights	 can	be	 transferred	 to	other	network	models	 for	 testing.	
Hence,	the	new	network	model	can	start	with	pre-trained	weight	(Transfer	Learning)	[3].			

Transfer	 Learning	 is	 a	ML	 technique	 to	 solve	 the	 fundamental	 problem	of	 insufficient	 training	data.	As	
illustrated	in	Figure	2,	a	model	is	trained	and	developed	for	one	task	(Source	Domain).	It	is	then	reused	on	
a	second	related	task	(Target	Domain)	by	freezing	some	layers,	cutting	the	last	ones	and	replacing	them	
with	new	ones,	focusing	on	specific	classes.	Transfer	Learning	refers	to	the	situation	whereby	what	has	been	
learned	in	one	setting	is	exploited	to	improve	optimization	in	another	environment.		

Transfer	Learning	is	usually	applied	if	there	is	a	new	dataset	smaller	than	the	original	dataset	used	to	train	
the	pre-trained	model	[5].		The	Transfer	Learning	technique	is	considered	an	effective	approach	to	reduce	
training	time,	while	a	deep	learning	model	that	has	previously	been	trained	for	a	similar	purpose	is	fine-
tuned	and	 re-trained	on	a	new	specific	dataset.	 Fine-tuning	 is	 currently	very	popular	 in	 the	 field	of	DL	
because	it	enables	training	DNNs	with	comparatively	little	data	[2].		

	
	 D5.3	 Deep-Learning	-based	Visual	QC	component	v1	 13	

	
	

	
	

	
COGITO	–	GA	ID.	958310		

COnstruction	phase	

diGUtal	Twin	mOdel	

	
	

	

Figure	2	-	The	architecture	of	a	Transfer	Learning	model1	

Using	a	pre-trained	model	requires	less	computational	power	and	less	time	than	training	the	huge	models	
on	large	datasets	from	scratch.	Thus,	training	the	new	network	with	pre-trained	weights	can	speed	up	the	
learning	 process.	 In	 Table	 1,	 famous	 CNN	 architectures	 usually	 used	 as	 pre-trained	 models	 for	 image	
classification	and	the	number	of	their	parameters	while	training	time	are	presented	[3],	[6].		

Table	1	–	Famous	CNN	architectures	used	as	pre-trained	models	

CNN	
architecture	

Year	 Developed	by	 No.	of	
Parameters	

LeNet	 1998	 YannLeCun	et	al.	 60000	
AlexNet	 2012	 Alex	K	et	al	 62.3	million	
VGGNet	 2014	 Simonyan,	

Zisserman	
138	million	

Inception2	 2014	 Google	 4	million	
ResNet	 2015	 Kaiming	He	 25	million	

	

2.2 Typical	Types	of	Defects	on	Site	
In	COGITO	solution,	the	Visual	Quality	Control	tool	will	be	in	charge	of	detecting	defects	on	site,	 in	both	
concrete	and	steel	structures.	Therefore,	depending	on	the	type	of	the	structure,	different	defects	will	be	
detected	in	the	visual	data	acquired	by	the	Visual	Pre-processing	tool	[7].		

Based	on	[4]	the	defects	related	to	general	bridge	elements	are	the	following:		Delamination/	Spallation/	
Patched	 area,	 Exposed	 Rebar,	 Efflorescence/Rust	 Staining,	 Cracking,	 Abrasion/Wear,	 Distortion,	
Settlement,	and	Scouring.	In	addition,	common	civil/structural	defects	of	concrete	tunnels	are	the	following:	
Scaling,	Cracking,	Spalling/Joint,	Spall,	Pop-Outs	(holes),	Leakage	[4]. 	

Combining	the	relevant	literature	review	([4],	[8],	[9],	[10])	and	the	information	provided	by	the	industry	
partners,	we	managed	to	list	the	typical	defects	for	concrete	surfaces,	which	are	presented	in	Table	2.	It	is	
worth	noting	that	only	typical	defects	that	can	occur	in	new	constructions	were	taken	into	consideration.	
Defects	 such	 as	 corrosion	 stain	 and	 spalling	 were	 disregarded	 because	 they	 cannot	 be	 found	 in	 new	
constructions.	In	addition,	geometry-based	defects	(such	as	distortion	and	settlement)	were	also	ignored	
because	 these	 types	of	defects	will	be	examined	 in	another	COGITO	component,	 the	Geometric	QC	 [11].	
Defects	concerning	steel	surfaces	will	be	investigated	and	presented	in	the	second	release	of	the	Visual	QC	
component	(M24).	

	
1	https://medium.com/@lorenzofamiglini/transfer-learning-with-deep-learning-machine-learning-
techniques-b4052befe7e2		
2	Inception	is	also	known	as	GoogLeNet	

	
	 D5.3	 Deep-Learning	-based	Visual	QC	component	v1	 14	

	
	

	
	

	
COGITO	–	GA	ID.	958310		

COnstruction	phase	

diGUtal	Twin	mOdel	

	
	

Table	2	-	Typical	defects	based	on	the	type	of	the	structure	

Concrete	Surface	
Blistering	
Crack	
Efflorescence	
Exposed	Rebar	
Honeycomb	

	

2.3 State	of	the	Art	
CNNs	stand	out	as	an	effective	method	for	solving	image-based	object	detection	and	classification	problems	
[2].	Much	of	the	work	on	defect	classification	has	concentrated	on	detecting	a	single	defect	class	(actually	
two	classes:	defect	and	background	[8].	In	addition,	plenty	of	surveys	have	been	conducted	focusing	largely	
the	specific	topic	of	crack	detection	on	concrete	surfaces	[9].	In	[12]	a	machine	learning-based	model	was	
developed	 to	 detect	 cracks	 on	 concrete	 surfaces.	 A	 transfer-learning	methodology	was	 applied	 and	 the	
influence	of	the	model’s	parameters	(such	as	learning	rate,	number	of	nodes	in	the	last	fully	connected	layer	
and	training	dataset	size)	were	investigated.		In	[13]	an	application	for	crack	detection	in	buildings	where	
is	difficult	to	access	or	would	endanger	human	life	was	presented.	The	architecture	was	based	on	CNNs	and	
in	 this	 study	 three	 different	 approaches	 were	 described	 and	 compared.	 Bu	 et	 al.	 in	 [14]	 proposed	 an	
automatic	bridge	inspection	approach	employing	wavelet-based	image	features	along	with	support	vector	
machines	(SVM)	for	automatic	detection	of	cracks	in	bridge	images.	In	[10]	a	new	method	was	proposed	to	
recognize	 healthy	 and	 potentially	 unhealthy	 areas	 in	 concrete	 bridges,	 and	 thus	 to	 increase	 inspection	
efficiency	by	reducing	the	search	space	for	a	bridge	inspector	as	well	as	guiding	the	inspector	directly	to	the	
regions	 of	 interest.	 In	 addition,	 in	 this	work,	 the	 Cambridge	 Bridge	 Inspection	 Dataset	was	 composed,	
containing	 1028	 images	 belonging	 to	 two	 classes;	 healthy/	 potentially	 unhealthy.	 [15]	 proposed	 an	
autonomous	crack	detection	algorithm	based	on	CNNs	to	solve	the	problem	in	the	real	world	conditions,	
due	to	noise	and	undesired	artifacts.	In	[16]	a	deep	hierarchical	CNN	was	proposed,	to	predict	pixel-wise	
crack	segmentation	in	an	end-to-end	method.			

Furthermore,	numerous	studies	exist,	regarding	the	detection	of	a	single	defect	in	infrastructure.	Wei	et	al.		
[17]	proposed	an	instance-level	recognition	and	quantification	approach	based	on	Mask	R-CNN	to	recognize	
bugholes	on	concrete	surface	rapidly,	accurately	and	quantify	their	area	and	maximum	diameter.	Gao	et	al.	
[18]	proposed	a	method	for	pothole	detection	and	segmentation	based	on	cement	concrete	pavement	that	
integrates	 the	grayscale	and	texture	 features.	However,	 the	Visual	QC	component	refers	 to	a	multi-class	
classification	issue,	while	different	types	of	defects	should	be	detected	on	the	construction	sites.		

Several	 studies	 have	 applied	 CNN-based	 algorithms	 to	 detect	 multiple	 types	 of	 defects	 on	 concrete’s	
surfaces	structures.	In	Hung	et	al.	[2]	a	method	for	classifying	damaged	concrete	surfaces	based	on	machine	
vision	and	deep	learning	technologies	was	proposed.	A	new	dataset	with	labelled	classes	(Normal,	Cracked,	
Honeycomb,	 Blistering,	 and	 Moss)	 was	 created	 and	 published	 on	 GitHub.	 Based	 on	 the	 image	 dataset	
obtained,	the	Transfer	Learning	approach	was	used	with	three	pre-trained	models	(VGG19,	InceptionV3	
and	InceptionResnetV2).	Customized	FC	layers	were	defined	and	associated	to	the	pre-trained	models	to	
perform	classification.	The	result	indicated	that	both	the	models	perform	well	(accuracy	~	90%)	for	damage	
concrete	classification.	Hüthwohl	et	al.	[8]	presented	a	multi-classifier	that	can	assign	none,	one,	or	multiple	
classification	labels	to	a	defect	concrete	image.	A	hierarchical	classification	approach	was	presented	that	
consists	of	three	stacked	image	classifiers.	These	classifiers	were	trained	using	manually	labelled	training	
data.	A	new	dataset	was	constructed	as	a	combination	of	the	authors’	own	data	collection	and	authority	
image	sets.	It	consisted	of	6	classes	(Crack,	Efflorescence,	Scaling,	Spalling,	General	defect,	and	No	defect)	
for	the	first	stage,	a	sub-set	of	2	classes	(Exposed	reinforcement/	No	exposed	reinforcement)	for	the	second	
stage	 and	 a	 sub-set	 of	 2	 classes	 (Rust	 staining/	 No	 rust	 staining)	 for	 the	 third	 stage	 of	 classification.	
Inception	V3	was	used	as	pre-trained	network	and	fine-tuned	on	the	specific	defect	dataset.	The	model	was	
afterwards	 assessed	 using	 unseen	 validation	 data.	 Experimental	 results	 showed	 that	 the	 three-staged	
hierarchical	multi-classifier	can	reliably	assign	class	labels	to	an	image	from	a	variety	of	classes	with	(F1	
score	~	83.5%)	and	detect	potentially	unhealthy	concrete	surface.	Mundt	et	al.	[9]	introduced	a	novel	multi-

	
	 D5.3	 Deep-Learning	-based	Visual	QC	component	v1	 15	

	
	

	
	

	
COGITO	–	GA	ID.	958310		

COnstruction	phase	

diGUtal	Twin	mOdel	

	
	

class	 dataset	 (CODEBRIM)	 for	 multi-target	 classification	 of	 five	 commonly	 appearing	 concrete	 defects.	
Furthermore,	 the	 authors	 investigated	 and	 compared	 two	 recent	meta-learning	 approaches,	 to	 identify	
suitable	convolutional	neural	network	architectures	for	this	challenging	multi-class	multi-target	task.	It	was	
shown	that	these	architectures	feature	fewer	overall	parameters,	fewer	layers	and	are	more	accurate	than	
their	 human	 designed	 counterparts	 on	 the	 presented	 multi-target	 classification	 task.	 Feng	 et	 al.	 [19]	
proposed	a	method	to	detect	four	different	defect	types	(cracks,	deposit,	water	leakage,	and	combination	of	
the	former	three)	using	a	deep	neural	network.	Four	classifiers	were	trained	separately.	A	deep	residual	
network	was	firstly	designed	for	defect	detection	and	classification	in	an	image	and	was	trained	following	
an	 active	 learning	 strategy.	 Experiments	 demonstrated	 an	 efficient	 performance	 (accuracy	 ~87.5%).	
However,	the	classification	results	of	these	four	defect-type-dependent	classifiers	could	not	be	combined.		

In	 case	 of	 steel	 surfaces,	 Abu	 et	 al.	 [5]	 developed	 deep	 learning	models	 that	 can	 perform	 steel	 defect	
detection	 and	 evaluated	 the	 potential	 of	 transfer	 learning	 for	 this	 task.	 Four	 types	 of	 transfer	 learning	
methods	(ResNet,	VGG,	MobileNet,	and	DenseNet)	were	experimentally	evaluated	to	develop	models	 for	
steel	surface	defect	detection.	The	models	were	developed	for	binary	classification	(defect	and	no-defect)	
using	the	Severstal	dataset	and	then	they	were	also	assessed	for	multiclass	classification	using	NEU	dataset.	
Image	pre-processing	was	also	 included	 to	 improve	 the	result	of	 steel	defects	detection,	while	different	
parameters	can	affect	the	prediction	outcome.	The	experimental	results	showed	that	MobileNet	performed	
the	best.	In	[20]	a	new	approach	was	proposed.	Part	of	pre-trained	VGG16	was	used	as	a	feature	extractor	
and	a	new	CNN	neural	network	was	added	as	a	classifier	to	recognize	the	defect	of	steel	surface	based	on	
the	feature	maps	created	by	the	feature	extractor.	The	method	achieved	a	very	high	accuracy,	compared	
with	Deep	Learning	methods.	While	this	study	focused	on	extremely	small	datasets,	an	extra	experiment	
was	performed,	where	each	class	in	the	dataset	only	contained	10	images.		The	authors	achieved	a	deeper	
optimization	of	the	model,	using	different	data	augmentation	and	initialization	methods.	In	[21]	the	authors,	
focusing	on	the	problem	of	steel	defect	detection,	explored	three	deep	learning	methods:	Xception,	U-Net	
and	Mask	R-CNN.	They	 compared	 the	 aforementioned	networks’	 performance	on	 the	 Severstal	 dataset.	
Wang	et	al.	[22]	combined	improved	ResNet50	and	enhanced	faster	R-CNN	to	reduce	the	average	running	
time	and	improve	the	accuracy.	Within	the	improved	ResNet50	the	sample	is	classified	as	with	defect	or	
without	defect.	In	case	of	a	probability	lower	than	a	0.3	threshold,	the	output	is	directly	marked	as	without	
defect.	Otherwise,	the	sample	is	further	input	into	the	improved	faster	R-CNN	to	detect	the	specific	type	of	
defect.	The	final	output	is	the	location	and	classification	of	the	defect	in	the	sample	or	without	defect	in	the	
sample.	The	authors	in	this	study	also	used	the	Severstal	dataset,	after	modifying	it.	Finally,	Cha	et	al.	[23]	
proposed	a	method	to	provide	quasi	real-time	simultaneous	detection	of	multiple	types	of	damages	(not	
only	specific	types	of	damage	such	as	concrete	or	steel	cracks).	For	this	paper,	a	new	dataset	including	2,366	
images	(with	500	×	375	pixels)	labelled	for	five	types	of	damages	(concrete	crack,	medium	steel	corrosion,	
high	steel	corrosion,	bolt	corrosion,	and	steel	delamination)	was	developed;	however,	 the	dataset	 is	not	
public.	The	Faster	R-CNN	was	modified,	trained,	validated,	and	tested	using	this	dataset,	achieving	both	a	
high	performance	 of	 the	model	 and	 remarkably	 fast	 speed.	 Therefore,	 a	 framework	 for	 quasi	 real-time	
damage	detection	on	video	using	the	trained	networks	was	developed.	

In	 summary,	 the	 majority	 of	 the	 existing	 studies	 regarding	 concrete	 surfaces	 are	 focused	 on	 binary	
classification	 problems	 (crack/	 non-crack	 etc.).	 Studies,	which	 concern	 a	multiclass	 classification	 issue,	
focus	mostly	on	 long-term	concrete	defects	 and	mainly	 refer	 to	bridge	deterioration;	 in	 the	best	of	our	
knowledge,	no	considerable	studies	exist	for	automatic	visual	inspection	on	steel	structures.	In	COGITO,	the	
intention	is	to	exploit	the	Visual	Quality	Control	component	for	automating	visual	inspection	on	several	new	
construction	sites	(not	only	on	bridges).	In	the	final	version	of	the	Visual	QC	module,	a	two-staged	defect	
classifier	will	 be	 developed;	 in	 the	 first	 stage,	 the	 image	will	 be	 classified	 as	 either	 a	 concrete	 or	 steel	
structure	(binary	classification	problem).	Depending	on	this	decision	(concrete	or	steel	structural	type),	in	
the	second	stage	potential	defects	will	be	identified	in	the	same	image	in	case	of	an	unhealthy	area.	Our	aim	
is	to	combine	the	information	collected	from	existing	datasets	with	real	data	to	increase	the	variety	during	
training	and	focus	on	the	defects	that	occur	both	in	concrete	and	steel	new	structures.			

	
	 D5.3	 Deep-Learning	-based	Visual	QC	component	v1	 16	

	
	

	
	

	
COGITO	–	GA	ID.	958310		

COnstruction	phase	

diGUtal	Twin	mOdel	

	
	

3 Dataset	Construction	

Preparing	 data	 for	 machine	 learning	 projects	 is	 a	 crucial	 first	 step.	 This	 Section	 describes	 the	 image	
gathering	process	in	order	to	create	the	relevant	datasets	used	for	training	the	models	to	detect	defects	on	
site.	The	first	sub-section	describes	the	existing	datasets	that	refer	to	the	potential	concrete	defects.	The	
second	sub-section	refers	to	existing	datasets	that	contain	defects	on	steel	surfaces.		Thus	far,	the	Visual	QC	
component	has	focused	on	the	concrete	defects;	therefore, the	case	of	steel	structures	will	be	examined	and	
presented	in	detail	in	the	second	release	of	the	tool	(M24).	

3.1 Concrete	Defects	Dataset	
3.1.1 Existing	Datasets		
In	the	first	step,	extensive	research	was	conducted	through	literature	review	regarding	existing	relevant	
defect	 datasets.	 The	majority	 of	 the	 existing	 concrete	defect	 classification	datasets	 (SDNET,	BCD,	 ICCD)	
mainly	focus	on	crack	detection	tasks	[6].	While	this	COGITO	task	concerns	a	multi-classification	problem,	
in	this	section,	datasets	for	damage	classification	in	a	multi-label	setting	will	be	presented.	

	Based	on	the	literature	review	and	relevant	publications,	three	already	existing	(multi-class	classification)	
concrete	defect	datasets,	which	were	found	online	and	used	in	our	case,	are	presented	below.		

• Concrete	Damage	Classification	master	
The	original	dataset	comprised	of	five	classes:	Blistering,	Crack,	Honeycomb,	Normal	and	Moss.	636	
images	were	acquired	and	divided	into	2	groups,	training	and	testing,	containing	80	and	20	percent	
of	the	images	respectively.	The	offline	image	augmentation	technique	was	implemented	on	both	
groups	 to	 get	more	 training	 and	 testing	 samples.	 In	 that	way,	 4,200	 images	were	 available	 for	
training	and	1,050	for	testing	(5,250	images	in	total).	Finally,	to	avoid	unbalanced	data,	the	number	
of	images	in	each	class	was	made	equal	[2].All	the	images	are	227	x	227	pixels.	Examples	of	this	
dataset	are	illustrated	in	Figure	3.		
	

	

Figure	3	-	Dataset	examples.	From	left	to	right:	Blistering,	Crack,	Honeycomb,	Moss,	Normal	class

	
• COncrete	DEfect	BRidge	Image	(CODEBRIM)		

CODEBRIM	features	six	mutually	non-exclusive	classes:	Crack,	Spallation,	Efflorescence,	Exposed	
Bars,	 Corrosion	 (stains)	 and	 Non-defective	 Background.	 1,590	 high-resolution	 images	 were	
acquired	from	30	unique	bridges,	at	different	scales	and	resolutions.	After	annotation	process,	the	
images	were	divided	in	3	groups,	training,	validation	and	testing,	containing	80,	10	and	10	percent	
of	 the	 images	 respectively.	 The	 final	 dataset	 is	 composed	 by	 7,860	 images.	 The	 images	 were	
acquired	at	high-resolution,	partially	using	an	unmanned	aerial	vehicle	(UAV)	to	gain	close-range	
access	and	feature	varying	scale	and	context.	The	bridges	were	chosen	according	to	varying	overall	
deterioration,	defect	extent,	severity	and	surface	appearance	(e.g.,	roughness	and	colour).	Images	
were	 taken	 under	 changing	 weather	 conditions	 to	 include	 wet/stained	 surfaces	 with	 multiple	
cameras	at	varying	scales	[9].	Examples	of	this	dataset	are	depicted	in	Figure	4.		
	

	
	 D5.3	 Deep-Learning	-based	Visual	QC	component	v1	 17	

	
	

	
	

	
COGITO	–	GA	ID.	958310		

COnstruction	phase	

diGUtal	Twin	mOdel	

	
	

	

Figure	4	-	Dataset	examples.		Top	row	from	left	to	right:	Efflorescence,	Crack,	Non-defective	
Background.	Bottom	row	from	left	to	right:	Spalling,	Corrosion,	Exposed	Rebar	

					
• Multi	classifier	data		

For	this	dataset,	38,408	raw	images	were	used	in	total,	but	after	a	processing	and	labelling	step,	
only	3,607	single	defect	images	were	extracted,	given	that	many	of	the	images	collected	only	show	
intact	 concrete	 surfaces	 without	 a	 defect.	 The	 final	 dataset	 consists	 of	 five	 classes:	 Cracks,	
Efflorescence,	 General	 defect,	 No	 defect,	 Scaling	 and	 Spalling.	 In	 addition	 two	 smaller	 binary	
datasets	are	included,	for	Exposed	Reinforcement	or	not,	as	well	as	for	Corrosion	and	Rust	Stain	or	
not,	while	in	case	of	Efflorescence,	Scaling	and	Spalling,	a	further	investigation	for	the	existence	or	
not	of	Exposed	Reinforcement,	as	well	as		for	the	existence	of	Corrosion	and	Rust	Staining	or	not	
occurs	[8].	Examples	of	this	dataset	are	presented	in	Figure	5.		
	

						 	

Figure	5	-	Dataset	examples.		Top	row	from	left	to	right:	Crack,	General	defect,	No	defect,	Scaling,	
Spalling.	Bottom	row	from	left	to	right:	Efflorescence,	Exposed	Rebar,	Corrosion	

In	most	of	 the	cases,	 the	datasets	contained	useful	classes	of	defects;	however,	some	classes	referred	to	
defects	 that	 occur	 after	 a	 long	 time	 (such	 as	moss	 and	 corrosion	 stains).	 Therefore,	 these	 classes	were	
excluded,	 as	 well	 as	 the	 images,	 which	 depict	 two	 or	 more	 type	 of	 defects	 concurrently	 (multi-label	
classification3).	Based	on	the	above,	a	large	number	of	existing	images	was	exploited	to	construct	our	initial	
dataset.		

	
3	Class	labels	are	not	mutually	exclusive	-	there	is	no	constraint	on	how	many	of	the	classes	the	instance	can	
be	assigned	to.	

	
	 D5.3	 Deep-Learning	-based	Visual	QC	component	v1	 18	

	
	

	
	

	
COGITO	–	GA	ID.	958310		

COnstruction	phase	

diGUtal	Twin	mOdel	

	
	

• Cambridge	Bridge	Inspection	Dataset	

The	Cambridge	Bridge	Inspection	dataset	is	a	small	bridge	inspection	dataset	that	seeks	to	detect	concrete	
defects.	The	samples	are	divided	into	healthy	and	potentially	unhealthy	(691	and	337	images	respectively),	
hence,	it	concerns	a	binary	classification	problem.		Besides	different	luminous	conditions	on	all	images,	the	
unhealthy	 class	 consists	 of	 concrete	 damage	 such	 as	 cracking,	 graffiti,	 vegetation,	 and	 blistering	 [24].	
Examples	of	this	dataset	are	presented	in	Figure	6.		

																										 	

Figure	6	-	Dataset	examples.	From	left	to	right:2	healthy	and	2	potentially	unhealthy	

3.1.2 Additional	Data	
After	the	collection	of	the	existing	datasets,	many	online	meetings	were	arranged	with	the	industry	partners	
to	finalise	the	lists	of	defects.	In	addition,	a	large	amount	of	raw	data	acquired	during	quality	control	process	
of	 elder	 projects	 and	 construction	 sites	 was	 provided	 for	 further	 processing.	 The	 provided	 data	 was	
captured	by	UAVs;	therefore,	the	image	size	and	resolution	were	quite	high.		However,	the	required	data	for	
training	 a	model	 should	 have	 fixed	 dimensions	 (i.e.,	 224x224	 pixels)	 and	 the	 available	 data	was	much	
greater.	For	that	reason,	the	original	raw	data	had	to	be	processed,	to	be	in	consistency	with	the	existing	
datasets. The	original	large	images	were	divided	into	several	smaller	images	(224×224	pixels)	using	Python.	
This	way,	only	images	with	dimensions	of	224×224	pixels	were	created.	The	new	images	constitute	parts	of	
an	original	image	corresponding	to	concrete	surface	with	many	types	of	defects.	They	were	then	checked	
and	labelled	manually	from	scratch.	Only	the	segmented	images,	which	depicted	clearly	only	one	type	of	
defect,	were	selected	to	be	included	in	the	final	dataset.	Abstract	or	blurry	images	that	may	confuse	the	
model	during	training	were	excluded.	Figure	7	depicts	the	segmentation	and	labelling	of	the	new	raw	data.		

	

Figure	7	-	Segmentation	of	the	large	image	in	smaller	and	labelling	the	smaller	pieces	

	
	 D5.3	 Deep-Learning	-based	Visual	QC	component	v1	 19	

	
	

	
	

	
COGITO	–	GA	ID.	958310		

COnstruction	phase	

diGUtal	Twin	mOdel	

	
	

3.1.3 Data	Augmentation	Technique	
As	aforementioned	 in	 the	previous	 sections,	 a	new	dataset	was	 created	combining	all	 the	 relevant	data	
found	 in	 existing	 datasets	 in	 the	 literature	 with	 the	 new	 raw	 data	 provided	 by	 the	 industry	 partners.	
Unfortunately,	the	class	distribution	of	the	constructed	dataset	was	not	equal	or	close	to	equal;	instead,	it	
was	biased.	The	constructed	dataset	considered	imbalanced,	while	in	some	classes,	the	number	of	samples	
was	sufficient	(i.e.,	cracks)	but	some	classes	lacked	in	samples	(i.e.,	exposed	rebar).		An	imbalanced	dataset	
can	create	problems	in	the	classification	task,	during	the	evaluation	of	the	model’s	performance.	Therefore,	
it	was	necessary	to	balance	the	dataset	by	virtually	replicating	the	under-represented	class	examples	such	
that	the	overall	defect	number	per	class	is	on	the	same	scale	ensuring	that	defect	classes	are	sampled	equally	
during	training. 	

The	data	augmentation	technique	can	be	defined	as	the	technique	used	to	improve	the	diversity	of	the	data	
by	slightly	modifying	copies	of	already	existing	data	or	newly	create	synthetic	data	from	the	existing	data	
[25].	It	is	a	great	way	to	expand	the	size	of	the	dataset,	as	new	transformed	images	come	up	from	the	original	
dataset. During	 this	 process,	 different	 transformations	 are	 applied	 to	 original	 images	 and	 multiple	
transformed	 copies	 of	 the	 same	 image	 are	 produced.	 Each	 copy,	 however,	 is	 different	 from	 the	 others	
(depending	 on	 the	 augmentation	 techniques	 i.e.,	 shifting,	 rotating,	 flipping,	 etc.)	 Applying	 these	 small	
amounts	of	variations	on	the	original	image	provides	a	new	perspective	of	the	object	but	does	not	change	
its	 target	 class	 practically.	 In	 addition,	 applying	 the	 data	 augmentation	 technique,	 allows	 the	model	 to	
become	more	robust	and	to	generalize	better	on	unseen	data,	as	 incorporates	a	 level	of	variation	 in	the	
dataset.	The	artificial	 increase	 in	our	case	was	achieved	by	 implementing	 the	offline	data	augmentation	
technique,	using	the	PIL	library	(Figure	8).	

	

Figure	8	-	Expanding	an	existing	dataset	using	offline	data	augmentation	technique	

Two	artificial	 augmented	 images	were	produced	 from	 the	original	one.	 In	 the	 first	 augmented	 image,	4	
transformations	were	implemented:	rotation	90	degrees	clockwise,	blur	filter,	reducing	of	brightness	and	
contrast.	In	the	second	augmented	image,	3	transformations	were	implemented:	vertical	flip,	sharpness	and	
increasing	of	brightness.	Examples	of	the	data	augmentation	implemented	for	the	exposed	rebar	and	the	
honeycomb	class	are	illustrated	in	Figure	9	and	Figure	10,	respectively.		

	
	 D5.3	 Deep-Learning	-based	Visual	QC	component	v1	 20	

	
	

	
	

	
COGITO	–	GA	ID.	958310		

COnstruction	phase	

diGUtal	Twin	mOdel	

	
	

																			 	

Figure	9	-	Offline	data	augmentation-	exposed	rebar.	Left:	Original	image.	Right:	augmented	images	
artificially	produced	

	

																							 	

Figure	10	-	Offline	data	augmentation-	honeycomb.	Left:	Original	image.	Right:	augmented	images	
artificially	produced	

3.1.4 Final	Concrete	Defects	Dataset	Properties	
The	final	concrete	dataset	was	created	to	detect	5	types	of	concrete	defects:	blistering,	crack,	efflorescence,	
exposed	rebar	and	honeycomb.	However,	an	extra	class	was	included	to	cover	the	case	of	a	non-defective	
area.	Hence,	the	final	dataset	contains	6	classes	and	8,225	images;	the	80%	of	the	samples	was	used	for	
training	the	model	while	the	20%	of	the	samples	was	used	for	validation	and	testing	sets	(10%	and	10%	
respectively).	More	specifically,	6,578	images	were	used	for	training,	while	the	rest	1,647	(820	and	827)	for	
validation	and	testing	respectively	as	illustrated	in	Table	3.	Over	1,000	images	belong	to	each	class.	The	
images	were	collected	from	the	existing	datasets	analysed	in	Section	3.1.1.	We	were	focused	only	in	the	final	
defect	types	presented	in	Section	2.2;	therefore,	some	classes	(such	as	spalling)	were	disregarded	while	this	
type	of	defects	cannot	occur	in	new	constructions.	Images	from	existing	datasets	were	mixed	to	comprise	
the	final	dataset.	The	data	was	also	cleaned	up	to	avoid	confusing	samples,	which	include	more	than	one	
defects.	 	While	some	of	the	existing	datasets	are	based	only	on	ideal	 laboratory	conditions,	contain	only	
ideal	 cracks	 and	 surfaces,	 excluding	 the	 specific	 types	 of	 damage	 to	 real	 structures	 in	 different	
environmental	conditions,	the	new	processed	data	provided	by	the	industry	partners	were	also	exploited	
at	this	step.	By	combining	several	images	from	different	existing	datasets	and	new	real	data	(which	however	
belong	 to	 the	 same	 category),	 we	 tried	 to	 create	 a	 more	 representative	 dataset	 containing	 different	
instances	of	defects.	While	the	variety	of	samples	depicting	defects	is	increased	significantly	(i.e.,	image	size,	
camera	resolution,	weather	conditions	etc.),	it	is	very	likely	that	the	model	generalizes	and	performs	better	
in	unknown	data.	This	fact	can	lead	to	model’s	optimization	and	the	improvement	of	its	performance.		In	
addition,	as	aforementioned	in	Section	3.1.3,	some	classes	(such	as	exposed	rebar	and	honeycomb)	lacked	
in	samples.	The	offline	data	augmentation	approach	was	implemented	in	these	cases,	to	balance	the	dataset	
and	avoid	the	biases.	The	final	concrete	defects	dataset’s	details	are	presented	in	Table	3.	

	

	
	 D5.3	 Deep-Learning	-based	Visual	QC	component	v1	 21	

	
	

	
	

	
COGITO	–	GA	ID.	958310		

COnstruction	phase	

diGUtal	Twin	mOdel	

	
	

Table	3	–	Final	concrete	defects	dataset's	summary	

											No	 .of	
images	
Classes	

Original	 Augmented	 Total	
	

Training	 Validation	 Testing	

Blistering	 1,050	 -	 1,050	 840	 105	 105	
Crack	 1,394	 -	 1,394	 1,115	 139	 140	
Efflorescence	 1,397	 -	 1,397	 1,117	 139	 141	
Exposed	
Rebar	

562	 1,124	 1,686	 1,348	 168	 170	

Honeycomb	 990	 400	 1,390	 1,112	 139	 139	
No	defect	 1,308	 -	 1,308	 1,046	 130	 132	
Total	 6,701	 1,524	 8,225	 6,578	 820	 827	

Some	 representative	 examples	 of	 the	 data	 collected	 from	 existing	 datasets	 mixed	 with	 the	 raw	 data	
provided	by	the	industry	partners	and	used	for	training,	validation	and	testing	process	are	illustrated	in	
Figure	11	and	Figure	12.		

	

Figure	11	-	Final	Concrete	Defect	Dataset.	Top	row	from	left	to	right:	3	blistering,	3	cracks.	Bottom	
row:	3	efflorescence	

	

Figure	12	-	Final	Concrete	Defect	Dataset.	Top	row	from	left	to	right:	1	exposed	rebar,	2	
honeycomb,	and	2	no	defect.	Bottom	row	from	left	to	right:	1	exposed	rebar,	1	no	defect	

3.2 Steel	Defects	Dataset	
3.2.1 Existing	Datasets	
Based	 on	 the	 literature	 review	 and	 relevant	 publications,	 two	 existing	 (multi-class	 classification)	 steel	
defect	datasets	found	online.		

	
	 D5.3	 Deep-Learning	-based	Visual	QC	component	v1	 22	

	
	

	
	

	
COGITO	–	GA	ID.	958310		

COnstruction	phase	

diGUtal	Twin	mOdel	

	
	

• NEU	Dataset	

The	NEU	Dataset4	includes	1,800	greyscale	images	(200	x	200	pixels)	of	six	different	kinds	of	typical	surface	
defects	of	the	hot-rolled	steel	strip	(rolled-in	scale,	patches,	crazing,	pitted	surface,	inclusion	and	scratches).	
The	dataset	is	balanced;	thus,	each	class	consists	of	300	samples.	The	300	samples	per	class	are	then	split	
and	the	240	images	can	be	used	for	training	while	the	60	images	for	testing	[5].	Examples	of	this	dataset	are	
presented	in	Figure	13.		

	

	

Figure	13	–	NEU	Dataset	examples.	From	left	to	right:	Rolled-in	scale,	Patches,	Crazing,	Pitted	
surface,	Inclusion	and	Scratches	

• Severstal	Dataset	

The	Severstal5	steel	defect	dataset	contains	12,568	grey	scale	images	(1600	x	256	pixels)	of	steel	surface	
with	and	without	defects	(four	types:	pitted	surface,	crazing,	scrapes,	and	patches)	[5].	Examples	of	this	
dataset	are	presented	in	Figure	14.		

	

Figure	14	-	Severstal	Dataset	examples.	From	left	to	right:	Non-defective,	defective	steel	surface	

3.2.2 Additional	Data	and	Final	Dataset	
In	case	of	steel,	it	is	obvious	that	literature	is	not	as	extensive	as	concrete	surface	defects	and	these	datasets	
do	not	seem	to	be	representative	of	the	steel	constructions	real	case	scenarios.	Thus,	additional	data	should	
be	collected	 from	the	COGITO	 industry	partners,	 in	order	 to	create	a	dataset	 that	which	corresponds	 to	
specific	types	of	damage	in	real	structures	under	different	environmental	conditions.	The	collection	of	the	
appropriate	data	will	take	place	in	the	next	months	and	the	final	multiclass	steel	dataset	will	be	presented	
in	the	second	release	of	the	Visual	QC	component	(M24).		

3.3 	Structure	Type	Dataset		
As	it	was	already	mentioned,	at	the	first	stage	of	the	process,	a	binary	classifier	identifies	if	the	image	sent	
to	the	Visual	Quality	Control	tool	concerns	a	concrete	or	a	steel	structure	surface.	As	presented	in	Table	4,	
the	first	version	of	the	component,	a	binary	dataset	finally	containing	509	images	(300	and	209)	belonging	
to	two	classes	(concrete/	steel	surfaces	respectively)	was	created,	exploiting	the	offline	data	augmentation	
technique	(Section	3.1.3).	The	concrete	surface	 images	were	selected	 from	the	created	concrete	dataset	
(Section	3.1.4).	The	 images	depicting	 steel	 structures	were	 collected	 from	 the	web,	 exploiting	 an	open-
source	command	line	python	tool,	google-images-download6.	This	tool	is	used	to	scrape	images	from	search	
engines	 (e.g.,	 Google)	 by	 keywords	 (i.e.,	 rusty	 bolts,	 steel	 structures	 etc.)	 and	 download	 them	 to	 the	
computer.	Some	additional	samples	from	the	NEU	Dataset	were	also	exploited.	It	is	worth	mentioning	that	
at	this	point,	the	focus	is	on	whether	the	image	depicts	a	concrete	or	a	steel	structure	(not	a	healthy	or	an	

	
4	https://www.kaggle.com/kaustubhdikshit/neu-surface-defect-database		
5	https://www.kaggle.com/iafoss/severstal-256x256-images-with-defects		
6	Available	at:	https://pypi.org/project/google_images_download/		

	
	 D5.3	 Deep-Learning	-based	Visual	QC	component	v1	 23	

	
	

	
	

	
COGITO	–	GA	ID.	958310		

COnstruction	phase	

diGUtal	Twin	mOdel	

	
	

unhealthy	area).		In	the	second	version	of	the	tool,	once	steel	defects	data	will	be	available,	the	binary	dataset	
will	be	enriched	and	refined.	Examples	of	this	dataset	are	presented	in	Figure	15.	

Table	4	-	Final	structure	type	dataset's	summary	

											No.	of	
images	
Classes	

Original	 Augmented	 Total	
	

Training	 Validation	 Testing	

Concrete	 100	 200	 300	 240	 30	 30	
Steel	 99	 110	 209	 167	 20	 22	
Total	 199	 310	 509	 407	 50	 52	

	

																 	

Figure	15	-	Final	Structure	Type	Dataset.	Top	row	from	left	to	right:	2	concrete	surfaces,	and	1	steel	
surfaces.	Bottom	row	from	left	to	right:	2	steel	surfaces	

	

	 	

	
	 D5.3	 Deep-Learning	-based	Visual	QC	component	v1	 24	

	
	

	
	

	
COGITO	–	GA	ID.	958310		

COnstruction	phase	

diGUtal	Twin	mOdel	

	
	

4 Deep	Learning	Model	

The	Visual	Quality	Control	works	as	follows:	at	the	first	stage,	a	binary	classifier	was	implemented	to	define	
the	type	of	the	structure;	it	detects	whether	the	image	uploaded	for	visual	inspection	depicts	a	concrete	or	
a	steel	surface.	 	At	the	second	stage,	another	multiclass	model	was	trained	in	order	to	detect	whether	a	
concrete	defect	is	identified	in	this	specific	image.	In	the	second	version	of	the	component	an	additional	
model,	which	detects	steel	defects,	will	be	created.	The	appropriate	model	will	be	uploaded	based	on	the	
first	 stage	 decision.	 The	 first	 sub-section	 describes	 the	 proposed	 method	 to	 implement	 the	 Transfer	
Learning	technique	for	detecting	the	structural	type	(binary	classifier)	and	the	defects	on	site	(multiclass	
classifier).	The	second	sub-section	presents	the	metrics	used	for	evaluating	the	models.		

4.1 Training	
For	the	implementation	of	both	classifiers	(binary	and	multiclass),	a	Transfer	Learning	strategy	was	applied,	
while	the	number	of	collected	defect	samples	was	not	sufficient	to	train	a	Deep	Neural	Network	(DNN)	from	
scratch.	

4.1.1 1st	stage:	Structure	Type	Classifier	
At	the	first	stage,	primary	experiments	were	done	regarding	the	identification	of	the	type	of	the	structure	
illustrated	 in	 the	 image	data.	 Therefore,	we	 implemented	 the	Transfer	 Learning	 strategy	 exploiting	 the	
InceptionV3	pre-trained	CNN	model.	According	to	the	Transfer	Learning	approach	(Section	2.1.4)	and	as	
illustrated	in	Figure	2,	the	pre-trained	layers	were	frozen;	changes	were	made	only	to	the	final	additional	
layer.	Regarding	the	network	weights,	just	updating	the	final	layer	of	the	network	requires	less	training	time	
and	memory	while	updating	the	whole	network	leads	to	a	higher	classification	reliability	[8].	Hence,	only	
the	weights	of	the	new	customized	layers	of	the	network	were	updated,	while	the	rest	were	set	as	non-
trainable.		

Instead	of	the	last	layer,	we	added	custom	new	layers	to	create	a	new	binary	classifier	able	to	handle	this	
binary	 problem	 (concrete/	 steel).	 On	 top	 of	 the	 existing	 layers,	 a	 customized	 Flatten	 layer	was	 added,	
followed	by	a	Dense	layer	with	512	hidden	units	and	ReLu	activation	function.	Furthermore,	a	Dropout	layer	
was	added	to	avoid	overfitting.	Last,	an	extra	Dense	 layer	 implemented	to	classify	 the	 image	 in	 the	 two	
potential	categories:	concrete	or	steel.	Table	5	shows	the	customized	layers	architecture.	The	last	output	
layer	consisted	of	a	single	unit	with	Sigmoid	activation	function.	

Table	5	-	Customized	layers	architecture	for	the	type	classifier	

Layer	(type)	 Output	Shape	 No.	of	
Parameters	

Flatten	 (None,	131072)	 0	
Dense	 (None,	512)	 67,109,376	
Dropout	 (None,	512)	 0	
Dense	 (None,	1)	 513	
Total	Params:	 67,109,889	
Trainable	Params:	 67,109,889	
Non-trainable	
Params:	

0	

	

Next,	 the	model	was	 compiled	 on	 the	 few	 last	 layers	 of	 the	 network	 in	 order	 to	 adjust	 the	 pre-trained	
weights	using	the	Binary	Cross-entropy	loss	function	and	the	Adam	optimizer.	The	model	was	trained	with	
the	following	hyper-parameters	Table	6.			

	 	

	
	 D5.3	 Deep-Learning	-based	Visual	QC	component	v1	 25	

	
	

	
	

	
COGITO	–	GA	ID.	958310		

COnstruction	phase	

diGUtal	Twin	mOdel	

	
	

Table	6	-	Hyper-parameters	in	training	the	type	of	classifier	

Hyperparameter	 Value	
Epochs	 20	
Learning	rate	 0.001	
Decay	 0.01	
Batch	size	 32	
Dropout	 0.001	
Optimizer	 Adam	

	

Finally,	it	worth	mentioning	that	the	dataset	was	loaded	for	training	and	evaluating	the	model	using	the	
Tensorflow	ImageDataGenerator7.	The	ImageDataGenerator	generates	batches	of	tensor	image	data	with	
real-time	 data	 augmentation.	 It	 is	 a	 data	 augmentation	 technique	that	 allows	 to	 randomly	 load	 and	
transform	 the	data	on	 the	 fly	while	 training	process.	The	 transformations	applied	during	 training	were	
rotation,	zoom,	horizontal	and	vertical	flip,	width	and	height	shift,	as	well	as	brightness	range.		

	

Figure	16	-	On	the	fly	data	augmentation	technique	

	

4.1.2 2nd	stage:	Multiclass	Concrete	Defect	Classifier	
Following	the	assumption	that	the	above	binary	classification	result	was	correct,	the	appropriate	model	will	
be	loaded	to	identify	potential	defects	on	the	surface	(concrete	or	steel).	Thus	far,	the	implementation	has	
focused	on	the	case	of	concrete	multiclass	problem.		We	experimented	with	different	state	of	the	art	image	
classification pre-trained	CNN	models	including	VGG19,	InceptionV3,	ResNet50	and	MobileNet	to	compare	
them	and	to	evaluate	their	performance.	As	in	the	binary	classifier,	the	existing	layers	were	frozen;	changes	
were	made	only	to	the	final	layer.	Actually,	instead	of	the	last	layer	(these	models	are	built	to	handle	up	to	
1000	classes)	we	added	custom	new	layers	to	create	a	new	classifier	able	to	handle	the	target	classes	(i.e.,	
blistering,	 crack,	efflorescence,	exposed	rebar	and	honeycomb)	as	 illustrated	 in	Figure	2.	Regarding	 the	
network	weights,	just	updating	the	final	layer	of	the	network	requires	less	training	time	and	memory	while	
updating	the	whole	network	leads	to	a	higher	classification	reliability	[8].	Hence,	only	the	weights	of	the	
new	customized	layers	of	the	network	were	updated,	while	the	rest	were	set	as	non-trainable.		

As	mentioned	above,	in	order	to	create	a	new	classifier	after	last	layer’s	removal,	a	few	customized	layers	
were	added	on	top	of	these	output	features.	More	specifically,	the	output	of	the	last	convolutional	layer	was	
first	flattened	(by	adding	a	Flatten	layer)	and	connected	to	a	Dense	layer	with	512	hidden	units	and	ReLU	
activation	 function.	 In	 addition,	 a	 Dropout	 layer	 was	 added	 to	 avoid	 overfitting.	 The	 last	 output	 layer	
consisted	of	 a	 single	unit	with	 Softmax	 activation	 function.	 Softmax	 is	 an	 activation	 function	 that	 turns	
numbers	aka	logits	into	probabilities	that	sum	to	one.	It	outputs	a	vector	that	represents	the	probability	

	
7	https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image/ImageDataGenerator		

	
	 D5.3	 Deep-Learning	-based	Visual	QC	component	v1	 26	

	
	

	
	

	
COGITO	–	GA	ID.	958310		

COnstruction	phase	

diGUtal	Twin	mOdel	

	
	

distributions	of	a	list	of	potential	outcomes	(in	this	case	are	the	six	classes:	blistering,	crack,	efflorescence,	
exposed	rebar,	honeycomb	and	no	defect.	Table	7	shows	the	customized	layers	architecture	and	the	number	
of	trainable	parameters	in	each	tested	pre-trained	model.		

Table	7	-	Customized	layers	architecture	for	the	concrete	classifier	

																		Output	
Shape		
Layer	(type)			

InceptionV3	 MobileNet	 VGG19	 ResNet50	

Flatten	 (None,	
131072)	

(None,	50176)	 (None,	25088)	 (None,	100352)	

Dense	 (None,	512)	 (None,	512)	 (None,	512)	 (None,	512)	
Dropout	 (None,	512)	 (None,	512)	 (None,	512)	 (None,	512)	
Dense	 (None,	6)	 (None,	6)	 (None,	6)	 (None,	6)	
Total	Params:	 67,112,454	 25,693,702	 32,873,030	 76,971,526	
Trainable	Params:	 67,112,454	 25,693,702	 32,873,030	 76,971,526	
Non-trainable	
Params:	

0	 0	 0	 0	

Next,	 the	model	was	 compiled	 on	 the	 few	 last	 layers	 of	 the	 network	 in	 order	 to	 adjust	 the	 pre-trained	
weights	using	the	Categorical	Cross-entropy	loss	function	and	the	Adam	optimizer.	The	model	was	trained	
with	the	following	hyper-parameters	(Table	8).		

Table	8	-	Hyper-parameters	in	training	the	multiclass	concrete	classifier	

Hyperparameter	 Value	
Epochs	 30	
Learning	rate	 0.001	
Decay	 0.0001	
Batch	size	 32	
Dropout	 0.01	
Optimizer	 Adam	

The	dataset	was	loaded	for	training	and	evaluating	the	model	using	the	Tensorflow	ImageDataGenerator.	
The	data	augmentation	technique	on	the	fly	was	implemented	as	before.	

4.2 Evaluation	
The	robustness	of	the	network	is	measured	using	classification	quality	measures	such	as	precision,	recall,	
accuracy	and	F1	score.	For	 the	case	of	a	non-binary	classifier,	all	 samples	belonging	 to	a	corresponding	
group	are	summed	up.	Quality	measures	can	then	be	defined	using	these	four	groups	of	labels.		

Precision	is	the	fraction	of	samples	classified	as	positive	that	are	actually	positive.		

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

TP + FP	

	

Recall8	is	the	ratio	of	the	Actual	Positives	the	model	managed	to	identify	(True	Positive	-	TP).		

𝑅𝑒𝑐𝑎𝑙𝑙 =
TP

TP + TN	

	

Accuracy	is	the	fraction	of	a	sample	being	classified	correctly,	independently	from	its	class.		

	
8	Recall	is	also	known	as	sensitivity.	

	
	 D5.3	 Deep-Learning	-based	Visual	QC	component	v1	 27	

	
	

	
	

	
COGITO	–	GA	ID.	958310		

COnstruction	phase	

diGUtal	Twin	mOdel	

	
	

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
TP + TN

TP + FP + TN + FN	

	

In	 general,	 accuracy	 is	 a	 reliable	 measurement	 for	 assessing	 the	 overall	 performance	 of	 a	 classifier.	
However,	it	is	biased	towards	the	predominant	class	if	classes	are	unbalanced.	For	this	reason,	the	F1	score	
is	introduced	which	takes	both	false	positives	and	false	negatives	into	account.	F1	score	is	the	harmonic	
mean	of	precision	and	recall	[8].		

𝐹1	𝑠𝑐𝑜𝑟𝑒 = 2 ∗
precision ∗ sensitivity
precision + 	sensitivity	

For	the	Visual	Quality	Control	component	evaluation,	we	focused	on	the	recall	and	F1	score.	Recall	reflects	
the	percentage	of	samples	belonging	to	a	class	that	the	model	correctly	classified;	it	actually	calculates	how	
many	relevant	items	were	retrieved.	The	higher	the	recall,	the	more	defects	were	correctly	detected.	Thus,	
the	model	can	be	trusted	in	its	ability	to	detect	defects.	In	addition,	F1	score	has	an	advantage	in	unbalanced	
datasets	such	as	in	our	case.	

	

During	the	evaluation	for	the	multiclass	problem,	the	trained	network	was	asked	to	predict	the	label	for	
each	image	in	the	testing	set.	During	this	process,	the	predictions	were	compared	to	the	ground-truth	labels,	
the	category	of	the	actual	images	of	the	testing	set.	The	results	were	summed	up	in	a	confusion	matrix.		A	
confusion	matrix	allows	us	to	measure	the	aforementioned	metrics.	It	is	a	specific	table	layout,	which	allows	
visualization	of	the	performance	of	the	algorithm.	Each	row	of	the	matrix	represents	the	instances	in	an	
actual	class	while	each	column	represents	 the	 instances	 in	a	predicted	class.	An	example	of	a	confusion	
matrix	is	depicted	in	Table	9.	The	yellow	cell	(True	Positive	-	TP)	represents	the	samples	that	were	actually	
cracks	and	were	also	predicted	as	cracks	by	the	model.	The	purple	cells	(False	Negative	-	FN)	represent	the	
samples	that	were	actually	cracks	but	they	were	predicted	to	belong	in	other	classes	(such	as	blistering).	
Finally,	the	cyan	cells	(False	Positive	-	FP)	represent	the	samples	that	despite	the	fact	that	they	belong	to	
another	class	(such	as	honeycomb)	were	wrongly	predicted	as	cracks.		

Table	9-	Confusion	matrix	of	the	multiclass	problem	

 PREDICTED	class	

AC
TU
AL
	c
la
ss
	 Classes	 Blistering	 Crack	 Efflorescence	 Exposed	

Rebar	
Honeycomb	

Blistering	 TN	 FP	 TN	 TN	 TN	
Crack	 FN	 TP	 FN	 FN	 FN	
Efflorescence	 TN	 FP	 TN	 TN	 TN	
Exposed	Rebar	 TN	 FP	 TN	 TN	 TN	
Honeycomb	 TN	 FP	 TN	 TN	 TN	

	

	
	 D5.3	 Deep-Learning	-based	Visual	QC	component	v1	 28	

	
	

	
	

	
COGITO	–	GA	ID.	958310		

COnstruction	phase	

diGUtal	Twin	mOdel	

	
	

5 Deep	-Learning	-based	Visual	QC	component		

In	 this	 section,	 the	 Deep-Learning-based	 Visual	 QC	 component	 is	 presented	 in	 detail.	 The	 overall	
architecture	of	the	component	is	presented,	as	well	as	the	different	sub-components.	In	addition,	relevant	
information	about	the	implementation	tools,	the	current	status	etc.	are	described	in	the	next	sub-sections.	

5.1 Prototype	Overview		
The	Visual	QC	tool	is	organized	into	four	submodules,	which	are	presented	in	the	following	sub-sections.	
The	overall	architecture	of	the	tool	is	illustrated	in	Figure	17.		

	

Figure	17-	Visual	QC	component	overall	architecture	

In	Figure	18,	the	basic	workflow	of	the	automated	visual	QC	process	is	described.	The	input	to	the	Visual	QC	
tool	is	the	processed	data,	as	well	as	relevant	metadata	regarding	the	involved	building	components	of	the	
BIM	model,	provided	through	the	DT	Platform.	The	Structural	type-based	selector	first	decides	which	deep	
learning	algorithm	should	be	loaded	for	the	defect	detection	process,	based	on	the	type	of	the	structure	
(steel	 or	 concrete).	 	 Based	 on	 its	 decision,	 the	Defect	 detector	 sub-component	 practically	 performs	 the	
defect	 detection,	 exploiting	 the	 respective	 trained	 model	 (i.e.,	 Inception	 V3	 pre-trained	 model).	 The	
predicted	result	is	then	forwarded	to	the	QC	report	generator,	which	creates	a	new	report	regarding	the	
defect	type	and	the	relevant	metadata.	The	results	are	finally	sent	to	the	DT	Platform	in	a	JSON	format	file.

	

Figure	18	-	Workflow	in	the	Visual	QC	tool	

	
	 D5.3	 Deep-Learning	-based	Visual	QC	component	v1	 29	

	
	

	
	

	
COGITO	–	GA	ID.	958310		

COnstruction	phase	

diGUtal	Twin	mOdel	

	
	

5.1.1 DT	Platform	connector	sub-component	
The	DT	Platform	connector	enables	the	communication	of	the	Visual	QC	tool	with	the	DT	Platform.	It	is	in	
charge	of	data	exchanging	with	the	DT	Platform	through	a	provided	API	endpoint.		

5.1.2 Structural	type-based	selector	sub-component	
The	Structural	type-based	selector	selects	the	appropriate	trained	model	depending	on	the	structural	type	
of	the	visual	data	(concrete	or	steel).	Practically	it	is	the	binary,	trained	model,	which	predicts	weather	the	
image	depicts	a	surface	of	a	concrete	or	a	steel	structure.	Based	on	this	decision,	the	appropriate	multiclass	
model	will	be	loaded	to	be	used	for	detecting	the	defects.		

5.1.3 Defect	detector	sub-component	
The	Defect	detector	carries	out	the	Visual	QC	using	the	processed	visual	data	and	the	appropriate	trained	
model.	Practically	it	is	the	multiclass,	trained	model,	which	is	loaded	and	predicts	the	defect	class	for	each	
image	sent	to	the	Visual	QC	tool.		

5.1.4 QC	report	generator	sub-component	
The	QC	report	generator	creates	the	Visual	QC	reports	that	are	going	to	be	delivered	to	the	DT	Platform,	
based	on	the	results	of	the	Defect	detector.	It	actually	returns	the	result	in	order	to	be	further	exploited	by	
the	relevant	COGITO	visualization	components	(DigiTAR	and	DCC).		

5.2 Technology	Stack	and	Implementation	Tools	
The	programming	language	used	in	this	tool	was	Python	3.8.	All	the	experiments	with	neural	networks	were	
carried	out	on	an	NVIDIA	GeForce	GTX	1660	GPU	running	on	the	CUDA9	platform.	For	the	Deep	Learning	
(DL)	models	training,	an	i5-9600K	CPU	at	3.70	GHz	with	16	GB	RAM	was	used.		

Furthermore,	the	training	of	the	DL	model	was	performed	using	the	Tensorflow	2.6.0	Keras	library.		

TensorFlow	is	an	end-to-end	open-source	platform	for	machine	learning.	It	is	a	comprehensive	and	flexible	
ecosystem	of	tools,	libraries	and	other	resources,	providing	workflows	with	high-level	APIs.	In	addition,	it	
gives	flexibility	and	control	with	features	like	the	Keras	Functional	API	[26].		

Keras	is	a	high-level	neural	networks	library	that	is	running	on	the	top	of	TensorFlow.	It	is	designed	for	
deep	neural	networks	and	works	as	a	wrapper	to	TensorFlow	framework.	Using	Keras	 in	deep	learning	
allows	for	easy	and	fast	prototyping.	It	is	written	in	Python	code,	which	is	easy	to	debug	and	allows	ease	for	
extensibility.	The	main	advantages	of	Keras	are	described	below:	

• User-Friendly:	Keras	has	a	 simple,	 consistent	 interface	optimized	 for	 common	use	 cases,	which	
provides	clear	and	actionable	feedback	for	user	errors.	

• Modular	 and	 Composable:	 Keras	models	 are	made	 by	 connecting	 configurable	 building	 blocks	
together,	with	few	restrictions.	

• Easy	To	Extend:	With	the	help	of	Keras,	it	is	easy	to	write	custom	building	blocks	for	new	ideas	and	
researches.	

• Easy	To	Use:	Keras	offers	consistent	&	simple	APIs,	which	helps	in	minimizing	the	number	of	user	
actions	required	for	common	use	cases	and	provides	clear	and	actionable	feedback	upon	user	error	
[26].	

NumPy10	is	an	open	source	project	aiming	to	enable	numerical	computing	with	Python.	It	is	a	library	for	
the	Python	programming	language,	adding	support	for	large,	multi-dimensional	arrays	and	matrices,	along	
with	a	large	collection	of	high-level	mathematical	functions	to	operate	on	these	arrays.	

	
9	 CUDA	 is	 a	 parallel	 computing	 platform	 and	 programming	 model	 developed	 by	 NVIDIA	 for	 general	
computing	on	graphical	processing	units	(GPUs).	With	CUDA,	developers	are	able	to	speed	up	dramatically	
the	computing	applications	by	harnessing	the	power	of	GPUs.	
10	https://numpy.org/	

	
	 D5.3	 Deep-Learning	-based	Visual	QC	component	v1	 30	

	
	

	
	

	
COGITO	–	GA	ID.	958310		

COnstruction	phase	

diGUtal	Twin	mOdel	

	
	

PIL11	(Python	Imaging	Library)	is	a	free	and	open-source	additional	library	for	the	Python	programming	
language	that	adds	support	for	opening,	manipulating,	and	saving	many	different	image	file	formats.		

Flask12	is	a	Python	web	framework,	used	for	developing	web	applications	using	Python.	More	specifically,	
Flask	provides	the	user	with	tools,	libraries	and	technologies	that	allow	building	a	web	application.	Using	
the	Flask	framework	has	several	advantages,	such	as	the	built-in	development	server	and	the	fast	debugger,	
the	lightweight	of	the	framework	and	the	supported	secure	cookies.		

All	the	libraries	and	technologies	used	for	developing	the	Visual	QC	component	are	summarised	in	Table	
10.		

Table	10	–	Libraries	and	Technologies	used	in	Visual	QC	component	

Library/Technology	Name	 Version	 License	
Python	 3.8	 Python	Software	Foundation	
Tensorflow	 2.6.0	 Apache	License	2.0	
Keras	 2.6.0	 Apache	License	2.0	
NumPy	 1.19.5	 Berkeley	Software	Distribution	(BSD)	
PIL	 8.2.0	 HPND	License	
Flask	 1.1.2	 Berkeley	Software	Distribution	(BSD)	
	

5.3 Input,	Output	and	API	Documentation	
The	Visual	Quality	Control	component	will	interact	only	with	the	DT	Platform	for	the	data	exchange.	It	will	
receive	metadata	regarding	a	created	job	and	structural	elements	that	need	to	be	assessed,	as	well	as	the	
respective	2D	image	depicting	the	area	of	interest	and	the	involved	structural	components.	In	addition,	it	
will	forward	to	the	DT	Platform,	the	generated	results	(predicted	class	and	confidence	level)	for	each	image	
sent	for	quality	control.		

5.3.1 Input	Data	
The	Visual	QC	component	would	require	as	input	the	following	information:	

• Processed	as-built	2D	image	data:	processed	image	(i.e.	.png,	.jpeg)	of	the	as-built	data	provided	
by	the	Visual	Quality	Control	tool.	

• Metadata:	 JSON	 file	containing	all	 the	relevant	 information	accompanying	 the	processed	 image	
(e.g.	Project_ID,	Job_ID,	etc.).		

5.3.2 Output	Data	
• Metadata:	 JSON	 file	 containing	 information	 generated	 by	 the	 Visual	 QC	 component	 (i.e.	

Predicted_Label,	Confidence_Level,	and	Status).		

5.3.3 API	Documentation	
Regarding	the	API,	a	first	version	is	implemented	in	this	first	release	of	the	Visual	QC	component.	The	API	
is	 used	 for	 storing,	 retrieving,	 updating	 and	 deleting	 data.	 The	 requests	 were	 tested	 in	 Postman	 API	
Platform13.	In	the	second	release,	the	component	will	expose	an	execution	interaction	with	the	DT	Platform	
in	order	to	be	consistent	with	the	rest	of	the	COGITO	solution.	Thus	far,	tests	were	done	involving	a	POST	
request	and	a	URL	for	getting	the	image	data.		

Once	the	web	service	is	up	and	running,	the	Visual	QC	is	accessible	through	the	following	endpoint:	

<local_IP>:<defined_port>/QualityControl/Type_Defect_Identification	

	
11	https://python-pillow.org/	
12	https://flask.palletsprojects.com/en/2.0.x/	
13	https://www.postman.com/	

	
	 D5.3	 Deep-Learning	-based	Visual	QC	component	v1	 31	

	
	

	
	

	
COGITO	–	GA	ID.	958310		

COnstruction	phase	

diGUtal	Twin	mOdel	

	
	

where	the	<local_IP>	is	the	IP	of	the	local	machine	on	which	the	Visual	Quality	Control	component	has	been	
deployed,	whereas	the	<defined_port>	is	the	port	of	the	server	that	is	defined	by	the	user.	

As	aforementioned,	via	a	POST	request	the	Visual	QC	receives	information	such	as	Project_ID,	WorkOrderID	
and	 the	 image	 URL	 (Figure	 19).	 The	 workflow	 begins,	 the	 appropriate	 model	 is	 loaded	 and	 makes	 a	
prediction.	In	Figure	20,	the	response	is	illustrated;	extra	fields	such	as	Structure_Type,	Confidence_Level,	
Detected_Defect	and	Status	are	generated	to	be	forwarded	to	the	DT	Platform.		

	

Figure	19	-	API	endpoint	for	defect	detection-	request	

	

Figure	20	-	API	endpoint	for	defect	detection-	response	

As	can	be	seen	from	the	above	figure,	the	enriched	JSON	contains	the	following	entries:	

• Structure_Type:	The	structural	type	(concrete/	steel)	of	the	specific	image,	generated	by	the	1st	
stage	classifier.		

• Detected_Defect:	The	predicted	defect	category	of	the	specific	image,	generated	by	the	2nd	stage	
classifier.		

• Confidence_Level:	The	percentage	that	the	model	is	confident	that	the	actual	value	occurs.		
• Status:	Depending	on	the	Confidence_Level	value.	At	this	step,	if	the	confidence	level	is	higher	than	

75%	the	status	is	defined	as	“Confirmed”.	If	not,	the	status	is	defined	as	“Unconfirmed”	and	needs	
to	be	confirmed	by	the	stakeholder	on	site	(DigiTAR	tool).		

	
	 D5.3	 Deep-Learning	-based	Visual	QC	component	v1	 32	

	
	

	
	

	
COGITO	–	GA	ID.	958310		

COnstruction	phase	

diGUtal	Twin	mOdel	

	
	

5.4 Application	Example	
5.4.1 Structure	Type	Classifier	
Thus	far,	the	binary	dataset	(concrete/	steel)	and	the	type	identification	is	implemented	in	a	preliminary	
level	to	ensure	that	the	service	is	available	and	the	basic	pipeline	is	achieved.	As	already	mentioned,	the	
dataset	 will	 be	 enriched	 (with	 extra	 steel	 surfaces	 images)	 and	 refined	 in	 the	 second	 version	 of	 the	
component;	hence,	results	regarding	the	binary	classification	(concrete	or	steel	structure)	will	be	presented	
in	summary	in	this	deliverable.		

Based	on	the	trained	process	as	described	in	Section	4.1.1,	the	model	was	tested	in	52	samples	(30	and	22	
concrete	 and	 steel	 samples	 respectively).	 By	 implementing	 the	 Early	 Stopping14	 technique	 to	 avoid	
overfitting,	the	training	process	has	been	interrupted	after	13	epochs	while	the	accuracy	had	not	further	
improved	for	5	epochs.	However,	the	accuracy	of	the	model	seems	to	be	high	(98	%	accuracy)	and	considers	
a	very	satisfactory	outcome.	The	performance	of	the	model	(accuracy	and	loss)	is	illustrated	in	Figure	21.		

																														 	

Figure	21	–	(a)	Accuracy	training/	Validation	accuracy,	and	(b)	Loss	training/	Validation	loss	
curves	of	InceptionV3	

The	classification	report	of	the	model	is	depicted	in	Figure	22.	Both	the	metrics	calculated	have	a	great	value	
(>	97%)	which	makes	the	model	very	accurate	and	reliable.		

	
14	https://keras.io/api/callbacks/early_stopping/		

	
	 D5.3	 Deep-Learning	-based	Visual	QC	component	v1	 33	

	
	

	
	

	
COGITO	–	GA	ID.	958310		

COnstruction	phase	

diGUtal	Twin	mOdel	

	
	

	

Figure	22	-	Classification	report	of	InceptionV3	

The	 confusion	 matrix	 of	 the	 model	 is	 illustrated	 in	 Figure	 23.	 As	 can	 be	 seen,	 only	 one	 sample	 was	
misclassified	as	steel	structure	instead	of	concrete.	All	the	other	predictions	were	correct.			

	

Figure	23-	Confusion	matrix	of	Inception	V3	

5.4.2 Multiclass	Concrete	Defect	Classifier	
The	results	of	experiments	done	regarding	the	multiclass	problem	of	detecting	defects	on	concrete	surfaces	
are	presented	in	this	sub-section.	Four	pre-trained	CNN	models,	InceptionV3,	MobileNet,	VGG19	and	ResNet	
were	compared	using	the	same	dataset,	pipeline	and	hyper	parameters.	The	performance	(accuracy	and	
loss)	of	the	models	is	presented	in	Figure	24.	The	results	indicate	that	ResNet50	and	MobileNet	perform	
better	 than	 VGG19	 and	 InceptionV3	 in	 this	 multiclass	 concrete	 dataset.	 After	 30	 epochs,	 the	 accuracy	
reaches	 91%,	 and	 92%	 respectively,	 compared	 to	 88	 %	 of	 VGG19	 and	 InceptionV3.	 During	 testing,	
ResNet50,	MobileNet	and	InceptionV3	are	almost	equal.		In	term	of	loss	value,	in	validation	set	VGG19’s	loss	
is	again	higher	than	the	other	Networks.	It	is	worth	mentioning	that	VGG19	was	stopped	training	earlier	
(25	epochs)	while	the	validation	loss	had	not	improved	for	10	epochs.		

However,	it	seems	that	MobileNet,	ResNet50	and	VGG19	tend	to	be	overfitting	whereas	InceptionV3	has	
normal	 curves.	 In	 Figure	 25,	 it	 can	 be	 seen	 that	 the	 three	 aforementioned	models,	 could	 have	 stopped	
training	earlier	(less	than	10	epochs)	to	avoid	overfitting.	In	this	case,	the	accuracy	would	have	been	lower	
(but	not	significantly)	than	the	final.	InceptionV3	requires	more	time	(30	epochs)	to	reach	its	highest	values.	
For	all	these	reasons,	ResNet50	has	shown	more	stable	and	reliable	results	to	solve	the	multi-classification	
concrete	defects	problem.	The	high	accuracy	of	this	model,	91%,	also	confirms	that	transferring	learning	
approach	is	effective	while	saving	training	time.		

	
	 D5.3	 Deep-Learning	-based	Visual	QC	component	v1	 34	

	
	

	
	

	
COGITO	–	GA	ID.	958310		

COnstruction	phase	

diGUtal	Twin	mOdel	

	
	

	

Figure	24	-	(a)	Accuracy	training,	(b)	Validation	accuracy,	(c)	Loss	training,	and	(d)	Validation	loss	
curves	of	the	four	models	

	

Figure	25	-	Training/	Validation	accuracy	and	Training/	Validation	loss	curves	of	(a)	InceptionV3,	
(b)	MobileNet,	(c)	VGG19	and	(d)	ResNet50	

Regarding	the	classification	report,	in	Figure	26,	the	average	F1	score	of	ResNet	(0.91)	is	almost	equal	
with	the	MobilNet	F1	score	(0.92).	The	VGG19	F1	score	is	lower	(0.88)	than	the	two	aforementioned	
models,	as	well	as	InceptionV3	(0.88).		

	
	 D5.3	 Deep-Learning	-based	Visual	QC	component	v1	 35	

	
	

	
	

	
COGITO	–	GA	ID.	958310		

COnstruction	phase	

diGUtal	Twin	mOdel	

	
	

	

Figure	26	-	Classification	report	-	Top	row	from	left	to	right:	(a)	InceptionV3,	(b)	MobileNet.	
Bottom	row	from	left	to	right:	(c)	VGG19,	(d)	ResNet50	

The	average	number	of	images	predicted	correctly	as	their	actual	labels	by	ResNet50	was	almost	the	same	
as	by	MobileNet	(126	and	127	respectively).	Inception	and	VGG19	have	lower;	121	images	were	predicted	
correctly.	The	confusion	matrices	for	InceptionV3,	MobileNet,	VGG19	and	ResNet50	are	presented	in	Figure	
27.		

							 	

Figure	27	-	Confusion	matrix	-	Top	row	from	left	to	right:	(a)	InceptionV3,	(b)	MobileNet.	Bottom	
row	from	left	to	right:	(c)	VGG19,	(d)	ResNet50	

Finally,	the	four	models	were	tested	in	nine	unseen	images,	randomly	collected	from	the	web.	The	results	
for	InceptionV3,	MobileNet,	VGG19	and	ResNet50	are	shown	in	Figure	28,	Figure	29,	Figure	30	and	Figure	
31	respectively.	ResNet	misclassified	only	one	of	the	nine	unknown	images,	followed	by	InceptionV3,	which	
misclassified	two	images.	MobileNet	and	VGG19	predicted	wrongly	three	and	four	images	respectively.		

	
	 D5.3	 Deep-Learning	-based	Visual	QC	component	v1	 36	

	
	

	
	

	
COGITO	–	GA	ID.	958310		

COnstruction	phase	

diGUtal	Twin	mOdel	

	
	

	

Figure	28-	Performance	of	InceptionV3	for	9	unseen	images	

	

	

Figure	29	-	Performance	of	MobileNet	for	9	unseen	images	

	
	 D5.3	 Deep-Learning	-based	Visual	QC	component	v1	 37	

	
	

	
	

	
COGITO	–	GA	ID.	958310		

COnstruction	phase	

diGUtal	Twin	mOdel	

	
	

	

Figure	30	-	Performance	of	VGG19	for	9	unseen	images	

	

Figure	31	-	Performance	of	ResNet50	for	9	unseen	images	

	
	 D5.3	 Deep-Learning	-based	Visual	QC	component	v1	 38	

	
	

	
	

	
COGITO	–	GA	ID.	958310		

COnstruction	phase	

diGUtal	Twin	mOdel	

	
	

5.5 Licensing	
The	Visual	QC	component	is	a	closed	source	component.	

5.6 Installation	Instructions	
The	Visual	QC	component	is	accessible	via	a	rest	API,	thus	no	installation	or	downloading	of	component	is	
required.	

5.7 Development	and	integration	status	
The	Visual	Quality	Control	is	currently	under	development.	The	alpha	version	of	the	tool	has	already	been	
developed	 and	 focuses	 on	 the	 defects	 related	 to	 concrete	 surfaces.	 The	 main	 functionalities	 such	 as	
processing	an	image,	identifying	the	type	of	the	structure,	loading	the	appropriate	trained	model,	detecting	
potential	defects	and	generating	the	QC	results	have	already	been	implemented	and	are	ready	to	be	used.	
In	addition,	a	first	version	of	the	API	has	been	developed	and	its	documentation	has	been	presented	in	this	
deliverable.	Regarding	the	second	release	of	the	component	in	M24,	the	intention	is	to	focus	on	the	defects	
related	to	steel	surfaces	as	well	as	to	expand	the	existing	concrete-related	data	(additional	data	or	additional	
defect	types)	and	the	binary	classifier,	which	identifies	the	type	of	the	structure.	Furthermore,	while	the	
Visual	 QC	 component	 interacts	 with	 the	 DT	 Platform,	 tests	 will	 be	 concentrated	 to	 establishing	 the	
communication	and	the	correct	data	exchanging	with	the	DT	Platform	(i.e.	receiving	image	data	through	an	
API).		

5.8 Requirements	Coverage	
The	Visual	QC	component	 is	delivered	as	a	back-end	COGITO	solution;	however,	 it	covers	several	of	 the	
requirements	defined	in	D2.1	and	D2.4.		

Table	11	presents	the	Stakeholders	Requirements	documented	in	D2.1,	which	are	relevant	to	the	Visual	QC	
component	[27].	COGI-CS-1	and	COGI-CS-4	are	covered	simply	by	the	programming	language	selected	for	
development.	COGI-CS-5	is	not	tested	but	it	is	considered	to	be	achieved,	however	runtimes	for	Python	and	
Tensorflow	exist	 for	MAC-OS.	 COGI-QC-8,	 COGI-QC-9	 and	COGI-QC-11	 are	 considered	partially	 achieved	
while	 the	as-built	data	 is	processed,	 and	potential	 concrete	defects	 are	detected.	Finally,	COGI-QC-21	 is	
achieved	by	using	the	relevant	libraries	(such	as	PIL)	which	handle	images	in	PNG,	JPEG	format.	COGI-QC-
22	is	not	yet	supported	but	it	could	be	handled	frame	by	frame.	

Table	11	–	Visual	QC	component:	Stakeholders'	Requirements	coverage	from	D2.1	

ID	 Description	 Type	 Priority	 Status	
COGI-CS-1	 Runs	on	desktop	or	

laptop	PC	
• Operational	 Must	 Achieved	

COGI-CS-4	 Runs	on	Windows	 • Operational	 Must	 Achieved	
COGI-CS-5	 Runs	on	Mac	 • Operational	 Could	 Untested		
COGI-QC-8	 Supports	systematic	

quality	control	on	
earthworks,	
substructure,	
concrete	works	

• Performance	 Should	 Partially	achieved	

COGI-QC-9	 Supports	systematic	
quality	control	on	
weld	points	and	
connection	points		

• Functional	 Should	 Partially	achieved	

COGI-QC-
11	

Automates	QC-
related	activities	

• Functional	
• Operational	

Must	 Partially	achieved	

COGI-QC-
21	

Handles	images	in	
PNG/JPEG	format		

• Functional	 Must	 Achieved	

COGI-QC-
22	

Handles	videos	in	
XML	and	

• Functional	 Could	 Not	yet	supported	

	
	 D5.3	 Deep-Learning	-based	Visual	QC	component	v1	 39	

	
	

	
	

	
COGITO	–	GA	ID.	958310		

COnstruction	phase	

diGUtal	Twin	mOdel	

	
	

AVI/MPG/MP4	
format	

	

The	 functional	 and	non-functional	 requirements,	which	 are	 relevant	 to	 the	Visual	QC	 component,	were	
documented	in	D2.4	[28]	and	are	presented	in	Table	12.	Req-1.1	is	partially	achieved,	while	primary	API	
tests	have	been	already	done	to	connect	the	Visual	QC	with	other	endpoints.	However,	extra	tests	must	be	
done	to	achieve	the	connection	of	the	component	with	the	specific	DT	Platform	endpoint.	Req-1.2	is	also	
partially	achieved,	while	a	model	for	detecting	concrete	defects	has	already	been	trained.	Req-1.3	is	well	
covered	by	this	version	of	the	component	and	Req-1.4	is	partially	achieved	and	will	be	completed	in	the	
second	release	of	the	component.	Req-2.1	is	achieved	while	the	alpha	version	of	the	application	is	already	
developed.	Req-2.2	will	be	covered	in	the	second	release	of	this	component.	Req-2.3	is	partially	achieved	by	
this	version	of	 the	component.	Req-2.5	 is	covered	while	the	code	could	be	modified	 in	order	to	support	
additional	structural	surfaces	and	defect	types.	Regarding	the	Req-2.4	and	Req-2.6,	a	strong	GPU	is	used	for	
training	the	models	and	image	processing.		

Table	12	–	Visual	QC	component:	Functional	and	Non-Functional	Requirements	coverage	from	D2.4	

ID	 Description	 Type	 Status	
Req-1.1	 Connect	to	DT	Platform	 Functional	 Partially	achieved	
Req-1.2	 Defects’	detection	based	on	rules	 Functional	 Partially	achieved	
Req-1.3	 Defects’	annotation	 Functional	 Achieved	
Req-1.4	 Defects’	notification	to	be	used	by	

WODM	
Functional	 Partially	achieved	

Req-2.1	 Web-based	Application		 Non-Functional	 Achieved	
Req-2.2	 Security	 Non-Functional	 Not	yet	supported	
Req-2.3	 The	component	must	provide	APIs	

for	all	expected	operations	
Non-Functional	 Partially	achieved	

Req-2.4	 The	component	must	have	low	
latency	

Non-Functional	 Achieved	

Req-2.5	 Scalability	 Non-Functional	 Partially	achieved	
Req-2.6	 Strong	CPU	is	needed	for	image	

processing	
Non-Functional	 Achieved	

5.9 Assumptions	and	Restrictions	
The	 first	 version	 of	 the	 Visual	 Quality	 Control	 component	 is	 accompanied	 by	 certain	 assumptions	 and	
restrictions,	which	are	presented	in	the	following:		

• The	current	version	of	the	component	is	oriented	to	concrete	surfaces	and	defects.	Therefore,	it	
supports	the	defect	detection	only	on	concrete	surfaces	and	not	on	steel	surfaces.	This	functionality	
will	be	implemented	in	the	second	version	of	the	module	(M24).	

• The	current	version	of	the	component	identifies	the	type	of	the	structure	(concrete/	steel)	based	
on	 preliminary	 binary	 dataset.	 This	will	 be	 expanded	 and	 refined	 in	 the	 second	 version	 of	 the	
component	(M24).		

• The	current	version	of	the	module’s	REST	API	supports	queries	regarding	the	metadata	exchange	
with	 the	 DT	 Platform.	 Additional	 tests	 regarding	 the	 collection	 of	 the	 processed	 image	will	 be	
included	in	the	second	version	of	the	Visual	QC	component.	

• The	current	version	of	the	component	is	tested	on	these	artificial	datasets	and	not	on	real	case	data	
acquired	on	site.	The	intention	is	to	increase	the	variety	and	to	enrich	the	testing	part	of	the	datasets	
with	 random	 images	 collected	under	 different	weather	 conditions	 (rainy,	 cloudy	 etc.),	 cameras	
parameters	 (such	 as	 resolution,	 shooting	 range,	 lighting),	 construction	 elements	 (e.g.,	 retaining	
walls,	columns,	beams	etc.)	etc.	

	
	 D5.3	 Deep-Learning	-based	Visual	QC	component	v1	 40	

	
	

	
	

	
COGITO	–	GA	ID.	958310		

COnstruction	phase	

diGUtal	Twin	mOdel	

	
	

6 Conclusions	

This	deliverable	introduced	the	main	functional	components	of	Visual	Quality	Control	component	and	their	
use.	Information	regarding	the	development	tools,	the	data	exchange	and	an	alpha	version	of	the	API	were	
also	presented.		

As	documented	in	this	deliverable	(D5.3),	the	Visual	QC	is	a	web	service,	which	analyses	the	as-built	visual	
data	(2D	images)	and	predicts	potential	defects	on	concrete	and	steel	surfaces.	It	is	composed	of	four	sub-
components:	the	DT	Platform	connector,	the	Structural	type-based	selector,	the	Defect	detector	and	the	QC	
report	 generator.	Within	 the	 Visual	 QC	 component	 appropriate	 trained	model	 is	 loaded	 to	 analyse	 the	
processed	 image	 provided	 by	 the	 Visual	 Data	 Pre-processing	 module	 via	 the	 DT	 Platform	 and	 detect	
potential	 concrete	 or	 steel	 defects	 in	 construction.	 The	 results	 are	 pushed	 back	 to	 the	DT	Platform	 for	
further	exploitation	from	other	COGITO	visualization	components	(DCC	and	DigiTAR).		

The	work	presented	here	introduces	a	first	version	of	the	Visual	Quality	Control	component.	Thus	far,	the	
component	has	been	focused	on	the	concrete	surfaces	and	tested	only	with	basic	artificial	test	data.	In	the	
future	and	as	COGITO	tools	evolve,	more	tests	will	be	executed	to	improve	and	refine	the	component	and	to	
support	the	communication	with	the	other	COGITO	tools.	The	second	version	of	the	Visual	QC	component	
will	be	provided	at	M24	and	will	be	tested	on	the	pre-validation	(T8.2)	and	validation	(T8.4)	sites	with	real	
case	data	during	M21-30	and	M28-34	respectively.		

	

	
	 D5.3	 Deep-Learning	-based	Visual	QC	component	v1	 41	

	
	

	
	

	
COGITO	–	GA	ID.	958310		

COnstruction	phase	

diGUtal	Twin	mOdel	

	
	

References	

	

[1]		 Druzhkov,	P.	N.	,	Kustikova,	V.	D.,	“A	Survey	of	Deep	Learning	Methods	and	Software	Tools	for	Image	
Classification	and	Object	Detection,”	Pattern	Recognition	and	Image	Analysis,	vol.	26,	pp.	9-15,	2016.		

[2]		 Hung,	P.	D.,	Su,	N.	T.,	Diep,	V.	T.,	“Surface	Classification	of	Damaged	Concrete	Using	Deep	Convolutional	
Neural	Network,”	Pattern	Recognition	and	Image	Analysis,	vol.	29,	p.	676–687,	2019.		

[3]		 Krishna,	 S.T.,	 Kalluri,	 H.K.,	 “Deep	 Learning	 and	 Transfer	 Learning	 Approaches	 for	 Image	
Classification,”	International	Journal	of	Recent	Technology	and	Engineering,	vol.	7,	no.	5S4,	2019.		

[4]		 Koch,	C.,	Georgieva,	K.,	Kasireddy,	V.,	Akinci,	B.,	Fieguth,	P.,	“A	review	on	computer	vision	based	defect	
detection	 and	 condition	 assessment	 of	 concrete	 and	 asphalt	 civil	 infrastructure,”	 Advanced	
Engineering	Informatics,	vol.	29,	no.	2,	pp.	196-210,	2015.		

[5]		 Abu,	 M.,	 Amir,	 A.,	 Lean,	 Y.	 H.,	 Zahri,	 N.A.H.,	 Azemi,	 S.	 A.,	 “The	 Performance	 Analysis	 of	 Transfer	
Learning	 for	 Steel	 Defect	 Detection	 by	 Using	 Deep	 Learning,”	 in	 5th	 International	 Conference	 on	
Electronic	Design	(ICED),	2020.		

[6]		 Bukhsh,	Z.	A.,	 Jansen,	N.,	Saeed,	A.,	 “Damage	detection	using	 in-domain	and	cross-domain	 transfer	
learning,”	Neural	Computing	and	Applications,	vol.	33,	pp.	16921-16936,	2021.		

[7]		 D3.7-COGITO,	“Deliverable	3.7:	Visual	Data	Pre-processing	Module	v1,”	2022.	

[8]		 Hüthwohl,	P.,	Lu,	R.,	Brilakis,	I.,	“Multi-classifier	for	reinforced	concrete	bridge	defects,”	Automation	
in	Construction,	vol.	105,	2019.		

[9]		 Mundt,	M.,	Majumder,	S.,	Murali,	S.,	Panetsos,	P.,	Ramesh,	V.,	 “"Meta-learning	Convolutional	Neural	
Architectures	for	Multi-target	Concrete	Defect	Classification	with	the	COncrete	DEfect	BRidge	IMage	
Dataset,”	in	IEEE	Conference	on	Computer	Vision	and	Pattern	Recognition	(CVPR),	2019.		

[10]		Hüthwohl,	P.,	Brilakis,	I.,	“Detecting	healthy	concrete	surfaces,”	Advanced	Engineering	Informatics,	vol.	
37,	pp.	150-162,	2018.		

[11]		D5.1-	COGITO,	“Deliverable	5.1:	Innovative	Scan-vs-BIM-	based	Geometric	QC	component	v1,”	2022.	

[12]		Silva,	 W.R.L.d.,	 Lucena,	 D.S.d,	 “Concrete	 Cracks	 Detection	 Based	 on	 Deep	 Learning	 Image	
Classification,”	Proceedings,	vol.	2,	2018.		

[13]		Coca,	 G.L.,	 Romanescu,	 S.C.,	 Botez,	 S.M.,	 Iftene,	 A.,	 “Crack	 detection	 system	 in	 AWS	 Cloud	 using	
Convolutional	neural	networks,”	Procedia	Computer	Science,	vol.	176,	pp.	400-409,	2020.		

[14]		Bu,	G.P.,	Chanda,	S.,	Guan,	H.,	Jo,	J.	,	Blumenstein,	M.,	Loo,	Y.C.,	“Crack	detection	using	a	texture	analysis-
based	technique	for	visual	bridge	inspection,”	Electronic	Journal	of	Structural	Engineering,	vol.	14,	pp.	
41-48,	2015.		

[15]		Lee,	 J.,	 Kim,	H.S.,	 Kim,	N.,	 Ryu,	 E.M.,	 Kang,	 J.W.,	 “Learning	 to	Detect	 Cracks	 on	Damaged	 Concrete	
Surfaces	Using	Two-Branched	Convolutional	Neural	Network,”	Sensors,	vol.	19,	2019.		

[16]		Liu,	 Y.,	 Yao,	 J.,	 Lu,	 X.,	 Xie,	 R.,	 Li,	 L.,	 “A	 deep	 hierarchical	 feature	 learning	 architecture	 for	 crack	
segmentation,”	Neurocomputing,	vol.	338,	pp.	139-153,	2019.		

	
	 D5.3	 Deep-Learning	-based	Visual	QC	component	v1	 42	

	
	

	
	

	
COGITO	–	GA	ID.	958310		

COnstruction	phase	

diGUtal	Twin	mOdel	

	
	

[17]		Wei,	F.,	Yao,	G.,	Yang,	Y.,	Sun,	Y.	,	“Instance-level	recognition	and	quantification	for	concrete	surface	
bughole	based	on	deep	learning,”	Automation	in	Construction,	vol.	107,	2019.		

[18]		Gao,	M.,	Wang,	X.,	Zhu,	S.,	Guan,	P.,	“Detection	and	Segmentation	of	Cement	Concrete	Pavement	Pothole	
Based	on	Image	Processing	Technology,”	Mathematical	Problems	in	Engineering,	2020.		

[19]		Feng,	C.,	Liu,	M.Y.,	Kao,	C.C.,	Lee,	T.Y.,	“Deep	Active	Learning	for	Civil	Infrastructure	Defect	Detection	
and	Classification,”	in	ASCE	International	Workshop	on	Computing	in	Civil	Engineering,	2017.		

[20]		Fu,	J.,	Zhu,	X.,	Li,	Y.,	“Recognition	Of	Surface	Defects	On	Steel	Sheet	Using	Transfer	Learning,”	CoRR,	
vol.	abs/1909.03258,	2019.		

[21]		Li,	M.,	Wang,	X.,	Ma,	Z.,	“Steel	defect	detection	with	high-frequency	camera	images	FA	19-20	CS	229	
Project”.		

[22]		Wang,	S.,	Xia,	X.,	Ye,	L.,	Yang,	B.,	“Automatic	Detection	and	Classification	of	Steel	Surface	Defect	Using	
Deep	Convolutional	Neural	Networks,”	Metals,	vol.	11,	2021.		

[23]		Cha,	 Y.	 J.,	 Choi,	 W.,	 Suh,	 G.,	 Mahmoudkhani,	 S.,	 Büyüköztürk,	 O.,	 “Autonomous	 structural	 visual	
inspection	using	region-based	deep	learning	for	detecting	multiple	damage	types.,”	Computer-Aided	
Civil	and	Infrastructure	Engineering,	vol.	33,	pp.	731-747,	2018.		

[24]		Huethwohl,	 P.,	 “Cambridge	 Bridge	 Inspection	 Dataset	 [Dataset],”	
https://doi.org/10.17863/CAM.13813,	2017.		

[25]		[Online].	 Available:	 https://www.analyticsvidhya.com/blog/2021/06/offline-data-augmentation-
for-multiple-images/.	

[26]		[Online].	 Available:	 https://analyticsindiamag.com/tensorflow-vs-keras-which-one-should-you-
choose/.	

[27]		D2.1-COGITO,	“Deliverable	2.1:	Stakeholder	requirements	for	the	COGITO	system,”	2021.	

[28]		D2.4-COGITO,	“Deliverable	2.4:	COGITO	System	Architecture	v1,”	2021.	

	

	

	

	

	

This	project	has	received	funding	from	the	European	Union's	Horizon	2020	research	and	
innovation	programme	under	grant	agreement	No	958310	
	

	

	

