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Executive Summary 

The COGITO Deliverable D4.4 “Proactive Real-time Risk Monitoring and Detection Methods v2” aims at 
documenting the state-of-the-art regarding the existing methods for enhancing safety in construction, 
focusing primarily on areas relevant in the context of COGITO. This report includes: (a) the need for right-
time safety in the construction phase and its state-of-the-art, (b) the definition of a close call and the 
proposed close call reporting process, (c) the sensor-based methods for close call data collection and risk 
monitoring and detection, (d) the methods for intelligent close call data analysis and reporting, and (e) the 
tools for accident prediction in regards to heavy construction equipment and pedestrian workers in the 
realistic, complex, and dynamic construction environments. This deliverable also documents the current 
version of the developed Proactive Real-Time Risk Monitoring and Detection application called 
ProActiveSafety. In addition, it reports on the iteration of the development activities within the COGITO 
Task T4.2 “Proactive Real-time Risk Monitoring and Detection”. 

In summary, due to the evolving workspace typically found at construction sites, hazards can emerge 
dynamically. Visibility-related fatalities constitute more than half of the fatal occupational accidents in 
construction, caused by workers being in a blind zone of heavy equipment or not being seen due to 
obstructions. To promote safety, research has been done on (a) enhancing the existing manual close call 
reporting process and (b) developing close call data gathering and analysis, and proactive warning systems 
to notify of dangers and to alert pedestrian workers or operators when immediate attention or action is 
required to prevent an accident. The proactive warning systems often rely on sensors to detect the distance 
between moving heavy machinery and pedestrian workers or obstacles. Several types of sensor-based 
methods for risk monitoring and detection exist and are analysed in depth in this report. For instance, 
camera-based, ultrasonic or radio systems are some of those. Three categories of input data were found to 
be used for trajectory data gathering in the construction literature: vision-based data, raw location tracking 
data, and 3-dimensional point cloud data from drone sensors. Close call data gathering and analysis, and 
furthermore, trajectory prediction in construction often refers to post- or run-time data processing, 
respectively. While post-processing close call data is very suitable for safety officers interested in infrequent 
safety status updates, run-time data processing focuses on the short-term prediction of a moving resource’s 
future paths (e.g., worker, equipment), i.e., within 1 to 10 seconds ahead for accident avoidance. 

The Proactive Real-time Risk Monitoring and Detection application, called ProActiveSafety, consists of four 
modules, namely (i) the data analysis module, (ii) the trajectory prediction module, (iii) the hazard zones 
checking module and (iv) the user interface. ProActiveSafety enables the Health and Safety (H&S) digital 
twin to predict hazardous situations (e.g., through the generation of risk heat maps or probability density 
calculations) based on state-of-the-art machine learning techniques on up-to-date near-real-time data 
queried from the digital twin platform. To this end, sample location tracking data have been utilised to train 
a type of artificial Recurrent Neural Network (RNN) called LSTM network which performs short-term 
proactive monitoring of hazards affecting moving workers and equipment in the dynamic construction 
environment. The future development will focus on the risk analysis module and will integrate construction 
semantic information (e.g., construction site layout plans) and hazard zones checking to further enhance 
the safety analysis. 
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1 Introduction 

Many occupational safety and health administrations worldwide pursue a “zero-accident” vision to protect 

workers' life, health and well-being ( [1] [2] [3]). According to laws in most industrialised countries, a safe 

workplace must be provided before an employee can start working [4]. As injury and fatality rates rise or 

decline by economic activity, however, well-articulated standards and processes related to the construction 

safety, health and well-being [5] alone may not adequately prevent dangerous working conditions. Many of 
these have proven inadequate upon execution in the field ( [6] [7] [8]) or are challenging to adapt to the 

ongoing digitalisation efforts across all industries. For example, contact collision incidents between 

pedestrian workers and heavy construction equipment still occur in large numbers [9]. For this reason, even 
industry leaders observe that further reduction of accident numbers is very hard to achieve [10]. 

During construction operations, consequences of different severity can result from incidents: low, medium, 
or high [11]. Respective examples are minor collateral property damage, bodily injury or fatality. While the 

occurrence of these highly depends on human judgement, one of the contributing and repeating factors is 

pedestrian workers being too close to the equipment without being detected in time. Therefore, from an 
equipment operator’s point of view, limited or no visibility causes disturbance of workflow, increases the 

risk of accidents and stresses the affected persons negatively. Current best-practice techniques rely on 

always-on passive measures such as back-up beepers on machines and personal protective equipment 

(PPE) worn by the construction personnel. Wearing a hard hat and a reflective safety vest [12] for example, 

is required by law to improve visibility in hazardous proximity incidents that occur every day between 
workers and heavy construction equipment. However, such passive measures by themselves, unfortunately, 

are incapable of recognizing a hazard and do not warn personnel actively.  

An alternative approach to tackle this problem is by educating the workforce and thus, effectively reducing 

the possibility of an accident. It requires identifying, registering and reviewing incidents that might lead to 

an accident or to so-called close-calls. A close-call (i.e., a near-miss) is a subtle event in the chain leading to 
a potential accident that remains unrecognized but should be treated like an accident [13]. The required 

investigation and feedback to such incidents has always been a reactive measure so far. Although one may 
find the root cause that led to the event and prevent it from happening again, preventive or (better) 

predictive measures should be used to proactively plan for and maintain a safe working environment in the 

first place [14]. In short, to further improve construction safety performance, it is necessary to understand 

the underlying causes of accidents in much greater detail [15] [16]. 

1.1 Scope and objectives of the deliverable 

This deliverable presents a survey of the existing methods for enhancing safety in construction through 
proactive risk monitoring and detection. The deliverable also reports on the work that carried out within 

WP4 towards designing, developing and delivering a prototype version of the Proactive Real-time Risk 

Monitoring and Detection service which enables the H&S digital twin to predict hazardous situations. 

1.2 Relation to other tasks and deliverables 

This deliverable is based on the conceptual architecture defined in deliverables D2.4 Cogito System 
Architecture v1 and D2.5 Cogito System Architecture v2. The Proactive Real-Time Risk Monitoring and 

Detection application called ProActiveSafety receives data tracking the location of the construction 

resources (i.e., pedestrian workers and heavy machinery/equipment) from the Digital Twin Platform (DTP) 
and more specifically from the IoT Data Pre-processing module described in detail in deliverables D3.4 IoT 

Data Pre-processing Module v1 and D3.5 IoT Data Pre-processing Module v2.  

ProActiveSafety is responsible for communicating additional safety hazards to SafeConAI (D4.2) to enhance 
the safety analysis as well as for proactively issuing warnings through the Work Order Execution Assistance 

(WOEA) service (D4.6). The identified health and safety hazards will be visualised both off-site and on-site. 

The Digital Command Centre (DCC) is COGITO’s off-site data visualisation solution developed within T7.3 

Data Transformation for 3D BIM Rendering and T7.4 3D Mesh Data Quality and Consistency Checker and 3D 

Data Transformation Testing. The on-site data visualisation will be offered by the Digital Twin visualisation 
with Augmented Reality (DigiTAR) tool using Augmented Reality (AR) head mounted displays, and it is 
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developed within T5.4 User Interface for Construction Safety. Finally, the health and safety hazards will be 

utilised by the VirtualSafety application (described in deliverable D4.8) to create realistic training scenarios 

to improve safety culture and increase awareness of potential hazards in construction. 

1.3 Structure of the deliverable 

The deliverable is structured as follows; Section 2 presents the state-of the-art on methods for enhancing 

safety in construction and discusses the factors affecting the safe operation of construction equipment. 
Section 3 underlines the urge of right-time safety and a close call reporting system. Section 4 presents the 

available sensor-based methods for risk monitoring and detection, providing a comparison on a selection 
of technical characteristics of proximity sensing devices critical for the implementation in construction. 

Section 5 describes the process of computing proximity events from location tracking data as well as the 

evaluation of their level of seriousness, whereas Section 6 presents the Proactive Real-Time Risk Monitoring 
and Detection application conceptually. Finally, Section 0 concludes this report and describes the future 

developments. 

 

1.4 Updates to the first version of proactive real-time risk monitoring and 

detection methods 

Deliverable D4.3 demonstrated the first version of the Proactive Real-time Risk Monitoring and Detection 
Methods. Since the submission of the first version, the authors have improved existing segments of the work 

and re-worked the concept of the application. Furthermore, this version of the report defines the workflow 
and processing of data in detail. This version comprises the following additional parts: 

• Definition of right-time safety, see Chapter 3 

• Introduction to the existing methods of close call processing and reporting (see Section 3.5) 

• Description of novel approaches for detecting, processing, analysing and reporting close calls 

(see Section 3.6) 

• Brief description of Real-time Kinematic (RTK) Golbal Navigation Satellite Sysetm (GNSS) 

technology (see Section 4.8) 

• Close call data analysis (see Chapter 4), including a description to 

o Protective envelopes 

o Close call detection 

o Definition for hazard criteria and weights 

o Four experiments utilising pre-existing data to verify the usability of the close call data 

analysis 

• More detailed description of the data analysis module of the ProActiveSafety application (See 

Chapter 6). 

The ‘risk analyser module’ was removed and will be part of the graphical user interface (see deliverable 

D4.6 Personalized Alerts, Prediction and Feedback Tools). 
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2 Existing methods for enhancing safety in construction 

2.1 Hazard prevention 

During the design of construction sites, a variety of means exist [17] to prevent pedestrian workers from 

getting in close contact with equipment in operation; much can be utilised long before the construction 
actually begins. As always, prevention is the most effective method to avoid accidents [18]. Therefore, a 

good practice in occupational construction safety is to follow a hierarchy of protective measures; these 
include, but are not limited to (a) the identification of possible hazards in the operating area of the 

construction equipment, (b) the implementation of appropriate protective measures and (c) the 

documentation of such measures. Following the "S-T-O-P” principle (based on [19]), these have priority: 

• Substitution: Substitute the dangerous equipment with a safer alternative. 

• Technical measures: Apply technical measures to minimize the exposure of personnel in blind 

zones. For example, improve vision using a camera-mounted system (CMS). Check if/what other 

alert/sensor systems are valuable and/or necessary. 

• Organisational measures: Use organisational measures to decrease the number of personnel 

exposed to nearby equipment. For example: define and mark hazardous work areas; establish rules 

of conduct such as toolbox meetings before the work starts; regulate entry, use signallers, security 
guards; separate vehicle from pedestrian worker paths using barriers; observe and enforce order. 

• Personal measures: Protective measures applied to personnel, such as wearing personal protective 

equipment (PPE), e.g., high-visibility warning vests, as a barrier to exposure. While research 
concludes that in some cases low visibility issues are resolved using reflective vests worn by the 

workers, other research claims that few technologies exist that pro-actively aid pedestrian workers 
or equipment operators in dangerous proximity incidents  [20, 21]. 

In brief, as research has shown, a risk assessment should start early in a project [22]; ideally, it should start 

before the selection and procurement of construction equipment [23]. The requirements and criteria for 
planning safe construction site layout plans must be specified. Research has already shown the benefits of 

the latter’s digitalisation, for example, through the use of Building Information Modelling (BIM) and virtual 
reality [14], [24, 25] methods. Such digital methods consider regulatory and operational requirements 

while still involving employees' safety knowledge and experience. More recently, the integration of sensors 

in BIM-based safety management applications appeared [26]. 

2.2 Factors affecting safe equipment operation and accident reporting 

Construction sites, contrary to work environments in the maritime [27, 28, 29, 30, 31], airline [32], 

agricultural or manufacturing [15], [33] sectors, perform activities in a defined but continuously evolving 
work space. This means safety issues can emerge dynamically and require attention at the right-time [12]. 

Right-time is defined as acting upon an event  

While there are several conditions adversarial to the creation of a safe working environment, equipment 

operator blind zones are among the most significant factors; such zones are a frequent cause of visibility-

related fatal accidents. Several techniques exist to precisely quantify these accidents [34, 35]. Before 
equipment manufacturers can sell new machines, they must verify that a sufficient field of vision is provided 

(e.g., according to ISO 5006 for earth-moving machinery) [36]. Although several approaches have been 

investigated to mitigate blind zones (e.g., software-based identification of visibility issues - from 3D design, 
enhanced field-of-view through the use of mirrors, camera-monitor systems and/or work lights that 

enhance lighting conditions on working sites), numerous visibility issues remain [34].  

Blind spots can be split into static and dynamic; static blind spots can be created by the equipment 

components themselves, while dynamic blind spots originate from the movement of the operator’s field of 

view (FOV) [34] and/or objects outside the equipment cabin. The latter requires the operator to exercise a 

greater level of vigilance and to conduct repeated vicinity checks to identify pedestrian workers and other 

significant obstructions. Further research [37] suggests a need to conduct inspections in areas that may 

appear unconventional to the operator, including underneath the equipment and anywhere in the vicinity 
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of the task performance area. This also involves the operators checking areas previously known to be clear 

of personnel as they may have been re-occupied before the operators return to the same area. 

Workers being in an equipment’s blind zone or “not seen because of obstructions” were mentioned in 56% 

of all visibility-related fatalities in construction [23]. Researchers concluded that equipment that deviates 

from its usual paths of operation increases the likelihood of accidents [38]. Other research suggests that 
decreasing vigilance is a result of workers being engaged in specific tasks while ignoring distracting noises 

[23].  When a truck or piece of machinery is reversing (in about 75% of all equipment-related accidents), a 

worker can be easily distracted by focusing on the assigned work task alone. Workers are probably more 
vigilant at the beginning of a project; at that time, they pay more attention to alarm signals. Alarms can, 

nevertheless, quickly become routine to the workers and over time, the noise is processed more as an 

annoyance that tends to be ignored. 

Illumination factors are another vital aspect of visibility; however, they are frequently not recognized in 

accident descriptions [16]. Therefore, they also play a minor role in research. When an accident occurs, the 
typical response is to attribute the cause to the most apparent actor. For example, a worker in a blind zone 

has a risk of being struck and killed by a moving vehicle. Conventional industry procedure is to classify this 

incident as a “struck-by” fatality and the assumption from this occurrence is that equipment is dangerous. 

While this may be a “struck-by” accident, closer examination of the root cause may reveal that vision 

impairment was the primary factor and the equipment, because of its proximity, size and weight, was a 
secondary factor. Research showed that lighting was the primary contributing factor in about 7% of all 

visibility-related cases [23]. Overall, standards and guidelines in reporting accident and fatality events can 

be improved to conduct more thorough root cause analyses.  

2.3 Choice and impact of alarm types 

According to investigations of visibility-related accident reports [23], in 87% of the cases, operators would 

have benefited from some use of technology for automated notification or intervention (e.g., obstacle 
detection, warning/alerting, and/or avoidance). So far, however, few machines use advanced technologies 

for monitoring their surroundings. To improve the awareness of operators and pedestrian workers, suitable 
alarms consisting of various warning and alert types must be carefully studied. Warnings generally notify 

of danger; alerts require immediate attention or action to prevent an accident. The predominant 

warning/alert signals for any technology are [20]: 

• Acoustic: Alarms range from a “hiss”, a composition of broadband/directional sounds also called 

“white” noise, or a “beep” i.e., a high pitch/omnidirectional alarm. They come from speakers 

installed on the equipment and are e.g., always activated when the equipment is reversing. Beepers 
sharpen the pedestrian workers’ attention with an audible signal. Especially beepers issue quite 

some noise nuisance [39, 40]  (leading to annoyance and stress of employees/residents and 
ultimately to rejection). 

• Visual: Multiple ways exist to display a warning or alert on a monitor in the equipment cabin or 

more recently on built-in displays installed on structural components of an equipment cabin [41]. 

• Vibration: An alarm will vibrate on a body part. Unless intelligent personnel protective equipment 

(PPE) is developed, vibration is only recommended in moderate climates when workers wear thin 

clothing. 

It is worth noting that warnings/alert signals generally turn off automatically once the person leaves the 

danger zone; this may decrease the risk for desensitizing operators. Some (older) systems previously 

allowed operators to manually configure alarms (e.g., turning them on/off), which is generally not advisable. 
The surrounding work environment and hearing thresholds are significant for the human perception of a 

produced sound signal in a construction area. Some pedestrian workers may even wear ear-muffs, 

protecting them from noise generated by another machine (e.g., a powered hand tool). When used as a 
warning tone, acoustic signals must be configured to adjust the volume according to the ambient noise levels 

(or enable smart/connected ear-muffs). 
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2.4 Intelligent intervention and functional safety 

Digitalisation of construction equipment adds value by making machines more intelligent and increasing 

the automation of business and work processes. Regarding the construction safety, the concept of using 

automated technology to detect and mitigate hazards is relatively new as it requires "new forms of 

cooperation" between workers/operators and machines. As an example, even if clear visibility is 

guaranteed and active warning systems ensure better attention, many other tasks remain for the operator 
to handle; depending on their skills they might require assistance in driving or manoeuvring. Examples are 

intelligent obstacle avoidance, machine performance optimisation and handling nuisance alerts. These and 
other automation tasks can be solved with a combination of robust sensor hardware and intelligent 

software. For example, 3D mapping and visualisation technologies play a crucial role in evaluating data that 

is directly communicated from the machine to a central monitoring system. Whereas (visual) sensor 
systems work independently of each other, e.g., automatic detection of pedestrian workers and/or objects 

in danger zones, the generation of alerts requires intelligent data processing and visualisation [42]. 

Intelligent intervention thus recognizes the interaction between humans and technology in workplaces as 

part of sociotechnical systems (STS). The data acquired simultaneously from, e.g., a camera, an ultrasonic 

sensor and a Light Detection and Ranging (LiDAR) system are evaluated simultaneously. This superposition 

of the sensor signals increases reliability in detecting and recognising hazardous risks across a multitude of 

possible surrounding terrain scenarios (which are common in construction). The measurement result then 

triggers a predefined system intervention: When a danger is detected, the behaviour of a system is actively 

controlled to protect the detected workers and/or operators and bring the system back to a safe state, for 

example, via autonomous braking or an evasive manoeuvre [43]. 
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3 Need for right-time safety and a close call reporting process 

3.1 Time dimension in safety and health performance measurement 

Effective monitoring and control of construction safety and health in modern projects requires sufficient 

planning and management in order to succeed. Various measures such as lagging indicators, leading 
indicators and safety climate have improved safety [44]. These traditional approaches of measuring safety 

performance still rely on manual means and subjective measures (e.g., surveys or manual counts), which 
are often costly, infrequent or slow to conduct, and error prone [45]. In addition, the availability and 

usefulness of indicator data diminishes over a short period of time due to the quick progress on construction 

sites [45]. 

Edirisinghe [46] introduced a good definition on leading indicator lifespans: “the time period the indicator 

remains useful relative to a potential incident”. They pointed out that time-delays between indicator data 

collection, result reporting, and responsive action can undermine any possible advantages of having such 
information available. According to the same study physical hazard indicators have the shortest lifespan 

and – due to the dynamic nature of the work environment – should be collected immediately, if necessary, 
in real-time, to derive safety performance evaluations. Perception and management leading indicators – 

their terms are all introduced later in this report– are typically collected on a regular basis over time. While 

in-depth information about the root cause of accidents or incidents is important to prevent similar ones 

from happening again, the time dimension in analysing the causality of accidents and incidents is vital, but 

is very often overlooked in research studies and practical world applications [46]. Dyreborg [47] therefore 
argues that the “time-window” to understand the “cause-and-effects relationships” [48] is rather important. 

Although automation in safety and health performance measurement processes is one solution [49] [50], to 

date, there exists no formalised approach for right-time or real-time automated safety and health 
monitoring, data analysis, information reporting, knowledge generation, and/or visualisation in the 

construction industry. 

3.2 Formalisation of a right-time pro-active construction safety and health 

system architecture 

Limited elements of critical hardware and software technology exist to design of a complete right-time pro-

active safety and health system architecture. This has yet to be realised due to the: 

1. impracticality of contemporary technology (i.e., amount of required installation and 

maintenance of sensors for data acquisition), 
2. inefficiency or unreliability of existing data processing algorithms (data analysis),  

3. lack of realistic methods for realising a safety feedback system architecture (reporting and 

alerting), and 
4. absence of proven safety management actions (safety culture).  

Thus, efforts are warranted into the identification and resolution of critical needs in right-time data 
acquisition, data processing, and reporting in complex and data noisy environments. Implementation of 

right-time pro-active safety and health research requires addressing several open research questions: 

• What traditional safety information from accident causation models and safety indicators is useful 

for a right-time or real-time construction safety and health process? 

• What type of data gathering sensors, processing techniques, and data visualisation environments 

can provide efficient, effective, reliable, fast, and accurate safety information in a highly dynamic, 

unstructured, and/or cluttered environment?  

• Even if such fast and accurate sensor, information, and visualisation technologies are available, how 

can the proposed framework (ultimately targeting safety applications), handle large amounts of 

data, reduce measurement errors, in what data file format and what existing open software 
interfaces and perform all of that at the right time, eventually in real-time or near real-time? 

• How are the potential construction hazards recognized early, preferably at the planning stage, and 

how can previously unrecorded safety data be gathered to assist safer construction design? 
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• What safety information provides the most relevant feedback to the project stakeholders and how 

can it be communicated to workers so they utilise it in their transition from skill-based to 

knowledge-based decision makers and how can organisations transform safety management 
actions? 

To address these challenges, we propose to use right-time data collection and processing techniques and 

immersive visualisation environments as a catalyst for the conversation of safety and health information.  

3.3 Linking accident causation models and safety indicators 

The main concept behind the accident triangle of Heinrich [19] is that severe accidents can be prevented if 

one takes care of the more frequent unsafe acts first. Bellamy [51] noted that the investigation of accidents 

can help preventing ones of the same type. As [46] argues, however, both studies did not consider the time 

dimension in analysing causations. They note “it is essential to consider the time dimension in causality 
analysis in order to undertake an evaluation of the time-sensitivity of the different types of indicators”.  

According to the literature review, including [14] [17] and a recent study conducted by [46], the following 

definitions are provided to explain the context of data types in the developed framework: 

• Right-time construction safety and health is defined as “the (latest) point in time when 

knowledge could be utilized to prevent an injury or collateral loss.” Right-time in real-world 

applications might frequently be real-time, for example, when a worker-on-foot requires real-time 

situational awareness and instant reaction time to avoid being struck by a piece of equipment 

traversing in too close proximity to the work area. Less frequent in the context of pro-active safety 

and health means, for example, the support of project safety and health design and planning or 
deciding upon a company’s long-term strategy for safety engineering and management (e.g., 

implementing the vision and mission of safety climate and culture, satisfying client requirements 
and relationships). 

• Physical accident/incident precursor indicators: “Evaluation of the characteristics of the physical 

work environment.” These include (pre-) work site conditions (e.g., weather, illumination, road 
conditions, and availability and condition of tools and materials), the presence and state of 

resources (e.g., static, moving, or interacting workers, equipment, and materials), work crew and 

equipment interfaces, and risk exposures and management approach.  

• Management leading indicators: “Counting safety management activities” (e.g., frequency and 

number of inspections, safety walks or checks by contractor’s and client’s safety representative, 

training sessions, hazard reports, and the time it takes to address issues). 

• Perceptions or situational awareness leading indicators: “Periodic measurement of worker’s and 

management’s perception of safety climate” (e.g., surveys measuring effectiveness of safety and 

health program, level of quality to commitment to safety culture). 

• Safety levels related to events: “Measurement of accidents (e.g., injury or fatality), minor incidents 

(e.g., first aid treatment or small collateral damage), near-misses (e.g., unsafe act or event almost 

leading to accident/incident), and situational or personal issues (e.g., state of communication, 
supervision, and worker health and fatigue, behavioural factors of humans)”.  

It is important to understand the time sensitivity associated with the leading safety indicators. Some might 

even be dismissed if the time lag between data capture and analysis is too significant. According to [44] a 
great emphasis is on selecting the appropriate frequency of useful data capture and reporting. These 

indicator data types are further discussed in the next sections where remote sensing, processing, and 
reporting techniques – as introduced earlier in the background review – play a vital role in capturing safety 

precursor indicators at the right-time. 

3.4 Organisational approach for right-time safety 

Figure 1 depicts the complex time-dependent nature of safety performance indicator data that become 

available to different levels within an organisation through the use of manual and/or automated recording 

methods. As construction stakeholders require different pieces of safety information at different time 
intervals, technology may assist in this task. Construction safety planning is important, but less time-critical, 
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since it typically occurs months or weeks (in other words ‘at the right-time’) in advance of the start of 

construction.  

 

Figure 1: Right-time construction safety and health framework of ‘movable layers for protection’ 
addresses the critical time window for accident prevention and response [12] 

Perception and management indicator measurement frequencies vary accordingly from weeks to months 
depending on the committed resources. Although these indicators identify gaps (also referred to as holes in 

the Swiss Cheese Model [12]) in an existing safety program, they have a limited ability to detect any 
potential hazards in near real-time. Data from these indicators require execution of appropriate actions 

once holes are detected. Once the severity of the hazard intensifies, injury, illness, or death may become 

more likely.  

On-site real-time hazard monitoring is vital to detect physical hazard indicators. Real-time warning and 

alert feedback are required. As [46] noted, a good strategy is to use real-time captured leading indicators as 
a hazard precursor and execute appropriate actions immediately once holes are detected or intensify. A 

“movable layer for protection” – shown in an example as a layered barrier in Figure 1 – prevents a fatality 

using – at the latest – real-time data recorded on a construction site once the perception or situational 
awareness of site personnel fails.  

The time window to prevent accidents accordingly narrows the worse the consequence becomes. For 
example, a “warning” to construction site management might be issued in “near real-time” to change poorly 

laid out road site conditions (one of the physical leading indicators) based on automated or manual 

equipment speed recordings. Another example to prevent accidents and incidents even earlier would be 
periodic training, i.e., educating the workforce about the significance of close-calls (e.g., struck-by 

equipment) or at-risk behaviour (e.g., knowingly performing unsafe acts) more than once. 

3.5 Existing close call reporting, analysis, and feedback process 

Several research efforts in construction describe a close call as an event that almost resulted in an accident. 

However, there is no research that provides a scientific definition of the exact characteristics of a close call 
[52]. In the context of this report, we define a close call as a proximity event between a human (pedestrian 

worker) and a known hazard (equipment), leading to a potential endangerment of the human. Therefore, 

close calls should be recorded and followed-up with a close call reporting program. Such programs, in an 
ideal case, measure safety performance and reduce the probability of accidents. However, the success of 

close call reporting crucially depends on the participation of persons to report near-misses, which can lead 
to inconsistent or false results [53]. Due to the often, complex contractual organisation of projects, 

construction companies often face difficulties in implementing effective close call reporting and analysis 

programs. 
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Using only manual approaches to gather information about close calls is impractical as the latter can be 

subtle and frequent events; the event’s assessment might also vary depending on the observer. Since 

human-machine interactions are one of the more serious problems in the construction industry [54], This 
work specifically focuses on the continuous logging of the involved resources’ position in a close call for a 

more detailed investigation, e.g., in the case of human-equipment and human-hazardous material incidents. 
It proposes a change to the traditional close call reporting and follow-up process (see Figure 2). 

 

Figure 2: Close call reporting, analysis, and personalised feedback process [14] 

Close calls, as introduced earlier, are typically reported when a human witnesses or participates in an event 

which compromises or threatens to compromise the health or safety of a person or the environment. If 

necessary, a person may at first try to prevent an accident or a further incident. The person then notifies 

their supervisor or safety coordinator directly on-site or using a close call reporting application on a mobile 
device (i.e., usin a smartphone or tablet if permitted on-site). Some organisations offer close-call reporting 

through a neutral third-party service to remove sensitive information. At least some general information 
about the event is shared once the case reaches the corresponding safety professional within an 

organisation. Afterwards, a problem-solving peer-review team consisting of workforce (trained in 

operational skills), safety professionals (trained in root-cause analysis), and management (trained in 
continuous-process improvement) will try to raise the awareness regarding the seriousness of the case. 

Various means exist to learn more about the risks and how to mitigate them, for example, calling for 

dedicated close call review meetings, department safety meetings, one-on-ones with workforce or 
supervisors, or involving a neutral third party. The team finally recommends corrective actions while 

protecting employees from blame [55]. By reaching this point, well-working close call reporting processes 

in practice should have ensured timely feedback to the person(s) who reported the incident in the first 

place. 

3.6 Digital close call detection, reporting, analysis, and feedback process 

To underpin the proposed approach takes advantage of the previously reviewed sensor-based systems  in 

conjunction with a cloud-based close call data management system. The following paragraphs 

accompanying Figure 3 explain the existing practice and proposed approach in-depth. 

 

Figure 3: Close call reporting and feedback processes: (a) the legacy process is illustrated using 
solid arrows and boxes; and (b) the proposed process is represented using dashed arrows and 

boxes (NB: the proposed process augments but does not replace the existing close call reporting 
process shown in Figure 2) [17] 
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Any workforce member (i.e., a pedestrian worker or a person handling equipment) can be involved in a 

close call incident. This could happen, e.g., when the worker and the machine interact in close proximity to 

each other. 

As per current close call reporting practice (shown with solid lines and shapes in blue colour in Figure 3), 

any observer would report such events manually. They would then be registered to a close call database by 
the on-site safety professionals. A peer-review team would analyse the close call database periodically and 

inform the corporate or local management about potential practices changes to prevent a similar close call 

from happening again. The local management would finally propagate the feedback to the workforce via the 
peer-review team and the on-site safety professionals. The process so far involves several stakeholders. 

Many are likely operating at different locations and/or not timely available. Feedback to or debriefing the 

workforce is relatively slow or non-existent. Unfortunately, new close calls or even accidents can occur in 

the meantime. 

In addition to the human efforts reporting close calls and following-up, digital means are to be applied 
(shown with dashed lines and shapes in green colour in Figure 3). The proposed approach incorporates a 

cloud-based system utilising digital reporting and sensor information to register and manage close calls 

respectively either by (a) a personal observation that is digitally reported (e.g., only if the work environment 

permits using an application of a smartphone or tablet), or (b) a specialized Smart Sensor System (SSS).  

Such a decentralized (edge computing) unit based on sensor inputs (run time detection) analyses hazardous 

incidents and instantaneously notifies the workforce. While the individual signals from the sensors are 

fused, reported, and reacted upon later, the SSS - most importantly - provides an assistive warning signal 

(pro-active alarming feedback) instantly sent to the workforce individuals (not requiring any cloud 
processing). This helps prevent potential accidents from happening; based on such run-time analysis 

performed in the SSS, the workforce is proactively alarmed about potential close call incidents before they 

turn into an accident. 

The automatically recorded close call information is sent to the cloud where on-site safety professionals, 

the peer-review team and the corporate/local management have access and can concurrently review at any 
time. The cloud connects all stakeholders to the relevant information. It also connects the system 

components, e.g., the computation units, to the data. It is, therefore, an entity that ties together the system. 
The information on the cloud should be tailored to the individual stakeholder’s interests to make sure that 

it is sufficiently informative and is not drown by the otherwise insignificant details.  

Based on the information available on the cloud, debriefing of the workforce happens as soon as possible. 

This may include updates on the latest close-call incidents to learn from and possibly avoid similar 

incidents. Additionally, future machine learning techniques will assist in identifying recurring or new 
patterns in close call reports. Then close call reports can include – aside from the general observations such 

as the location, observer, participants involved in the close call, timestamp, severity, cause, and measure – 

newly available details such as equipment trajectory and velocity.  

Based on the latest available information, there a two-way calibration could be conducted; the SSS data, 

along with a labelled close call incident could be uploaded for: 

• Long term prediction, analysis, and information gathering, 

• Parameter optimisation, and 

• Data access from stakeholders. 

The updated parameters should assist the SSS to improve its analysis capabilities. Over time and with large 

amounts of data in the future, a system like the proposed one shall be capable of generating far more 
accurate predictions than humans ever would. 
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4 Sensor-based methods for risk monitoring and detection 

While safety education and training offer an additional way to increase awareness or change the behaviour, 

close proximity incidents between pedestrian workers and equipment will eventually require right-time 

proactive measures. As explained in [12], few solutions solve this problem for good. Up to now, construction 

equipment operators rely on their own judgement to detect close-by hazards. Consequently, operators often 

ignore alarms due to desensitisation or due to background noise [34, 39]. 

As illustrated in Figure 4, based on their principle of operation, the various existing Sensor-based Systems 

(SbS) can be categorised in:  

• Camera-monitor systems, 

• Ultrasonic systems, 

• RaDAR systems, 

• Radio systems, 

• 3D camera sensors (incl. infrared), 

• 3D time-of-flight sensor and 

• LiDAR/LaDAR systems. 

• RTK GNNS location tracking 

 

 
 

Figure 4 – Operating principles of Sensor-based Systems (SbS): (a) camera-monitor, (b) ultrasonic, 
(c) radar, (d) radio, € 3D camera, (f) 3D-TOF camera, and (g) LiDAR/LaDAR systems [17] 

4.1 Camera-monitor-systems (CMS) 

Camera-Monitor-Systems are auxiliary devices providing short-term, short-range visual aid to equipment 

operators e.g., during manoeuvring. Most CMS offer a flexible camera configuration to adapt to machine-

specific designs/requirements (e.g., regarding the number of cable-connected cameras and their view 

angles, the need for little to no calibration or maintenance, the integration of pre-programmed monitors). 

Systems providing wireless signal transmission of video data over longer distances already exist (e.g., 
allowing the connection of cameras to monitors from remote mounting points), then, however, battery-

powered cameras requiring charging on a daily basis become necessary. CMS typically use weather- and 
environment-resistant system components (e.g., IP 66K) and industrial connectors (e.g., M12).  
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CMS have three predominant operating principles:  

• Single-view using a rear-, side-, or front-camera view only. It is specifically designed for equipment 

that reverses often or operates in carry-mode with front attachments (e.g., trucks, loaders, or 

forklifts [15], [33]). 

• Surround-view using four standard cameras which provide a panoramic view in the equipment 

cabin’s mounted monitor (Figure 4a). 

• Bird-view generates digital images using ultra wide-angle cameras (e.g., mounted at the front, sides, 

and rear), which are further processed by video stitching and combined into a single 360° video 

image stream. 
 

One of the main applications utilising CMS is equipment involved in earthwork. While certain equipment 

operations were found to be more dangerous in reverse, some equipment experienced higher accident rates 
when traveling forward [23]. These cases were recognised explicitly in excavator operations [56]. This can 

be attributed to the dynamic blind spots created by the moving extensions of the equipment. Since 

excavators require constant adjustment of the bucket height, the increased likelihood of a broken line-of-
sight to a potential victim remains a significant concern. A potential solution to this problem can be the so-

called ‘smart cameras’ with Pan-Tilt-Zoom functionality [57]. Smart cameras combine image sensors with 

processing units that perform the imagery analysis, control and decision-making on the device.  

Likewise, commercially-available operator alert systems based on computer vision technology can detect 

operator’s fatigue and distraction, therefore assisting the latter to maintain the level of attention necessary 
for long work hours and monotonous tasks; in this case, however, additional (vision or other) sensorial 

systems are required for detecting hazards in the equipment’s vicinity [58]. Finally, making use of 
potentially integrated networking capabilities, not only the operators can be notified, but also the 

information can be transmitted to supervisors and central components such as a cloud environment for 

later data processing. 

4.2 Ultrasonic systems 

Ultrasonic waves measure the distance to a nearby object (from 0.1 to 3 meters, some even up to 9 meters) 

by calculating the time difference between sending and receiving a sound pulse with a frequency greater 

than 20 kHz (Figure 4b). Ultrasonic systems often appear on the rear, the sides or the front of the equipment; 

they can detect multiple objects at the same time, however, without the ability to distinguish them. A 
single/generic alert will be triggered regardless of the number of objects in close proximity to the 

equipment, e.g., a single object would be shown on the screen or a single sound would be triggered by the 

proximity buzzer in the equipment cabin. As soon as one object leaves the danger zone, any continuing alert 
will signify the presence of other remaining hazards. The application of ultrasonic systems is widely applied 

in automotive vehicles; some of its benefits and limitations in construction applications (e.g., unloading of 

delivery trucks or manoeuvring of forklifts) are: 

• it accurately detects a vast number of obstacle types, independent of colour, surface, or 

environmental conditions;  

• it is insensitive to dirt, dust, moisture, and potentially fog (system-dependent). 

• it offers a multi-level, auditory proximity warning system and the possibility of (semi-) automated 

stopping of the equipment. 

• it creates nuisance as all objects within the range of the sensor signal cause acoustic (potentially 

false) alerts, affecting the willingness to respond. 

4.3 Radar systems 

A Radio Detection and Ranging (RaDAR) sensor detects fixed and moving obstacles with the help of 

electromagnetic impulses. The operator can measure the distance between the equipment and the worker/ 
object on a screen in the equipment cabin. Electromagnetic waves transmitted by the RaDAR (i.e., the 

primary signal) are reflected on the object’s surface and are then received back as a secondary signal. The 
measured time between the transmission and the reception is used to determine the distance to the object 

(Figure 4c). Even in the harshest environments with the most inadequate visibility conditions, radar 
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systems can detect people and objects reliably over a large range (typically up to 20 m) and at speeds of up 

to 20 km/h. Their high resistance to dirt, mud, dust, heavy rain, fog, darkness, smoke, humidity, heat, cold 

(optionally equipped with heated sensors), ultraviolet rays and vibration ensures reliable operation. 
Warning systems with radar sensors notify the operator with a brief time delay (50 milliseconds) from the 

time of object detection using an acoustic and/or optical signal (typically in a sequence of increasing speed). 
Furthermore, Controller Area Network (CAN) bus-capable radar systems provide an interface for proactive 

vehicle intervention. In construction applications, radar systems offering multi-level proximity alerting are 

often coupled with CMS. The detection range is divided into several zones which helps prevent accidents by 
alerting the operators about to manoeuvre and reverse equipment. However, rough terrain can lead to 

frequent, unnecessary false alarms. In order to avoid false alarms, radar systems can be combined with 3D 
terrain mapping or object recognition with a (rear-view) camera. 

4.4 Radio systems 

In addition to the operating principles of the systems mentioned above, proactive systems can issue alarms 
from equipment to pedestrian workers. Radio systems (Figure 4d) using electromagnetic fields  detect 

pedestrian workers in close proximity to the equipment. Systems using radio frequency signals can also 

interact between vehicles, i.e. provide “vehicle-to-vehicle” communication, sending nearby equipment 

operators acoustic or visual alerts when approaching one another. They can instantly warn the machine 

operator and those at risk (e.g., pedestrian worker/s) in real-time; these systems effectively allow vehicle 

speeds of up to 25km/h [59]. Radio systems have been successfully used in the underground mining 

industry [60], [61], with implementations in construction applications being investigated [32, 58]. 

At least one radio transmitter mounted on the equipment emits a signal that an active transponder (i.e., a 
personal tag) returns; multiple transmitters would permit detecting the actual location of a personal tag. 

Radio signals have no blind spots, can penetrate through objects e.g., reinforced concrete, allowing the 

detection of persons behind obstacles (NB: some materials are susceptible or resistant to electromagnetic 
fields). While the personal tag issues an alert if a predefined distance criterion has been met, the operator 

receives a warning as well. All involved entities can react promptly: machines come to a stop or leave a 
danger zone; pedestrian workers’s level of awareness is raised in order to pay attention to the danger 

caused by equipment being too close. It should be noted, nonetheless, that existing data from radio systems, 

if logged at all, still require data fusion with a Global Navigation Satellite System (GNSS) to produce 

meaningful close-call positioning data. 

4.5 3D camera sensors 

3D camera sensors (Figure 4e) provide simultaneous capture of 2D images from at least two cameras. Data 
is processed into a single 3D image capturing the spatial component of the information. They can warn the 

operator in critical incidents, e.g., in case surrounding personnel or objects are in extremely close proximity, 
using acoustic and optical signals. In addition, the incident is visualised live in the cabin’s display monitor, 

as a CMS does, so the operator can remain focused on the main work task. A 3D camera sensor is superior 

to a CMS as it provides imagery with depth information (up to 60 m). It allows for more reliable distance 

measurement and object identification but still has similar disadvantages to a CMS. Some of these can be 

solved, e.g., integrating an infrared (IR) camera provides powerful illumination in poor ambient light 
conditions. 

3D camera technology, e.g., stereo video cameras, although widely used for the observation of the 

environment in robotics and automotive assistance systems for private or commercial vehicles, are less 
common for construction equipment [62], [63], [64] [65] [66]. They are, however, one of the critical 

components in developing autonomous equipment. Efficient data processing enables fast object recognition 
from imagery data. Short-term data can also be recorded and used in performing an analysis of the root 

cause that contributed to accidents. 

4.6 3D time-of-flight sensors 

A Time-of-Flight (ToF) sensor (Figure 4f) captures a 3D point cloud of the work environment in real-time 

and processes the range data directly without the support of an external computer [67] offering 
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customisable detection zones. ToF sensors send out an infrared light signal which is reflected by an object; 

for each pixel, the distance between the camera and the measuring object is calculated from the different 

light phase shifts. Thousands of pixels are captured in a single shot, thereby delivering a detailed three-
dimensional distance image; continuous images deliver video imagery with range depths. A limitation is 

that very reflective targets (e.g., fluorescent material on a safety vest) hardly return a useful signal - the 
overstimulation of the sensor does not allow for accurate range estimation. 3D ToF sensors have robust 

IP67 housings.  

4.7 Lidar systems 

LiDAR or LaDAR (Light or Laser Detection and Ranging) (Figure 4g), a method for optical distance 

measurement, provides accurate results using a pulsed laser beam which is reflected by the target [17]. The 

reflected beam is detectable under all light conditions and can be used even in complete darkness. Once 
received by a detector, the time between transmission and reception of the reflected beam is measured, 

from which the distance is calculated. In contrast to a continuous wave laser, a pulsed laser has a higher 
power density (thus have an extended measurement range). The LiDAR technology is designed to be eye-

safe (laser class 1) and typically operate in fixed positions, e.g., fixed laser curtains (2D laser scanners) with 

a customisable opening angle or wide measurement zones. Given the high resolution on obtained object 

profiles, LiDAR systems can be directly used for worker or object detection and identification. A large 

number of parameters can be directly processed and visualised by means of a software interface. The 

system, however, is to some degree susceptible when used in very rough terrain, heavy dust and 

precipitation (which are likely to occur in outdoor construction environments).  

4.8 RTK GNSS location tracking 

RTK (Real-Time Kinematic) technology aims to improve the accuracy of conventional GNSS systems; Figure 

5 indicates the concept of RTK. It consists of a base module and rover modules. The base module is 

stationary. Its precise location is computed by independent surveying methods. Both, the rovers and the 
base station compute their GNSS location by connecting to GNSS satellites. By comparing the GNSS location 

of the base station to its precise location, the base station transmits the deviation to the rovers. The freely 

moving rovers use this difference in algorithms to compute an inch-accurate location. 

 

Figure 5: RTK improves GNSS location tracking (Source: RSRG). 

4.9 Comparing sensor technologies 

Table 1 summarises the characteristics of the aforementioned sensor systems. Noteworthy to mention are 

the characteristics such as: the signal, line-of-sight, range, false alarm frequency as well as the sensitivity to 

environmental and human factors: two-way-alarm, proactive alarm and nuisance alarm frequency. The 

qualitative values of the characteristics marked with an asterisk were determined based on the findings in 

literature. For example, CMS scores ‘medium’ because the false alarm rate is higher (its operator could easily 

ignore a display screen) compared to a radio system (which can autonomously slow down the equipment). 
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Radio systems, however, have higher initial investment and require continuous maintenance. Careful 

assessment of these characteristics should always be applied to each individual use case. 

4.10 Advocating for sensor system fusion 

Unfortunately, there is no single sensor system that could alone be used for current proximity sensing 

because each one comes with benefits (e.g., identification, a visual extension of danger zones) and 

limitations (e.g., range, functional security measures). This work advocates for sensor data fusion because 
location data is often missing in close call data recording. This is very much aligned to the progression of 

autonomous vehicles in the automotive industry, where RaDAR and LiDAR systems complement each 
other’s weaknesses or GNSS data provides location data. Research in construction also adopts similar 

strategies [68].  

4.11 Applying proactive and passive measures 

Warnings/alerts by sensors can be issued in passive and active modes. Passive because a sensor may provide 

no additional information than the raw data. A bird’s view CMS, for example, provides a video stream on a 

small screen at the front of the equipment cabin. A standalone CMS still requires the operator to recognize 

and react to hazards. Active when a hazard has already been detected and pre-processed for the human (e.g., 

the event of an object with too close distance) and an alarm signal is given automatically. A radio system, as 
explained in the previous section, can do this. Either way, the prompt reaction upon approaching the danger 

is required, but only possible for an operator in charge of the equipment. Sounding a horn, applying the 

equipment brake, or starting an obstacle avoidance manoeuvre are common ways. A pedestrian worker 
with low awareness will not have a ‘second chance’ with the passive approach and will be hit (unless the 

operator reacts first).  

4.12 Demanding data reasoning and feedback 

Active sensors detect, react, and warn about hazards yet they lack, as discussed in the literature [69], [70], 

“realistic modeling and visualisation of risk in safety management”. Teizer et al. [14] have shown from a 

practical perspective why knowledgeable personnel in charge of construction safety rarely can measure or 
evaluate site-specific safety data. Some obvious reasons are lack of available time because they often 

manage multiple projects at the same time. Other more technical reasons are that sensors create large data 

sets and software for meaningful data reasoning and feedback hardly exists. Except for the radio systems, 

few of the sensor systems listed in Table 1are able to generate and/or report close call data. 
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Table 1: Comparison of selected characteristics of proximity sensing devices (common technical specifications according to manufacturers;  
* represent findings in the literature and own research) [17]. 

Sensor system CMS Ultrasonic Radar Radio systems 3D 

camera 

3D-TOF Lidar RTK GNSS 

    Magnetic field UHF     

Signal line-of-sight 
required 

Yes Yes Yes No Yes/No Yes Yes Yes Yes 

Maximum range [m] 5-100 3 8-17 18 >20 60 10 2-100 <20 

Multi-level alarm zones No Yes Yes Yes Yes Yes Yes Yes N/A 

Adjustable range No No Yes Yes Yes No No No N/A 

Adjustable angle Yes No Yes No No Yes Yes Yes N/A 

Predominant use Surround Rear Forward/Side Surround Surround Forward Forward Curtain 
Tracking/ 

Geofencing 
Proactive alarm No Yes Yes Yes Yes Yes Yes Yes N/A 
Two-way alarm (vehicle-
to-person and vehicle-to-
vehicle) 

No No No Yes Yes No No No N/A 

False alarm frequency* Medium Medium Medium Low Low Medium Medium Medium N/A 

Sensitivity to 
environment* 

High Low Medium Low Low Medium High Medium Medium 

Nuisance alarm 
frequency* 

Medium High High Medium Medium Medium Medium Medium N/A 

Installation, operation, 
and maintenance* 

Low Low Low Medium to High Medium to High Medium Medium Medium N/A 

Object 
detection/recognition 

No/No Yes/No Yes/No Yes/Yes Yes/Yes Yes/Yes Yes/Yes Yes/Yes No 

Data logging Limited No No Yes Yes Limited Limited No Yes 

Functional safety* High High High Medium/High Medium/High High High High High 

Industrial security* Medium Medium Medium Medium Medium Medium Medium Medium High 
Overall investment (incl. 
cost, installation, 
maintenance)* 

Low Low 
Low to 

Medium 
Medium to High Medium to High Medium High High High 
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5 Close call data analysis 

The proposed close call reporting, analysis and personalised feedback process takes advantage of remote 

sensing and information modelling to automatically record the circumstances that lead to close calls. By 
attaching an RTLS tracking device on every resource (pedestrian workers, equipment and material that was 

a-priori declared hazardous), their available trajectory data will be analysed along with the corresponding 

information in BIM (e.g., hazard paces) to locate/geo-reference close calls (step 1 in Figure 6) and enable 
the inference of further valuable information that led to the close call (step 2). Once analysed, the data 

generated provide an elevated level of detail not previously available (step 3). This way, measurement and 

evaluation of close calls during the actual construction phase becomes an active leading indicator which can 
result in a quicker (perhaps immediate) improvement of the safety performance [71]. The statistical 

analysis currently ends on assessing the close calls of a particular work environment (simulated or actual 
construction site), but a future research vision is to extend the close call data analysis to the levels of an 

organisation or industry (step 4). This would lead to benchmarking close call metrics for many construction 

sites or an entire industry. Once such data becomes available, peer-to-peer pressure to outperform 
competitors may lead to further reduction of the number of close calls, ultimately leading to higher safety 

performance of the industry. The corresponding workflow for fusing all data types and data post processing 
generates descriptive analytics on each close call event.  

 

Figure 6: Proposed workflow for the data processing algorithm  
(dashed lines are part of a future predictive close call data benchmarking) 

The proposed methods in this workflow are explained next in more detail. It is followed by a detailed 

investigation into the theoretical verification of the proposed methods using first a simulated data set in a 

fictional construction setting and thereafter (after ensuring the methods work successfully) several realistic 
data sets for experimental validation on live construction sites. As a note, the initial selection of simulated 

over realistic data permitted the verification of the proposed method under ideal (repeatable) conditions. 

In the simulated setting, a fictional building information model and trajectory information was assumed for 
the artificial pedestrian workers’ and equipment travel paths. 

5.1 Construction resource data 

Construction resources are physical objects and spaces that are required to finish a construction process. 
In this research, the term construction resource refers to (a) the pedestrian workforce, (b) construction 

equipment, and (c) objects or structures of temporal or final state. The number of any of these resources in 
the scene under investigation can be one or many. They can also be static or dynamic in nature. Pedestrian 

workers as well as equipment are moving frequently, while temporary objects, such as scaffolds or 

hazardous materials like gas bottles, are mostly static and stay in one position. Other examples of static or 

as-built structures which can be hazardous are unprotected edges in elevator shafts or leading edges in 

high-rises. 
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As needed later in the experimental field validation, actual geometric data of the as-built conditions of the 

work environment were recorded using terrestrial laser scanners and unmanned aerial vehicles (UAV) [72]. 

The point cloud information was georeferenced and imported as simplified boundary objects in building 
information models [73]. The resource trajectory data in the outdoor work environments was recorded 

using remote sensing technology. 

Construction resource data is defined as a term to summarise boundary data from building information 

modelling and trajectory data from trajectory logging files. Microsoft EXCEL-files served as the initial 

medium to transfer this information, since construction personnel is familiar with this software package. 
The data for each resource is contained in a separate file. 

Ultra-wideband (UWB) [74] and Global Navigation Satellite System (GNSS) [14] offered two suitable options 

to record the trajectory data in real-time. It was important to consider that deployment of any of RTLS in 

the field highly depends on the work environment that is under proposed investigation. Business and 

technological factors, such as return on investment (ROI), signal propagation, size of measurement errors, 
hardware form factors, power consumption, ease of installation and maintenance, and many more factors 

must be and were considered as well [74]. However, they are not the main focus of this study. 

5.2 Protective envelopes and boundary data representing resources 

To automatically detect and analyse close call events between resources, additional descriptive information 

for each individual resource involved in a close call event is necessary. For example, its precise position and 

boundary information define a protective envelope. For the sake of simplicity, all data presented in this study 
are kept to two-dimensions (2D, plan view). As a result, the protective envelopes come in shapes of circles 

or polygons (Figure 7). The number of involved resources as well their parameters, i.e., the size of the 
protective envelope called the safety distance, are set in advance based on the previous research findings as 

in [74]. Trajectory information and building information model complement this chosen approach. 

 

 

Figure 7: Examples of two protective envelopes (plan view) 

Boundary data represents a simplified version of the true shape of a resource/element in 2D space, typically 

derived from a building information model. While a straight wall object, for example, is represented as a 

rectangle of the same length and width in 2D, workforce and equipment are more simplified. The width of 

the shoulder of an adult is approximately 0.6 m [74]. The value is rounded up to 1 m, which leads to 
representing the shape of a pedestrian worker as a circle. Much slower speeds than equipment, for example, 

and rapid changes in direction suits this representation of a worker well. In contrast, in most application 
scenarios the simplified shape of a piece of equipment is a bounding box. A bounding box [75] encompasses 

all of its inner attachments. More complex objects are represented as a freeform using polygons. As 

explained earlier, boundary data contains a safety distance which extends the object boundary and creates 
a protective envelope. 
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5.3 Protective envelopes 

Unless specified otherwise by a user upfront, every resource boundary is surrounded by its own protective 

envelope (see Figure 7). While the protective envelope is used to detect close call events between resources, 

the size of its safety distance and its shape are based on the following assumptions: 

• Pedestrian workforce: A circle with a radius of 1.5 m is selected. This value is based on the average 

distance a human walks in one second, reacts and comes to a complete stop [74]. 

• Construction equipment: A protective envelope for equipment must be wisely chosen considering 

several of its operating parameters. These include but are not limited to: operating speed, angle of 

operation and articulation. Even external factors such as ground conditions might be included 

when calculating a machine’s breaking distance. While [76] has shown that multiple hazard zones 

for equipment are advisable to avoid a hit, generally a fixed value decided by a user is added around 

the equipment’s known bounding box.  

• Temporary object: The size of a protective envelope for temporary objects (e.g., safe storage of gas 

bottle) is determined according to rules and regulations set by governments and local authorities 

[35]. The resulting shape is a resized version of the existing boundary. 

• As-built structure: Many structures once erected remain on site and might also require protection. 

Guardrails, for example, preventing workforce or equipment from falling to lower levels typically 

have protective envelopes associated to them. Their safe installation is also regulated by official 
regulations or company best practices [77]. 

5.4 Trajectory data  

Trajectory or position logging devices frequently store a resource’s relative position and the current time, 
namely timestamps, inside a log-file [14, 78]. The logging frequency and additional logging information such 

as the battery status both depend on the type of device. In this research, a frequency of one event per second 

(1 Hz) is assumed to simplify the following calculations. When a log file is imported, its information is 
trimmed to a uniform trajectory matrix, 

𝑇(𝑅) =

(

 
 

𝑥𝑠𝑡𝑎𝑟𝑡 𝑦𝑠𝑡𝑎𝑟𝑡 𝑡𝑠𝑡𝑎𝑟𝑡
 𝑥𝑠𝑡𝑎𝑟𝑡+1  𝑦𝑠𝑡𝑎𝑟𝑡+1  𝑡𝑠𝑡𝑎𝑟𝑡+1

⋮ ⋮ ⋮
𝑥𝑒𝑛𝑑−1 𝑦𝑒𝑛𝑑−1 𝑡𝑒𝑛𝑑−1
𝑥𝑒𝑛𝑑 𝑦𝑒𝑛𝑑 𝑡𝑒𝑛𝑑 )

 
 

           (1) 

where 𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑒𝑛𝑑  refer to the first and last logged timestamps and x and y to the location of the device. This 

matrix is referred to as trajectory data. To help with further definitions, a function which returns the 

position of resource R for a specific timestamp t is defined as: 

𝑃(𝑅, 𝑡) =  {
(𝑥𝑡 , 𝑦𝑡) , if 𝑡 ∈ {𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑠𝑡𝑎𝑟𝑡+1, … , 𝑡𝑒𝑛𝑑}; 𝑥𝑡 , 𝑦𝑡 , 𝑡, 𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑒𝑛𝑑 ∈ 𝑇(𝑅) 

undefined,  otherwise
   (2) 

5.5 Close call event 

Currently, there exists no common definition for close calls [52, 79]. A close call, as defined in this document, 

refers to a close-proximity event between one or several pedestrian workers and a hazard, leading to an 

endangerment of the workers. In other terms, a close call between two resources A and B is defined as an 
overlap of their protective envelopes at positions 𝑃(𝐴, 𝑡) and 𝑃(𝐵, 𝑡). When using trajectory data, there are 

two possible approaches towards categorizing close call events: (a) to categorize every proximity event as 

a separate close call or (b) to combine consecutive occurring proximity events to a single close call. The 
latter is the more sensible choice and is the one used throughout this work. 
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5.6 Close call event buffering 

For each close-proximity event, a proximity event buffer is created to store information for later processing. 

This information includes a timestamp [yy:dd:hh:mm:ss], position [m], velocity [m/s], and orientation [°]. 

Information on the distance [m] and facing direction [°] towards the other resource is also stored. In the 

example shown in Figure 8, a piece of equipment has been traversing too close to a gas bottle. 

 

Figure 8: Visualised close call and the creation of a close call event buffer for each tracked resource 

5.7 Close call analysis 

For two resources A and B, a close call detection algorithm (1) analyses their trajectories and (2) checks for 

each timestamp 𝑡 ∈ 𝑇(𝐴), 𝑇(𝐵) if their protective envelopes overlap. If an overlap is found, a new close call 
gets created and a proximity event buffer is assigned to it. Every consecutive proximity creates a new event 

buffer which is added to the same close call. If no further overlap is detected, the close call is completed and 
the next proximity will create a new close call. Inside a completed close call, three event buffers will be 

marked for later processing:  

• Entry event: First assigned event buffer. 

• Exit event: Last assigned event buffer. 

• Closest event: Event buffer where the distance between both resources is the smallest. 

Additionally, the buffer events from the entry event to the closest distance event are summarised to the 

entry path and likewise the events from the closest distance event to the exit event are summarised to the 
exit path. As the trajectory data only consists of coordinates and timestamps, velocity, facing direction, 

distance, and orientation must be calculated separately.  

5.7.1 Velocity 

The close call algorithm has to compute a distinct velocity for each event buffer using only the resources’ 

position data. As the trajectory logging frequency is assumed to be 1 Hz, the velocity v of a resource for 

timestamp 𝑡𝑖  is numerically equal to the 2D-Euclidean distance between 𝑃(𝐴, 𝑡𝑖−1) and 𝑃(𝐴, 𝑡𝑖), 

𝑣(𝐴, 𝑡𝑖) = {

 0, 𝑡𝑖 = 𝑡start  
𝐸𝑢𝑐𝑙𝑖𝑑(𝑃(𝐴, 𝑡𝑖−1), 𝑃(𝐴, 𝑡𝑖)) , 𝑡𝑠𝑡𝑎𝑟𝑡 < 𝑡𝑖 ≤ 𝑡𝑒𝑛𝑑  

𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   (3) 
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5.7.2 Facing direction 

The direction d towards which workers or vehicles are facing at a timestamp 𝑡𝑖  is expressed as a normalised 

2D-vector on the x-y-plane. Similar to the calculations for velocity, this vector can also be computed using 

two position vectors. To be consistent, the direction will be calculated using 𝑃(𝐴, 𝑡𝑖) and 𝑃(𝐴, 𝑡𝑖−1). Let 𝑛𝑜𝑟𝑚 

be a function that returns the normalised version of a vector. Then the facing direction of a dynamic 

resource at timestamp 𝑡𝑖  is defined as 

𝑑(𝐴, 𝑡𝑖) = {

‖𝑃(𝐴, 𝑡𝑖) − 𝑃(𝐴, 𝑡𝑖−1)‖, 𝑡start  <  𝑡 ≤   𝑡end
𝑑(𝐴, 𝑡𝑠𝑡𝑎𝑟𝑡+1)), 𝑡 = 𝑡start  
𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑, 𝑒𝑙𝑠𝑒

     (4) 

5.7.3 Distance 

For a timestamp 𝑡𝑖  the distance between two resources is defined as the closest distance between their 
boundaries (see Figure 9). The vector spanning this distance is described as the boundary distance vector. 

As these calculations are based on simple geometric operations, they are not discussed in greater detail.  

 

Figure 9: Orientation 

5.7.4 Orientation 

The orientation value for an event buffer quantifies the position of the hazard relative to the facing direction 

of the resource. For this purpose, the resources’ facing direction vector as well as the boundary distance 
vector will be utilised to compute an angle from 0° to 360°. The angle expresses by how many degrees a 

worker has to turn to the right to face the hazard directly (see Figure 9). 

5.8 Algorithm for automated close call data processing 

5.8.1 Trajectory analysis 

After storing all proximity event buffers, the close call analysis algorithm post-processes each close call to 

extract additional information that is later used in data or statistical analysis: 

• Duration: The duration of the close call event in seconds. Under the assumption that the logging 

frequency equals 1 Hz, the number of event buffers is equal to the duration. 

• Entry duration: The time interval between entry event and closest event (including the closest 

event). 

• Exit duration: Duration between closest event and exit event (excluding the closest event) 

• Hazard weights: Values which indicate the severity of a close call. This includes a separate weight 

for the orientation, velocity, distance, deviation, and duration. 

Additionally, the deviation from an optimal direct path (see Figure 10) is calculated. This direct path is 

assumed to be a path that leads directly from the entry position over the closest position to the exit position. 
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It is calculated using the same number of steps as the real trajectory. The direct path positions are calculated 

by using a linear spacing algorithm between the entry position and closest position and between the closest 

position and exit position, respectively. In the following, the ratio between length of real path and length of 
direct path is described as the deviation of the close call. This value indicates how much the worker or 

vehicle has strayed from the shortest optimal path during the close call event.  

 

Figure 10: Real path and direct path 

5.8.2 Radar plot  

For each close call a radar plot is computed showing the weight values for velocity, duration, deviation, 
distance, and orientation. These weights, as explained next, visualise the severity of the different aspects 

that contributed to the close call event. The higher the value points in the radar plot, the more the aspect 

contributed to the endangerment of the resource. Velocity and length during the close call event (see Figure 
11 give a user a brief overview of a resource’s safety performance. As suggested by [14] personalised 

feedback or other change (i.e., selection of other equipment or type, modification to site layout plans) can 

be issued and future performance monitored until the issue is resolved.  

 

Figure 11: Radar plot indicating factors leading to close calls 

5.8.3 Hazard weights 

The following introduces the formulas to calculate the weights (velocity, duration, deviation, distance, and 
orientation) (Figure 12). While the original values for the weights can be based on historical data records, 

they may be adjusted over time or with the experience of close calls. 𝑊𝑒𝑖𝑔ℎ𝑡max   refers to a maximum 

weight.  
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Figure 12: Description and graph for the different hazard weights:  
Distance, Velocity, Orientation, Duration and Deviation 

5.8.3.1 Velocity weight 

The velocity weight for a close call is calculated using the velocity weight function (Figure 12), with the 
average velocity of the close call as an input. In addition to 𝑊max  the course of this function depends on the 

parameter  𝑣max  which represents the maximum velocity a vehicle or pedestrian worker is allowed to have. 
The ISO standard 5006:2017 [36] points out that there is no common definition for safe velocities to operate 

construction equipment. The speed limits on construction sites depend on numerous factors like the type 

of equipment or the ground surface conditions [80]. In the following sections, 𝑉𝑒𝑙max  is assumed to be 1 

m/s (or 3.6 km/h). 

It is assumed that a velocity of 0 is always the safest and therefore the weight is set to 0 for all parameters 
of 𝑊max  and  𝑣max  . Furthermore, moving with a velocity equal to the speed limit 𝑣max   is weighted with 
𝑊max  

2
. Since the risk of severe injuries increases exponentially, the weight function also increases 

exponentially as a function of velocity. Moving with a speed of 150% of the allowable speed limit (or even 
faster) is rated with 𝑊max  . In brief, these conditions lead to three specific points, 

• 𝑃0 = (0, 0), 

• 𝑃1 = (𝑣max   ,   
𝑊max   

2
), 

• 𝑃2 = (1.5 𝑣max   ,𝑊max  ) 

on the velocity weight function which is of the form 𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 for 𝑥 ∈ [0, 1.5 𝑣𝑚𝑎𝑥]. Inserting 

these points into this function creates a linear system of equations which can be written as a matrix equation 

(

1 0 0
1 𝑉𝑒𝑙max  𝑉𝑒𝑙max  

2

1 (1.5 𝑉𝑒𝑙max  ) (1.5 𝑉𝑒𝑙max  )
2
) (

𝑐
𝑏
𝑎
) = (

0
0.5 𝑊𝑒𝑖𝑔ℎ𝑡max  
𝑊𝑒𝑖𝑔ℎ𝑡max  

)   (5) 

and solved using the MATLAB matrix division operation. 
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5.8.3.2 Duration weight 

The duration weight Du could be determined using the duration of the close call alone. However, this might 

lead to a correlation between the size of a hazard envelope and the duration weight, as the risk of being 
longer inside a hazard increase with its size. Given that one of the research aims is to quantify aspects that 

help analyse pedestrian workers’ behavior, it is more sensible to examine the ratio between entry duration 
and exit duration. This value could indicate if the worker noticed the hazard or if the worker took action 

accordingly to leave the dangerous area soon after sensing it. Combined with other values, for example the 

exit velocity, one can draw more conclusions about the incident.  
The weight function (Figure 12) is composed of a linear function for ratios from 0 to 𝑅max  and a constant 

function with a value of 𝑊max   for all ratios above 𝑅max  . In the event of the entry duration being equal to the 
exit duration, the weight function returns half of 𝑊max  .  

Figure 12 displays the duration weight function for  𝑅max  = 2 so that it returns 𝑊max  once the entry 

duration is at least half as long as the exit duration. Let the ratio for the duration weight function be defined 
as 

𝑅 = 
𝑒𝑥𝑖𝑡𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛

𝑒𝑛𝑡𝑟𝑦𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛
         (6) 

Then the weight function for duration is defined as 

𝐷𝑢(𝑅) = {

  𝑊max     𝑅  

𝑅max  
, 0 ≤ 𝑅 ≤  𝑅max  

𝑊max  , 𝑅 ≥  𝑅max  
    (7) 

5.8.3.3 Deviation weight 

The ratio between the length of a real path and a shortest path (Figure 12) is described as the deviation De 
of a close call event. Since the ideal path of a close call event leads directly through three positions of the 

real path (namely: entry, closest, and exist points), the real path length is always greater than or equal than 
the ideal path length. Therefore, the ratio between these values is 1, if both lengths are equal. In this case 

the worker walked the ideal path and the deviation weight is set to 0. A𝑊𝑒𝑖𝑔ℎ𝑡max  is assigned if the actual 

walked path is twice as long as the ideal path length. Let 𝑃𝑎𝑡ℎ𝑟 be the real path length and 𝑃𝑎𝑡ℎ𝑠 be the 
shortest path length. Then the deviation weight function can be defined as 

 𝐷𝑒(𝑃𝑎𝑡ℎ𝑟 , 𝑃𝑎𝑡ℎ𝑠)  = {

(
𝑃𝑎𝑡ℎ𝑟

𝑃𝑎𝑡ℎ𝑠
− 1)𝑊max   ; 1 ≤  (

𝑃𝑎𝑡ℎ𝑟

𝑃𝑎𝑡ℎ𝑠
) ≤ 2

𝑊max  ;  𝑃𝑎𝑡ℎ𝑟 ≥ 2𝑃𝑎𝑡ℎ𝑠
𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 ;  𝑃𝑎𝑡ℎ𝑟 < 𝑃𝑎𝑡ℎ𝑠

     (8) 

5.8.3.4 Distance weight 

For the computation of the distance weight Di of a close call event, the resources’ individual safe distances 

as well as the closest distances are required. There are three major cases to distinguish for the distance 
between two resources (see Figure 13):  

 

Figure 13: Three cases for the distance between two resources 

• Case 1: The distance is equal to the sum of both safe distances or greater. This is assumed to be the 

best case and a weight of 0 is assigned. 
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• Case 2: The distance is equal or smaller than 0 (which is the case if the resource models overlap). 

This would be the worst case and is evaluated with 𝑊𝑒𝑖𝑔ℎ𝑡max  . 

• Case 3: The distance lies between the two cases mentioned above. In this case the assigned weight 

is between 0 and 𝑊max  . 

Let 𝐷𝐴 and 𝐷𝐵 be the assigned safe distances for resource A and resource B with 𝐷𝐴  ≤ 𝐷𝐵  , let d be the input 

distance and 𝐷𝑠𝑢𝑚 be the sum of 𝐷𝐴 and 𝐷𝐵. The distance weight function is partially defined as a linear 
function for distances between 0 and 𝐷𝑠𝑢𝑚, composed with a constant function of 𝑊max  for all distances that 

are smaller than 0 and another constant function of 0 for all distances greater than 𝐷𝑠𝑢𝑚. The slope of the 

linear function is equal to −
𝑊max  

𝐷𝑠𝑢𝑚
. In summary, the weight function can be written as 

𝐷𝑖(𝑑, 𝐷𝑠𝑢𝑚) = {

𝑊max  ;  𝑑 ≤ 0

−
𝑊max  

𝐷𝑠𝑢𝑚
 𝑑 +𝑊max  ; 0 < 𝑑 < 𝐷𝑠𝑢𝑚

0 ;  𝑑 ≥  𝐷𝑠𝑢𝑚

     (9) 

As an example, Figure 12 displays the distance weight function for safe distances of 𝐷𝐴 =   1 m and 𝐷𝐵 = 5 

m, where the value for d ranges from -1 to 7 m. 

5.8.3.5 Orientation weight 

Computed orientations, as shown earlier, range from 0 to 360 degrees. Using the average orientation over 

all buffer events is not feasible as potential left-side and right-side orientations would cancel each other out 

(average of 90° and 270° is 180°). Therefore, the orientation weight 𝑊𝑜𝑟𝑖𝑒𝑛𝑡   depends on three values: 

• 𝑂𝑒𝑛𝑡𝑟𝑦 : Orientation at entry event buffer. 

• 𝑂𝑒𝑥𝑖𝑡: Orientation at exit event buffer. 

• 𝑂𝑐𝑙𝑜𝑠𝑒𝑠𝑡: Orientation at closest position event buffer. 

Separate orientation weight values for each of these three values are calculated. Evaluating the orientation 
is then a matter of perspective. Weighting hazards appearing from the front (around 0°) can help to find 

inattentive workers, while hazard behind a worker can pose a dangerous threat even to very cautious 

workers. Therefore, unless other methods are used to track whether a human has recognized a hazard or 
not, the evaluation of orientation may depend on a users’ personal preference. In the presented scenario, 

hazards appearing from behind will be evaluated as more dangerous. 

The resulting function is based on a sine function, which is translated upwards on the y-axis by 1, then 

translated vertically to the left on the x-axis by 
3𝜋

2
, then stretched horizontally by a factor of 

180

𝜋
 and then 

stretched vertically by a factor of  
𝑊𝑒𝑖𝑔ℎ𝑡𝑚𝑎𝑥  

2
.  To make sure that the absolute orientation weight is not 

greater than  𝑊𝑒𝑖𝑔ℎ𝑡max   the weights for closest orientation, entry orientation and exit orientation are 

averaged. If the function for a single orientation weight is 

𝑤(𝑜) = (sin (
𝑜 𝜋

180
+
3𝜋

4
) + 1) 

𝑊max   

2
 ,    (10) 

then the overall weight is averaged as 

 𝑊𝑜𝑟𝑖𝑒𝑛𝑡(𝑂𝑒𝑛𝑡𝑟𝑦 , 𝑂𝑒𝑥𝑖𝑡 , 𝑂𝑐𝑙𝑜𝑠𝑒𝑠𝑡) =
𝑤(𝑂𝑐𝑙𝑜𝑠𝑒𝑠𝑡)+𝑤(𝑂𝑒𝑛𝑡𝑟𝑦)+𝑤(𝑂𝑒𝑥𝑖𝑡)

3
 .  (11) 

There is also the possibility to rate both hazards from behind and from the front with high weights. 
However, this would cause the values to lose their informative value since the weight would be the same 

for incautious workers which do not recognize a hazard as well as for workers which could not see the 

hazard from behind. In brief, a user may configure the tool based on their personal preferences. 
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5.9 Verification of method 

The following sections apply the previously defined criteria to four different experiments. These 

experiments aim to strengthen the selection of indicators for close call events. The first experiment uses an 

artificially generated data set, while experiment 2,3 and 4 base on location data from real construction 

resources.  

5.9.1 Experiment 1: Artificially created dataset 

As mentioned earlier, a first test of the developed method occurred in a simulated construction scenario. 

Close calls among few resources were artificially generated. The close calls were analysed and details for 

each resource were discovered, for example: the course of close calls, individual resource- and hazard-

statistics, a heatmap as well as comprehensive construction site safety statistics. All generated information 

is displayed on a layered Graphical User Interface (GUI) (implemented in MATLAB®) which permits a user 
to assess the newly generated construction safety information from multiple view points and levels of detail. 

The GUI was designed based on industry expert input in a way allowing to find intuitive answers to typical 

safety-performance-related questions: 

• What are the areas where close calls occur frequently? 

• What workers or pieces of equipment are involved in a close call and are there any particular 

differences in the safety performance among them? 

• How does a worker react on entering a hazard zone, when might the worker recognize to be at risk, 

and how will the worker react upon detecting it? 

• What ways exist to leverage the newly generated information for continuous safety performance 

improvement, e.g., in safety education and training? 

The artificially generated data set (called scenario) is based on known trajectories (straight lines) where 

the ground truth is known and evidence available is used to verify the close call analysis algorithm. This 

scenario included five workers that traverse a construction site in a continuous manner, facing two 
temporary static hazards and one dynamic vehicle. Each worker simulates a behaviour which addresses 

one of the different hazard weights. To raise the orientation weight value for a worker, for example, the 

vehicle creates a close call in a workers’ blind space. All trajectories are straight lines. This permits 

simplicity in the verification process of the algorithm. A heatmap displayed in the GUI further allows the 

evaluator to spot the close calls.  

Some more specifics to the scenario: one pedestrian worker (A) traversed the site at a speed of 2 m/s (at a 

maximum allowable speed limit of 1 m/s). A second pedestrian worker (B) was a too short distance towards 
the hazards (301 and 302). A third pedestrian worker (C) simulated a behaviour which should result in a 

high deviation weight. The duration weight was tested by pedestrian worker (D). Pedestrian worker (E) 

was confronted with a traversing vehicle (F) to verify the orientation weight function. The heatmap 

functionality was verified by comparing the trajectories with the hazard locations on the map (see Figure 

14).  
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Figure 14: Verification of close call analysis algorithm using an artificial construction scenario 

The weight radar plots for all resources are displayed in Table 2. Resources A, B and D showed expected 

results that verify the functionality of the velocity, distance, and duration weights. In contrast to the other 
resources, C shows two raised weights for deviation and duration. As the deviation value quantifies the 

straying of the worker from an ideal path and the duration value increases with a longer exit duration, a 

raised deviation weight might tend to be accompanied by a raised duration weight. In contrary, the radar 

plot of resource D shows a sole raised duration weight. Therefore, a mutual correlation between these 

values can be excluded. Resource E shows two raised weight values as well. This can be explained as: (a) 

vehicle and pedestrian worker do not have a large safety distance and (b) the vehicle stopped right behind 

the worker with a distance of close to zero meters. In theory, each one of the recorded close call events 
should be followed up. However, a user in a realistic scenario may need to set preferences on the more 

severe close calls. According to the initial findings in a simulated test environment, weight values of 

approximately 4 or higher would require such much more detailed follow-ups. 

Table 2: Weight radar plots and values for every resource and average team performance 

Category Resource Team 

A B C D E 

Radar Plot 

      

Velocity 5,00 2,50 2,50 2,50 2,50 3,00 
Duration 2,96 3,42 5,00 5,00 0,78 3,43 
Deviation 0,00 0,00 5,00 0,51 0,00 1,10 
Distance 0,44 4,93 2,50 1,84 4,26 2,79 
Orientation 2,50 2,50 3,26 2,86 4,46 3,12 
 

5.9.2 Experiment 2: Building construction site 

A dataset was gathered on a real building construction site where several pedestrian workers were present 

at an elevated work level. A restricted workspace was located inside the work area. Although the protective 

guardrails around the leading edges met the required safety standards, the present supervisor estimated it 
as insufficient (asking his and subcontracted personnel “to stay away from the edges"). One of his particular 

concerns was the arrival of a new subcontractor. Their new work crew for tying rebar yet had to familiarize 
themselves with the work environment (including work at height). Therefore, the close call analysis 

algorithm aimed at analysing the trajectories of three of the subcontracted workers for potential close calls 

near the leading edge and/or unauthorized entry into the restricted work space. 
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Figure 15: Heatmaps identify close calls in a BIM-based site layout (extracted for each resource 
and construction sites from GUI levels 2 and 1, respectively in the order of appearance from left to 

right) 

As shown in Figure 15 (see the grey areas in plan view) the restricted space and the leading edges were 

modelled as individual objects using BIM. UWB served as the sensing technology for recording the 
trajectories of the personnel. UWB allowed to allocate a specific ID to every worker. The information in 

Figure 15 displays the individual trajectories (in blue colour) and, by applying the developed close call 
algorithm, the resulting heatmap (in a range of red colours) for every worker. The images indicate several 

close calls, mostly towards the southern and eastern sides of the work environment. Interestingly to note 

are the green tiles, also visualised in Figure 15.  They indicate that a person (tag ID: 0000080E) entered the 

material storage area. Since it was the material manager there was no real violation. Worker 000065BB 

once passed by the restricted work space. As shown, the use of sensing technology, data analysis, and 
visualisation offers also the option of positive feedback.  

The analysis of several of the generated hazard weight radar plots for the pedestrian workers give further 

insights into the observed close calls. Table 3 displays the individual workers’ hazard weight radar plots 
and the team’s performance. The worker with the ID: 00000BC6 shows higher hazard weights than most 

other workers. Although the data visualisation indicates only two other close calls nearby, they must have 

been serious close calls (medium speeds, but very close to the leading edges).  

Table 3: Weight radar plots and values for every resource and average team performance 

Category 

Tag ID 

Resource Team 

 00000BC6 000065BB 0000080E 00007820 

Radar Plot 

 
   

 

Velocity (Ve) 3.40 1.52 0.83 5.00 2.69 

Duration (Du) 1.90 0.47 4.36 1.25 2.00 
Deviation (De) 3.57 2.01 4.98 0.00 2.64 

Distance (Di) 5.00 4.07 4.98 3.78 4.46 
Orientation (Or) 3.13 2.62 3.23 2.34 2.83 

 

Additional insights can be retrieved from reviewing the team’s close call performance. Figure 16 displays 

the number of close calls by each worker over the weights. Trend lines are also shown. Worker ID 00007820 

had one and worker ID 000080E had 17 close calls. While the one worker (00007820) traversed close 
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(Di=3.78, note: lowest distance to the hazard of all workers) to a leading edge at high velocity (Ve=5, note: 

highest of all workers) on a straight trajectory (De=0, note: lowest of all workers), the other worker 

(0000080E) had numerous more close calls, most of which happened at low velocities and for extended 
periods of time. Confronting the workers with the data in an exit interview, answers for such behaviour 

were sought: one worker responded with “[I] have been on the direct path to a work station” and the other 
worker replied “[I was] constantly aware of the danger of tying rebar in a confined area near the leading 

edge”.  

 

Figure 16: Close call performance by work team member 

Further investigation can be taken by looking at a box plot. A future research objective will be to investigate 
outliers in more detail (Figure 17). The analysis of the experimental data indicates that a too close distance 

of pedestrian workers to a hazard is a major concern. While worker ID 00007820 had only one close call, 
he clearly traversed at very high speed. This might ask further questions: What pedestrian velocities are 

permitted and at what point in time should control measures come into effect? As practiced by industry 

leaders, in such a case when workers are observed running on construction sites, the worker would be 
instructed first, then pulled temporarily from work and provided with additional instructions before being 

able to return to work. Repetitive poor performance, though, may put a worker’s employment at risk. 

 

Figure 17: Box plots with 95% confidence intervals: close call criteria by weight 
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Since most workers fear such strict retaliation, programs can be developed that heighten workers’ morale. 

As a consequence, the responsible safety personnel on site could be advised to inspect the leading edges 

that are marked in red in Figure 15. Showing an illustration like Figure 15 (object locations with close calls 
are highlighted in red) could even be shown to the workforce in Job Hazard Analysis (JHA) or toolbox talks 

ahead of every task execution. While providing active feedback with realistic data from the same 
construction site has the potential to strengthen workers’ risk awareness quickly, future research has yet 

to validate this assumption. 

5.9.3 Experiment 3: Infrastructure construction site 

A second realistic trial of the close call analysis algorithm utilised data from a large infrastructure 

construction site. In a confined work space (an excavated pit) 4 pedestrian workers, 1 tractor, and 1 mobile 

crane operated conjointly. While the original data analysis was performed by Cheng et al. [31], the objective 
of this evaluation was to find close calls between the pedestrian workers and the moving construction 

equipment (or parts of it, for example its attached load). The potential hazard of a pedestrian worker being 
pinned by the rotating body of the mobile crane was not analysed, because its outriggers were safely 

guarded. Similar to the first experiment, the results show the individual trajectories, heatmaps (see Figure 

18 and hazard weight radar plots (see Figure 19). 

 

Figure 18: Close call heatmap visualisation (note: structures are grey, equipment movement are 
pink and green, and trajectories to pedestrian workers are blue) 
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Figure 19: Hazard weight radar plots 

The pedestrian workers (different from the first experiment) with ID: 00000BC6 and ID: 0000080E were 

not involved in a close call. Worker with ID: 00005AA1 came several times very close to or under the 
swinging loads performed by the mobile crane. As [81] [82] already noted on the same data set, the worker 

was authorized to work near the operating crane (detach or attach loads to the crane hock). Therefore, the 
tiles are marked green. 

The trajectory of the pedestrian worker with ID: 00006BEF, however, collided with the path of the tractor 

that delivered material into the pit. The tractor’s and the pedestrian worker’s hazard weight radar plots 
(Figure 19) show nearly matching values for 5 of the observed values. Although these close calls were 

discovered, they were not severe as both resources moved with very low velocities (≤ 1 m/s). One could 
argue that the pedestrian worker operated as a temporary flagman, guiding the vehicle into a confined space 

inside the excavated pit. 

5.9.4 Experiment 4: Integrate geometry from BIM model 

The last experiment integrates the hazardous zones from a BIM-model. As the model is geo-referenced, the 

trajectory recorded using GNSS can be merged with the hazardous zones. Figure 20 represents the 

experiment. The geo-referenced BIM-model contains two hazardous zones: A platform (301) and an open-
cut trench (302). Transforming their geo-location into the internal coordinates, we can display both the 

model and the trajectory data. In this experiment, two pedestrian workers (102 and 102) and two vehicles 

(201 and 202) were tracked.  
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Figure 20: BIM integration of hazard zones along with trajectory information generate heatmap 
visualizations 

5.10 Reporting and feedback cards 

The data generated in this research might be used to give safety professionals the required facts to take 

corrective actions that protect the human workforce. While multi-lingual manual reporting cards for close 

calls may still exist in the future, they have–as outlined before–shortcomings in practice (e.g., incentives, 

collection, and feedback cycle). A successful transformation to digital recording and feedback is possible 
and yet has to be investigated in the future in much more detail. A conceptual digital feedback card would, 

for example, need to be tested for simplicity and acceptance by the workforce (Figure 21). While 

intrinsically safe mobile devices are required for industrial construction applications, recording and 

analysis via Internet-of-Things solutions like [83] exist to reduce the time needed in the feedback cycle. The 

foreman would then have new information in toolbox meetings available for use in safety awareness 

training.  
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Figure 21: Conceptual transformation of manual close call reporting 
 into digital reporting and feedback cards 
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6 Proactive real-time risk monitoring and detection 

Aligned with the COGITO System Architecture, the Proactive Real-time Risk Monitoring and Detection 

component, called ProActiveSafety, enables the H&S digital twin to predict hazardous situations (e.g., 

through risk heat map generation, probability density calculations), based on state-of-the-art machine 

learning techniques on up-to-date data queried from the DTP. To this end, sample location tracking data 

have been utilised to continuously train a type of artificial Recurrent Neural Networks (RNN) called LSTM 
network to perform short-term proactive monitoring of hazards of moving workers and equipment in the 

dynamic construction environment. 

Figure 22 illustrates the ProActiveSafety components and their dependencies to other modules and 

services. The application communicates with the DTP to retrieve location tracking data as well as hazard 

zones. The location tracking data is provided to the DTP by the IoT Data Pre-processing module (see 
deliverable D3.6 for an elaborate description of the module) while the hazard zones are geospatial elements 

computed by SafeConAI that are further pushed to the DTP (further information can be found in deliverable 

D4.2). ProActiveSafety processes the input data in its four components, namely (i) the data analysis module, 
(ii) the trajectory prediction module, (iii) the hazard zones checking module and (iv) the UI for visualising 

safety information. ProActiveSafety is responsible for the proactive issuing of warnings through the Work 

Order Execution Assistance (WOEA) service; moreover, additional safety hazards are communicated to the 

SafeConAI to enhance the safety analysis. The additional safety hazards are identified through a close-call 

events analysis performed in the ProActiveSafety application. The following sections describe the concepts 
behind ProActiveSafety’s operation while deliverable D4.6 demonstrates how the application is technically 

integrated with the DTP.  

 

Figure 22: ProActiveSafety component diagram as defined in deliverables D2.4 and D2.5 

6.1 GNSS location tracking technology as part of the DTP 

In this section, the use of RTK GNSS technologies as a Real-time Location Sensing (RTLS) backend is 

discussed; such a system was employed to obtain the sample datasets used throughout the training of the 
algorithms presented. It should be noted, nevertheless, that during its normal operation, ProActiveSafety 

extracts location data from the DTP; the IoT Data Pre-processing module is in turn responsible for gathering, 
processing and conveying the location data from the physical tracking devices to the DTP. 

GNSS is infrastructure-less technology and thus suitable for complex and dynamic environments such as 

construction sites. In the following, a prototype system is used to acquire high-accuracy timestamped 
location datasets for the various construction resources (i.e., pedestrian workers and moving equipment). 

The system utilises smartphone devices equipped with dual-frequency GNSS sensors that outperform the 
older embedded GNSS technologies in terms of positioning accuracy [84]. In addition, the experimental 

setup supports the installation of Real-Time Kinematic (RTK) equipment to further increase its accuracy. 

The RTK equipment consists of an integrated RTK antenna mounted on a safety helmet, RTK base stations 
and RTK receivers mounted on the smartphone devices. 
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Figure 23: Prototype system for on-site location tracking.  
Smartphone app (left) and RTK setup (right) for enhanced accuracy,  

including an integrated RTK antenna, RTK receiver and RTK base station [75] 

Figure 23 shows the RTK tracking device. It receives the correction from a server (NTrip: Networked 

Transport of RTCM via Internet Protocol) instead of a base station. Thus, there is no need to survey a base 

station. However, this requires full network coverage. The device can display location data and 
superimposes a cadastral layer. This specific tracking tag uses a free and open-source Geographic 

Information System (called QGIS). 

 

Figure 24: Smartphone with external RTK antenna (left), map with superimposed cadastral layer 
(middle) and backside of the tracking tag (right) 

The GNSS RTK system aims to provide precise real-time location data for the workers and heavy 

machinery/equipment at a construction site. Since this information creates a view of the locations of 
workers and equipment, errors are avoided and accidents are prevented; the latter is possible thanks to the 

simplified communication and automatic logging which relieves workplace coordination needs.  

In Table 4 an example location data capture is provided showcasing the different attributes available from 

the system.   
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Table 4: Tracking data 

 
Stream 1 Stream 1 Stream 1 

time 1,6595E+12 1,6595E+12 1,6595E+12 

timeNMS 1659467391 1659467390 1659467389 

latitude 47.49387717 47.49387733 47.49387767 

longitude 9.95362067 9.95362067 9.95362083 

accuracy 0.00000000 0.00000000 0.00000000 

altitude 0.00000000 0.00000000 0.00000000 

verticalAccuracy 0.00000000 0.00000000 0.00000000 

bearing 0.00000000 18.72018051 34.12737656 

bearingAccuracy 0.00000000 0.00000000 0.00000000 

speed 0.03311794 0.03473261 0.03424399 

speedAccuracy 0.00000000 0.00000000 0.00000000 

provider ublox ublox ublox 

 

6.2 Data analysis module 

It should be noted that the development of ProActiveSafety is ongoing and its integration with the COGITO 
ecosystem will be gradual. The experimental version presented here does not entirely reflect how the final 

system will be operational within COGITO. As such, both the description and the current structure of the 

data analysis module are relevant only in the context of the development and experimental phases. The 

second version of the deliverable D4.6 will integrate with the IoT Data Pre-processing Module described in 

deliverable D3.6, a technology-agnostic component that “is able to fuse various Real-Time Location System 
(RTLS) techniques currently available in a unified and consistent manner”. The data analysis module 

currently ingests location tracking data generated by the GNSS location tracking technology as well as 

hazard zones from the safety-enhanced SafeBIM. The following sections describe how ProActiveSafety 
interprets the data and how close calls are identified and processed.  

  
Figure 25: Construction site visualised on a map (left) and an orthophoto is superimposed (right) 

Figure 25 shows a construction site in a GIS map. To improve the data understanding we superimpose the 

map with an orthophoto showing the status of the construction. To visualise the trajectory all coordinates, 

need to be transformed into a common coordinate system.  ProActiveSafety converts real-world coordinates 

into a local coordinate system. Figure 26 visualises the recorded locations on the orthophoto.  
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Figure 26: Full set of trajectory data over a period:  
squares represent machines and circles are pedestrian workers 

 

Figure 27: A truck approaches the workers 

While Figure 26 shows the locations over a period, Figure 27 displays the location of all resources at a 

specific time. At this moment, a hazard (truck highlighted in orange squares) arrives to the site. All workers 

have to leave the loading zone where the truck eventually stops (Figure 28). If a worker gets too close to the 

protective envelope of the truck, a close call is recorded and processed in ProActiveSafety.  

The application also assesses hazardous events between static hazard zones and construction equipment. 

ProActiveSafety receives geometric information about hazard zones from the DTP. These zones have been 

computed by the SafeConAI module and are ingested by the DTP. Figure 29 shows the construction site 

including the hazard zone. The algorithm in ProActiveSafety transforms the geometry information into the 

local coordinate system corresponding to the location data and uses the latter to generate a protective 
envelope around the resources. These envelops are user-defined according to standards. For instance, ISO 

5006:2017 [36] defines 12 meters as minimum distance. Figure 29 shows exemplarily close calls events. 
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Figure 28: The truck has arrived and now a hazard is represented by a protective envelope 
(orange) 

 

Figure 29: Hazard zones and entry points of workers are visualised 

6.3 Trajectory prediction module 

ProActiveSafety implements a trajectory prediction module. The following subsection first introduces the 

reader to the different trajectory prediction approaches in construction before section 6.3.2 introduces the 

concept of this module. 

6.3.1 Trajectory prediction in construction 

Trajectory prediction in construction refers to the short-term (i.e., 1 to 10 seconds ahead) spatial prediction 
of the path followed by a moving object and focuses on two main aspects. First, the development of proactive 

real-time safety systems based on proximity monitoring for accident prevention [17] and second, the 

transition of the construction industry to automation and autonomy, where trajectory prediction is critical 
for safety planning and collision avoidance in human-robot collaboration. Automation involves a set of 
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human-defined functions performed by robots or equipment in construction, whereas autonomy refers to 

the state in which robots or equipment operate independently, without explicit instructions from a human 

operator. Although the future of automation and robotics in construction is promising [85], the majority of 
the identified publications in [86] focus on proximity monitoring for accident prevention rather than the 

automation of construction equipment operations. Three categories of input data were found to be used for 
trajectory prediction in the construction literature: vision-based data, raw location tracking data and 3-

dimensional point cloud data from LiDAR sensors. 

6.3.1.1 Vision-based data 
Video recorded footage is used to predict the movement of workers and equipment in construction sites 

through vision-based object recognition. The tracked objects (i.e., workers and equipment) are identified in 

the frames using computer vision and the motion vector is then calculated. Short-term prediction is 

commonly performed based on Neural Network (NN) models and Kalman Filters (KF), whereas Hidden 

Markov Models (HMM) are less frequently applied being outperformed by NNs.  A framework was proposed 
by [87] for computer vision-based estimation of position and short-term prediction of workers’ and mobile 

equipment trajectories. The researchers assumed clear and high-quality videos with limited occlusions, 

which makes the framework susceptible to inferior quality input. To solve the tracking limitations in 

construction environments, Rezazaddeh Azar [88] developed a vision-based equipment tracking algorithm 

for automated camera control with predictive capability by estimating the motion vector and the speed of 
the tracked object. 

To increase the accuracy of the predictive models, semantic and contextual information is used combining 

input from other sensorial technologies. For instance,  A system was introduced[60] that uses footage from 
CCTV camera infrastructure and data from inertial sensors embedded on modern smartphones and applied 

the Social Force Model (SFM) to identify obstacles and other people in the scene, assuming that they affect 

the behaviour of human motion and represent their effect as repulsive forces. designed The Long Short-

Term Memory (LSTM) model by [89] predicts worker trajectories in construction environments, 

considering additional contextual information, namely the distance to the nearest neighbour, the 
relationship between that neighbour and the tracked worker and the distance to destination. An LSTM 

network combined with a Mixture Density Network (MDN) for construction workers and equipment path 
prediction towards right time intervention of collision and intrusion was constructed by [90]. The model 

considers two contextual cues, namely the distance between moving and static objects and the type of 

objects (i.e., worker and vehicle) to predict their trajectory up to 2 seconds in the future. Although the model 
outperforms other existing trajectory prediction models, it is still limited by the dynamic visual occlusions 

due to other moving construction resources. Semantic information in the form of predefined hazard zones 

is also considered in the literature. Deng et al. [91] used Kalman Filters (KF) to predict the movement of 

workers in construction sites and the estimated trajectory is checked against a set of artificial danger zone 

boundaries to determine whether the prediction point lies inside or outside of the zones. Considering the 
occlusion limitations, the researchers performed multi-angle detection which, however, is limited by the 

camera resolution, especially when the workers are far from the camera position. Kong et al. [92] proposed 
a framework for workers’ trajectory prediction in construction sites based on the Social LSTM architecture. 

The framework takes into consideration the workers’ unsafe behaviour, defined as any movement towards 

predefined hazardous areas, and corrects the predicted trajectories using KF. One important shortcoming 
of that study is related to the validation of the pre-trained model, performed on their own dataset with 

limited scenarios, preventing it from being generalisable. 

Only two of the identified publications focus on the future of construction industry, where human workers 
and robots co-exist and collaborate [86]. Kim et al. [93] proposed a framework based on Social Generative 

Adversarial Network (S-GAN) for trajectory prediction to tackle contact-driven hazards in construction 
between workers and autonomous trucks. Their results showed that longer observation periods do not 

necessarily lead to higher prediction accuracy, due to the inclusion of less relevant time steps in the 

prediction. In a later study, they evaluated the model on a controlled testbed, including a worker and a truck 
following three predefined movement patterns [94]. The LSTM model by [95] was expanded by [89], by 

implementing the A* path planning algorithm for autonomous robots in construction sites. However, the 

study validates the worker trajectory and path planning algorithms separately assuming a flat ground 

surface. 
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6.3.1.2 Location tracking data 

GNSS refers to a set of navigation technologies that depend on the satellites orbiting around the earth. 

Existing studies have deployed low-cost GNSS technology for tracking construction resources to enhance 
construction safety, planning and management [96]. GNSS data have also been used as input to trajectory 

prediction models in construction applications. Rashid and Behzadan [97] developed a smartphone-based 
application for trajectory prediction of workers to prevent contact-driven accidents in construction sites. 

The underlying model is based on HMM. A risk factor is introduced and ranges between 0 and 1 depending 

on the angle between the trajectory and the centre of one stationary user-defined hazard zone [98]. The 
model was further developed to consider one static or dynamic hazard (i.e., moving between two points) 

and validated it by comparing to a benchmark Polynomial Regression model, showing better prediction 
accuracy [99]. Both models, however, are error-prone in predicting trajectories with sharp turns and are 

limited to a single pedestrian worker and a predefined hazard. Furthermore, the application considers 

outdoor construction activities due to the limitations of GNSS technologies in indoor environments. Another 
shortcoming is related to the large number of detected close-call events (n=369) and potential collisions 

(n=77) in a 30-minute experiment, which could hinder the users’ situational awareness and trust in the 

warning system and lead to delays.  

6.3.1.3 Point clouds 

Point clouds are sets of data points in space that can represent 3-dimensional objects, where each point has 
its own set of x, y and z coordinates. In a recent study, a LiDAR sensor was utilised to acquire point cloud 

data to track the positions of heavy machinery and obstacles in a construction site [100], [101]. The raw 

point cloud data were analysed to first detect the heavy machinery (i.e., excavator) and then perform 
detection and clustering of other objects (i.e., workers and machinery) of a width greater than 0.4m, which 

is the average chest width of a human being. The Extended Kalman Filter (EKF) was adopted for predicting 
the position and velocity of the moving objects, whereas the excavator’s predicted working area was 

calculated based on kinematics analysis and data from embedded stroke sensors and a rotational encoder 

[100]. In a later study, an Unscented Kalman Filter (UKF) was used to predict the non-linear motion 
dynamics of the moving objects. In both studies two safety indices are defined and used, namely the Time 

To Collision (TTC), and the warning index (x) defined as the degree of potential collision risks. 

6.3.2 Trajectory prediction in ProActiveSafety 

The trajectory prediction module is tasked to perform the short-term trajectory prediction of moving 

construction resources. For this, a long short-term memory (LSTM) model has been developed. Based on 
the review of the state-of-the-art in trajectory prediction in construction provided in the previous 

subsection, LSTM models are used to enhance safety by predicting the trajectories of moving heavy 

construction equipment and pedestrian workers. Our model is trained on 60% of the sample dataset, 
whereas the test is performed on the remaining 40% of the dataset.  

Figure 30 illustrates the split train and test sets from the input dataset. For the prediction, the geographic 
coordinates (i.e., latitude and longitude) are converted to x, y Cartesian coordinates in meters with GeoPy 

by calculating the geodesic distance of each point to the ones of minimum longitude and minimum latitude 

respectively. The current set up of the LSTM model takes as input sequences of 12 steps in the past 
corresponding to 12 seconds of location tracking data and predicts 4 steps in the future (i.e., 4 seconds). 

This is performed for every data point in the training set. The concept of the trajectory prediction is depicted 
in Figure 31. 
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Figure 30: Test and train dataset split for the LSTM model for short-term trajectory prediction 

 

 

Figure 31: Short-term trajectory prediction 

As the model predicts 4 steps in the future at each time-step, namely t, t+1, t+2 and so on, there are data 
points that are predicted up to four times. For each predicted data point, the mean of predicted (x, y) 

coordinates (in meters) is calculated as depicted in Figure 32, where cx,y denotes the (x, y) coordinates in 

meters and n is the number of predictions for each point.  

𝑚𝑥,𝑦 = ∑
𝑐𝑥,𝑦

𝑛
   (1) 

 

Figure 32: Calculation of the mean (x, y) predicted coordinates of each predicted point.  
Marked in red, are the four predicted (x, y) coordinates in four consecutive time-steps  

for the same trajectory point 
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Figure 33: True and predicted trajectories on the test set of the sample dataset 

The overall predicted trajectory is plotted over the true trajectory as illustrated in Figure 33. The dataset 

used to train the model is small and thus, there is large deviation in the predicted trajectory at locations that 

are not traversed in both the test and train set, resulting in poor performance of the model. An example of 

that can be seen in Figure 30 at the top left part of the trajectories, where the path of the test set trajectory 
has not been traversed within the train set trajectory. However, this is not the case at locations that exist in 

both sets. Therefore, the performance of the model is expected to increase significantly with further data 

collection.  

6.4 Hazard zones checking 

Hazard zones are inferred dynamically based on the analysis of proximity events. The individual points of 

recorded proximity events are currently visualised on OpenStreetMaps (OSM) mapping service using the 
leaflet JS library. An illustration of the input trajectory data, the short-term trajectory prediction and the 

identified, through the proximity events analysis, hazard zones is depicted in Figure 34. The identified 
hazard zones will supplement the prediction model described in the previous sub-section. 
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Figure 34: Hazard zone identification and trajectory prediction for proactive safety warning.  
Two occasions (1 and 2) where equipment reached into the other rail track which could 

potentially be dangerous 

 

Figure 35: Visualisation of construction heavy equipment’s trajectory  
working on a railway construction project 

 

Figure 36: Heatmap of close proximity events between two construction heavy machinery objects. 
The relative number of close proximity events in each clustering area is represented in a colour 
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scale mapping in the zoom plot on the right, whereas the total number of the identified close 
proximity events in each clustering area is provided in numbers within coloured circles 

ProActiveSafety analyses close call events and generates heatmaps (see Figure 36). These illustrate zones 

with a high emergence of close calls that eventually can be compared to hazard spaces (generated in D4.2).  
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7 Conclusions 

The COGITO Deliverable D4.4 “Proactive Real-time Risk Monitoring and Detection Methods v2” reported on 

the state-of-the-art on research of the existing methods for enhancing safety in construction, including (a) 

the current state and the need of right-time safety in the construction phase, (b) a close call definition and 

the proposed close call reporting process, (c) the sensor-based methods for close call data collection and 

risk monitoring and detection, (d) the methods for intelligent close call data analysis and reporting and (e) 
the tools for accident prediction in regards to heavy construction equipment and pedestrian workers in the 

realistic, complex and dynamic construction environments. In addition, this deliverable also reports on the 

second iteration of the development activities within the COGITO Task T4.2 “Proactive Real-time Risk 
Monitoring and Detection” and documents the algorithms and techniques used in Proactive Real-Time Risk 

Monitoring and Detection application called ProActiveSafety.  

The Proactive Real-time Risk Monitoring and Detection application, ProActiveSafety, enables eventually the 

prediction of potentially hazardous events through the analysis of close call events between pedestrian 

workers and heavy construction equipment as well as between pedestrian workers and hazard zones. 
ProActiveSafety implements state-of-the-art sensing for run-time location tracking data and machine 

learning techniques for data analysis in combination with construction semantic information queried from 

the COGITO Digital Twin Platform. Specifically, the application analyses trajectory data, superimposes them 

with hazard zones retrieved from the DTP and computes close call events and categorizes them by hazard 

weights (velocity, duration, orientation, deviation, distance). Moreover, sample location tracking data have 
been utilised to train a type of artificial recurrent neural networks (RNN) called LSTM network to perform 

short-term proactive monitoring of hazards of pedestrian workers and moving equipment in the dynamic 
construction environment.  

This deliverable only deals with the underlying algorithms and methods used in the ProActiveSafety 

backend; its actual implementation, user interface (UI), and testing, are presented in the forthcoming 
deliverable D4.6 along with a detailed usage walkthrough to demonstrate its functionality. 

 



 D4.4 Proactive Real-time Risk Monitoring and Detection Methods v2 54 

 

 
 

 

COGITO – GA ID. 958310  
COnstruction phase 

dIgital Twin mOdel 

 
 

 

References 

 

[1]  C. i. Institue, “Zero Accident Techniques. Source Document 86,” 1993. 

[2]  EU-OSHA, “Zero Accident Vision,” 2020. 

[3]  G. Zwetsloot, S. Leka and P.Kines, “Vision zero: from accident prevention to the promotion of health, 

safety and well-being at work,” Policy Pr. heal saf., vol. 15, pp. 88-100, 2017.  

[4]  J. Gambatese, M.Behm and J.W.Hinze, “Viability of designing for construction worker safety,” J. 

Constr. Eng. Manag. , vol. 131, no. 9, pp. 1029-1036, 2005.  

[5]  OSHA, “Safety and Health Regulations for Construction,” 2020. 

[6]  A. Albert, M. R. Hallowell and B. M. Kleiner, “Enhancing construction hazard recognition and 

communication with energy-based cognitive mnemonics and safety meeting maturity model: 

Multiple baseline study,” J. Constr. Eng. Manag., vol. 140, 2014.  

[7]  M. Hallowell, B. Esmaeili and P. Chinowsky, “Safety risk interactions among highway construction 

work tasks,” Constr. Manag. Econ., vol. 29, pp. 417-429, 2011.  

[8]  C. Kim, C. T. Haas, K. A. Liapi, J. McLaughlin, J. Teizer and a. F. Bosché, “Rapid human-assisted, obstacle 

avoidance system using sparse range point clouds,” 2004.  

[9]  CPWR, The Construction Chart Book – The U.S. Construction Industry and Its Workers, Sixth Edition, 

2018.  

[10]  CII, CII Safety Summary Report, 2020.  

[11]  O. Rozenfeld, R. Sacks, Y. Rosenfeld and H. Baum, “Construction job safety analysis,” Saf. Sci., vol. 48 

no. 4, pp. 491-498, 2010.  

[12]  J. Teizer, “Right-time vs real-time pro-active construction safety and health system architecture,” 

Constr. Innov., vol. 16, pp. 253-280, 216.  

[13]  E. Marks and J. Teizer, “Method for testing proximity detection and alert technology for safe 
construction equipment operation,” Constr. Manag. Econ., Vols. 31, no. 6, p. 636–646, 2013.  

[14]  O. Golovina, J. Teizer and N. Pradhananga, “Heat map generation for predictive safety planning: 

Preventing struck-by and near miss interactions between workers-on-foot and construction 

equipment,” Autom. Constr., vol. 71, pp. 99-115, 2016.  

[15]  R. L. Neitzel, A. Crollard, C. Dominguez, B. Stover and N. S. Seixas, “A mixed-methods evaluation of 

health and safety hazards at a scrap metal recycling facility,” Saf. Sci., Vols. 51, no. 1, pp. 432-440, 

2013.  

[16]  I. Jeelani, A. Albert and J. A. Gambatese, “Why do construction hazards remain unrecognized at the 
work interface?,” J. Constr. Eng. manag., Vols. 143, no. 5, 2017.  

[17]  O. Golovina, J. Teizer, K. W. Johansen and M. König, “Towards autonomous cloud-based close call data 
management for construction equipment safety,” Autom. Constr., vol. 132, 2021.  

[18]  T. M. Toole and J. Gambatese, “The trajectories of Prevention through Design in construction,” J. Saf. 

Res., Vols. 39, no.2, pp. 225-230, 2008.  



 D4.4 Proactive Real-time Risk Monitoring and Detection Methods v2 55 

 

 
 

 

COGITO – GA ID. 958310  
COnstruction phase 

dIgital Twin mOdel 

 
 

 

[19]  H. Heinrich, Industrial accident prevention, a scientific approach, New York: McGraw Hill, 1931.  

[20]  J. Teizer, B. S. Allread, C. E. Fullerton and J. Hinze, “Autonomous pro-active real-time construction 

worker and equipment operator proximity safety alert system,” Autom Constr., vol. 19, 2010.  

[21]  I. Awolusi, E. Marks and M. Hallowell, “Wearable technology for personalized construction safety 

monitoring and trending: Review of applicable devices,” Autom. Constr., vol. 85, 2018.  

[22]  M. R. Hallowell and J. A. Gambatese, “Construction safety risk mitigation”.  

[23]  J. W. Hinze and J. Teizer, “Visibility-related fatalities related to construction equipment”.  

[24]  K. Schwabe, J. Teizer and M. König, “Applying rule-based model-checking to construction site layout 
planning tasks”.  

[25]  V. Getuli, P. Capone, A. Bruttini and S. Isaac, “BIM-based immersive Virtual Reality for construction 
workspace planning: A safety-oriented approach”.  

[26]  A. Asadzadeh, M. Arashpour, H. Li, T. Ngo, A. Bab-Hadiashar and A. Rashidi, “Sensor-based safety 

management”.  

[27]  T. Rundmo, “Risk perception and safety on offshore petroleum platforms --- Part I: Perception of 

risk”.  

[28]  H. Sandhåland, H. Oltedal and J. Eid, “Situation awareness in bridge operations -- A study of collisions 

between attendant vessels and offshore facilities in the North Sea”.  

[29]  H. C. Chin and A. K. Debnath, “Modeling perceived collision risk in port water navigation”.  

[30]  P. Chen, Y. Huang, J. Mou and P. H. A. J. M. v. Gelder, “Probabilistic risk analysis for ship-ship collision: 

State-of-the-art”.  

[31]  M. A. Ramos, “Collision avoidance on maritime autonomous surface ships: Operators’ tasks and 

human failure events”.  

[32]  N. L. Fulton and U. H.-N. Huynh, “Conflict Management: Apollonius in airspace design”.  

[33]  S. Saric, A. Bab-Hadiashar, R. Hoseinnezhad and I. Hocking, “Analysis of forklift accident trends 

within Victorian industry (Australia)”.  

[34]  J. Teizer, B. S. Allread and U. Mantripragada, “Automating the blind spot measurement of 
construction equipment”.  

[35]  Createspace, “Centers for Disease Control and Preventi, Recommendations for evaluating and 

implementing proximity warning systems on surface mining equipment,” 2013.  

[36]  I. 5006:2017, “Earth-moving machinery – Operator’s field of view – Test method and performance 

criteria,” 2017.  

[37]  J. Hinze, X. Huang and a. L. Terry, “The nature of struck-by accidents,” 2005.  

[38]  E. Sawacha, S. Naoum and D. Fong, “Factors affecting safety performance on construction sites,” 
1999.  

[39]  H. Son, H. Seong, H. Choi and C. Kim, “Real-time vision-based warning system for prevention of 

collisions between workers and heavy equipment,” 2019.  



 D4.4 Proactive Real-time Risk Monitoring and Detection Methods v2 56 

 

 
 

 

COGITO – GA ID. 958310  
COnstruction phase 

dIgital Twin mOdel 

 
 

 

[40]  D. C. Holzman, “Vehicle motion alarms: necessity, noise pollution, or both?,” 2011.  

[41]  V. Vaillancourt, H. Nélisse, C. Laroche, C. Giguére, J. Boutin and P. Laferriére, “Comparison of sound 

propagation and perception of three types of backup alarms with regards to worker safety,” 2013.  

[42]  CAB, “Genius CAB,” http://www.cabconceptcluster.com/genius-cab-bauma/?lang=en, 2019.  

[43]  DigiRAB, “Sicherers Arbeiten auf der digitalisierten Baustelle. [Safe digital construction], [In 
German].”.  

[44]  H. W. R. a. B. N. Lingard, “If you cannot measure it, you cannot improve it: Measuring health and 

safety performance in the construction industry,” in 19th Triennial CIB World Building Congress, 
Brisbane, Queensland, Australia., 2013.  

[45]  J. Teizer and T. Cheng, “Proximity hazard indicator for workers-on-foot near miss interactions with 
construction equipment and geo-referenced hazard areas,” Automation in Construction, vol. 60, pp. 

58-73, 2015.  

[46]  R. L. H. B. N. a. W. R. Edirisinghe, “Would the time-delay of safety data matter? Real-time active safety 
system (RASS) for construction industry,” Proceedings of the CIB W099 Achieving Sustainable 

Construction Health and Safety, pp. 564-574, 2014.  

[47]  J. Dyreborg, “The causal relation between lead and lag indicators,” Safety Science, vol. 47, pp. 474-
475.  

[48]  G. Grote, “Response to Andrew Hopkins,” Safety Science, vol. 47, p. 478.  

[49]  CII, “Modeling the lessons learned process,” The Construction Industry Institute, Austin, TX, 1997. 

[50]  B. E. Ergen, B. Akinci and R. Sacks, “Tracking and locating components in a precast storage yard 

utilizing radio frequency identification technology and GPS,” Automation in COnstruction, vol. 16, no. 
3, pp. 354-367, 2006.  

[51]  L. Bellamy, “Exploring the relationship between major hazard, fetal and non-fatal accidents through 
outcomes and causes,” Safety Science, vol. 71, pp. 93-103, 2015.  

[52]  E. Marks and J. Teizer, “Method for Testing Proximity Detection and Alert Technology for Safe 

Construction Equipment Operation,” Construction Management and Economics, vol. 31, no. Special 
Issue on Occupational Health and Safety in the Construction Industry, pp. 636-646.  

[53]  F. Cambraia, T. Saurin and C. Formoso, “Identification, analysis and dissemination on near misses: A 
case study in the construction industry,” Safety Science, vol. 48, pp. 91-99, 2010.  

[54]  J. Hinze and J. Teizer, “ Visibility-related fatalities related to construction equipment,” Safety Science, 

vol. 49, pp. 709-718, 2011.  

[55]  J. .. Ranney, M. Zuschlag, J. Morell, M. Coplen, J. Multer and T. Raslear, “Evaluations of Demonstration 

Pilots Produce Change: Fourteen Years of Safety-Culture Improvement Efforts by the Federal 
Railroad Administration,” TR News – Railroads and Research Sharing Track, vol. 286, pp. 28-36, 2013.  

[56]  J. Li, “Identification and classification of construction equipment operators’ mental fatigue using 

wearable eye-tracking technology,” 2020.  

[57]  P. Schäfers, A. Mütze and P. Nyhuis, “Integrated Concept for Acquisition and Utilization of Production 

Feedback Data to Support Production Planning and Control in the Age of Digitalization,” 2019.  



 D4.4 Proactive Real-time Risk Monitoring and Detection Methods v2 57 

 

 
 

 

COGITO – GA ID. 958310  
COnstruction phase 

dIgital Twin mOdel 

 
 

 

[58]  B.-W. Jo, Y.-S. Lee, D.-K. Kim, J.-H. Kim and P.-H. Choi, “Image-based proximity warning system for 

excavator of construction sites”.  

[59]  J. Li, J. Carr and C. Jobes, “A shell-based magnetic field model for magnetic proximity detection 

systems,” 2012.  

[60]  R. Kanan, O. Elhassan and R. Bensalem, “An {IoT-based} autonomous system for workers’ safety in 
construction sites with real-time alarming, monitoring, and positioning strategies,” 2018.  

[61]  A. Godwin and N. Schwabe, “Using a case study fatality to depict the limits of proximity detection 

systems for articulating, underground machinery,” 2016.  

[62]  M. L. Ruz, F. Vázquez, L. Salas-Morera and A. Cubero-Atienza, “Robotic testing of radio frequency 

devices designed for industrial safety,” 2012.  

[63]  J. Teizer and P. A. Vela, “Personnel tracking on construction sites using video cameras,” 2009.  

[64]  E. Konstantinou and I. Brilakis, “atching construction workers across views for automated 3D vision 

tracking on-site,” 2018.  

[65]  X. Luo, H. Li, X. Yang, Y. Yu and D. Cao, “Capturing and Understanding Workers’ Activities in {Far-

Field} Surveillance Videos with Deep Action Recognition and Bayesian Nonparametric Learning: 

Capturing and understanding workers’ activities,” 2019.  

[66]  S. Tang, M. Golparvar-fard, M. Naphade and M. M. Gopalakrishna, “Video-based activity forecasting 

for construction safety monitoring use cases,” 2019.  

[67]  M. Zhang, R. Shi and Z. Yang, “A critical review of vision-based occupational health and safety 

monitoring of construction site workers,” 2020.  

[68]  INGAA, “Safe Work Guidelines for Equipment with Proximity Sensors and Camera Monitor Systems,” 
The INGAA Foundation Inc., 2020. 

[69]  P.Booker, “Air traffic management accident risk. Part 1: the limits of realistic modelling,” Saf. Sci. 44, 
pp. 416-450, 2006.  

[70]  N. Soltanmohammadlou, S. Sadeghia, C. Hon and F. Mokhtarpour-Khanghah, “Real-time locating 

systems and safety in construction sites: a literature review,” Saf. Sci., vol. 117, pp. 220-242, 2019.  

[71]  M. Hallowell, J. Hinze, K. Baud and A. Wehle, “Proactive Construction Safety Control: Measuring, 

Monitoring, and Responding to Safety Leading Indicators,” Journal of Construction Engineering and 
Management, vol. 139, 2013.  

[72]  S. Siebert and J. Teizer, “Mobile 3D mapping for surveying earthwork projects using an unmanned 

aerial vehicle (UAV) system,” Autom. Constr., vol. 41, pp. 1-14, 2014.  

[73]  S. Zhang, F. Boukamp and J. Teizer, “Ontology-based semantic modeling of construction safety 

knowledge: towards automated safety planning for job hazard analysis,” Autom. Constr., pp. 29-41, 
2015.  

[74]  T. Cheng, M. Venugopal, J. Teizer and P. Vela, “Performance evaluation of ultra wideband technology 

for construction resource location tracking in harsh environments,” Autom. Constr., vol. 20, pp. 1173-
1184, 2011.  

[75]  C. Kim, C. Haas, K. Liapi, J. McLaughlin, J. Teizer and F. Bosche, “Rapid Human-Assisted, Obstacle 

Avoidance System using Sparse Range Point,” in Proceedings of the 9th Biennial ASCE Aerospace 



 D4.4 Proactive Real-time Risk Monitoring and Detection Methods v2 58 

 

 
 

 

COGITO – GA ID. 958310  
COnstruction phase 

dIgital Twin mOdel 

 
 

 

Division International Conference on Engineering Construction, and Operations in Challenging 

Environments, 2004.  

[76]  J. Teizer, “Safety 360: Surround-view Sensing to Comply With Changes to the ISO 5006 Earth-moving 

Machinery - Operator's Field of View - Test Method and Performance Criteria,” in Proceedings of the 

32nd International Symposium on Automation and Robotics in Construction, Oulu, Finland, 2015.  

[77]  BG Bau Homepage, “http://www.bgbau-medien.de/struktur/inh_baus.htm”.  

[78]  N. Pradhananga and J. Teizer, “Automatic spatiotemporal analysis of construction site equipment 

operations using GPS data,” Autom. Constr., vol. 29, pp. 107-122, 2013.  

[79]  Construction Industry Institute, “Using Near Miss Reporting to Enhance Safety Performance,” The 

University of Texas at Austin, 2014.  

[80]  V. Kamat and J. Martinez, “Visualizing simulated construction operations in 3D,” Comput. Civ. Eng., 

vol. 15, pp. 329-337, 2001.  

[81]  J. Yang, P. Vela, J. Teizer and Z. Shi, “Vision-based crane tracking for understanding construction 
activity,” J, Comput. Civ. Eng., vol. 28, pp. 103-112, 2014.  

[82]  T. Cheng and J. Teizer, “Modeling tower crane operator visibility to minimize the risk of limited 

situational awareness,” J. Comput. Civ. Eng., vol. 28, 2014.  

[83]  J. Teizer, J. Melzner, M. Wolf, O. Golovina and M. König, “Automatisierte 4D-Bauablaufvisualisierung 

und Ist-Datenerfassung zur Planung und Steuerung von Bauprozessen,” VDI-Bautechnik, pp. 129-
135, 2017.  

[84]  U. Robustelli, V. Baiocchi and G. Pugliano, “Assessment of Dual Frequency GNSS Observations from 

a Xiaomi Mi8 Android Smartphone Positioning Performance Analysis,” Electronics, vol. 8, 2019.  

[85]  B. d. Suto and M. Skibniewski, “Future of Robotics and Automation in Construction,” Construction 

4.0: an innovative platform for the built environment, pp. 289-306, 2020.  

[86]  C. Chronopoulos, J. Teizer and L. Esterle, “Trajectory Prediction: A Review of Methods and Challenges 

in Construction Safety,” 2022.  

[87]  Z. Zhu, M.-W. Park, C. Koch, M. Soltani, A. Hammad and K. Davari, “Predicting movements of onsite 
workers and mobile equipment for enhancing construction site safety,” Autom. Constr., vol. 68, pp. 

95-101, 2016.  

[88]  E. R. Azar, “Active control of a pan-tilt-zoom camera for vision-based monitoring of equipment in 

construction and surface mining jobsites,,” 2016.  

[89]  J. Cai, Y. Zhang, L. Yang, H. Cai and S. Li, “A context-augmented deep learning approach for worker 

trajectory prediction on unstructured and dynamic construction sites,” Adv. Eng. Inform., vol. 46, 

2020.  

[90]  S. Tang, M. Golparvar-Fard, M. Naphade and M. M. Gopalakrishna, ““Video-based motion trajectory 

forecasting method for proactive construction safety monitoring systems,”,” 2020.  

[91]  H. Deng, Z. Ou and Y. Deng, “Multi-angle fusion-based safety status analysis of construction workers,” 
2021.  

[92]  T. Kong, W. Fang, P. E. D. Love, H. Luo, S. Xu and H. Li, “Computer vision and long short-term memory: 

Learning to predict unsafe behaviour in construction,,” 2021.  



 D4.4 Proactive Real-time Risk Monitoring and Detection Methods v2 59 

 

 
 

 

COGITO – GA ID. 958310  
COnstruction phase 

dIgital Twin mOdel 

 
 

 

[93]  M.-K. Kim, Q. Wang and H. Li, “Non-contact sensing based geometric quality assessment of buildings 

and civil structures: A review,,” 2019.  

[94]  J. W. Kim, J. S. Park and S. K. Kim, “Application of FlexSim software for developing cyber learning 

factory for smart factory education and training,” 2020.  

[95]  D. Hu, S. Li, J. Cai and Y. Hu, “Toward intelligent workplace: Prediction-enabled proactive planning 
for human-robot coexistence on unstructured construction sites,” 2020.  

[96]  S. Zhang, J. Teizer, N. Pradhananga and C. M. Eastman, “Workforce location tracking to model, 

visualize and analyze workspace requirements in building information models for construction 

safety planning,” 2015.  

[97]  K. M. Rashid and A. H. Behzadan, “Enhancing motion trajectory prediction for site safety by 
incorporating attitude toward risk,” 2017.  

[98]  K. M. Rashid, S. Datta and A. H. Behzadan, “Coupling risk attitude and motion data mining in a 

preemtive construction safety framework,” 2017.  

[99]  K. M. Rashid and A. H. Behzadan, “Risk behavior-based trajectory prediction for construction site 

safety monitoring,” 2018.  

[100]  A. Rasul, J. Seo, K. Oh, A. Khajepour and N. Reginald, “Predicted safety algorithms for autonomous 
excavators using a 3D LiDAR sensor,” 2020.  

[101]  A. Rasul, J. Seo and A. Khajepour, “Development of sensing algorithms for object tracking and 
predictive safety evaluation of autonomous excavators,” 2021.  

[103]  V. Getuli, P. Capone, A. Bruttini and S. Isaac, “BIM-based immersive Virtual Reality for construction 

workspace planning: A safety-oriented approach”.  

 

 

 



 D4.4 Proactive Real-time Risk Monitoring and Detection Methods v2 60 

 

 
 

 

COGITO – GA ID. 958310  
COnstruction phase 

dIgital Twin mOdel 

 
 

 

 


	Executive Summary
	List of Figures
	List of Tables
	List of Acronyms
	1 Introduction
	1.1 Scope and objectives of the deliverable
	1.2 Relation to other tasks and deliverables
	1.3 Structure of the deliverable
	1.4 Updates to the first version of proactive real-time risk monitoring and detection methods

	2 Existing methods for enhancing safety in construction
	2.1 Hazard prevention
	2.2 Factors affecting safe equipment operation and accident reporting
	2.3 Choice and impact of alarm types
	2.4 Intelligent intervention and functional safety

	3 Need for right-time safety and a close call reporting process
	3.1 Time dimension in safety and health performance measurement
	3.2 Formalisation of a right-time pro-active construction safety and health system architecture
	3.3 Linking accident causation models and safety indicators
	3.4 Organisational approach for right-time safety
	3.5 Existing close call reporting, analysis, and feedback process
	3.6 Digital close call detection, reporting, analysis, and feedback process

	4 Sensor-based methods for risk monitoring and detection
	4.1 Camera-monitor-systems (CMS)
	4.2 Ultrasonic systems
	4.3 Radar systems
	4.4 Radio systems
	4.5 3D camera sensors
	4.6 3D time-of-flight sensors
	4.7 Lidar systems
	4.8 RTK GNSS location tracking
	4.9 Comparing sensor technologies
	4.10 Advocating for sensor system fusion
	4.11 Applying proactive and passive measures
	4.12 Demanding data reasoning and feedback

	5 Close call data analysis
	5.1 Construction resource data
	5.2 Protective envelopes and boundary data representing resources
	5.3 Protective envelopes
	5.4 Trajectory data
	5.5 Close call event
	5.6 Close call event buffering
	5.7 Close call analysis
	5.7.1 Velocity
	5.7.2 Facing direction
	5.7.3 Distance
	5.7.4 Orientation

	5.8 Algorithm for automated close call data processing
	5.8.1 Trajectory analysis
	5.8.2 Radar plot
	5.8.3 Hazard weights
	5.8.3.1 Velocity weight
	5.8.3.2 Duration weight
	5.8.3.3 Deviation weight
	5.8.3.4 Distance weight
	5.8.3.5 Orientation weight


	5.9 Verification of method
	5.9.1 Experiment 1: Artificially created dataset
	5.9.2 Experiment 2: Building construction site
	5.9.3 Experiment 3: Infrastructure construction site
	5.9.4 Experiment 4: Integrate geometry from BIM model

	5.10 Reporting and feedback cards

	6 Proactive real-time risk monitoring and detection
	6.1 GNSS location tracking technology as part of the DTP
	6.2 Data analysis module
	6.3 Trajectory prediction module
	6.3.1 Trajectory prediction in construction
	6.3.1.1 Vision-based data
	6.3.1.2 Location tracking data
	6.3.1.3 Point clouds

	6.3.2 Trajectory prediction in ProActiveSafety

	6.4 Hazard zones checking

	7 Conclusions
	References

