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Executive Summary 

The COGITO Deliverable D4.3 “Proactive Real-time Risk Monitoring and Detection Methods v1” aims at 
documenting the state-of-the-art regarding the existing methods for enhancing safety in construction, 
focusing primarily on two areas relevant in the context of COGITO. First, the sensor-based methods for risk 
monitoring and detection and second, the trajectory prediction of moving, heavy construction equipment 
and pedestrian workers in order to enhance safety in complex and dynamic construction environments. 
This deliverable also documents the first version of the currently developed Proactive Real-Time Risk 
Monitoring and Detection application called ProactiveSafety. In addition, it reports on the first iteration of 
the development activities within the COGITO Task T4.2 “Proactive Real-time Risk Monitoring and 
Detection”. 

In summary, due to the evolving workspace typically found at construction sites, hazards can emerge 
dynamically. Visibility-related fatalities constitute more than half of the fatal occupational accidents in 
construction, caused by workers being in a blind zone of heavy equipment or not being seen due to 
obstructions. To promote safety, research has been done on developing proactive warning systems to notify 
of dangers and to alert pedestrian workers or operators when immediate attention or action is required to 
prevent an accident. The proactive warning systems often rely on sensors to detect the distance between 
moving heavy machinery and pedestrian workers or obstacles. Several types of sensor-based methods for 
risk monitoring and detection exist and are analysed in depth in this report. For instance, camera-based, 
ultrasonic or radio systems are some of those. Trajectory prediction in construction refers to the short-term 
prediction of the path followed by a moving object within 1 to 10 seconds ahead and focuses on two main 
aspects. First, the development of proactive real-time safety systems based on proximity monitoring for 
accident prevention. Second, the transition of construction towards automation and autonomy, where 
trajectory prediction is critical for safety planning and collision avoidance in human-robot collaboration. 
Three categories of input data were found to be used for trajectory prediction in construction literature: 
vision-based data, raw location tracking data, and 3-dimensional point cloud data from LiDAR sensors. 

The Proactive Real-time Risk Monitoring and Detection application, called ProactiveSafety, consists of four 
modules, namely (i) the data analysis module, (ii) the trajectory prediction module, (iii) the hazard zones 
checking module and (iv) the risk analysis module. ProactiveSafety enables the Health and Safety (H&S) 
digital twin to predict hazardous situations (e.g., through the generation of risk heat maps or probability 
density calculations) based on state-of-the-art machine learning techniques on up-to-date near-real-time 
data queried from the digital twin platform. To this end, sample location tracking data have been utilised to 
train a type of artificial Recurrent Neural Network (RNN) called LSTM network which performs short-term 
proactive monitoring of hazards affecting moving workers and equipment in the dynamic construction 
environment. Future development will focus on the risk analysis module and will integrate construction 
semantic information (e.g., construction site layout plans) and hazard zones checking to further enhance 
the safety analysis. 
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1 Introduction 

Many occupational safety and health administrations worldwide pursue a “zero-accident” vision to protect 

workers' life, health and well-being [1]–[3]. According to laws in most industrialised countries, a safe 

workplace must be provided before any employee can start working [4]. As injury and fatality rates rise or 

decline by economic activity, however, well-articulated standards and processes related to the construction 

safety, health and well-being [5] alone may not adequately prevent dangerous working conditions. Many of 

these have proven inadequate upon execution in the field [6]–[8] or are challenging to adapt to the ongoing 

digitalisation efforts across all industries. For example, contact collision incidents between pedestrian 

workers and heavy construction equipment still occur in large numbers [9]. For this reason, even industry 

leaders observe that further reduction of accident numbers is very hard to achieve [10]. 

During construction equipment operations, multiple levels of consequences can result from incidents: low, 

medium, or high [11]. Respective examples are minor collateral property damage, bodily injury or fatality. 

While the occurrence of these highly depends on human judgement, one of the contributing and repeating 

factors is pedestrian workers being too close to the equipment without being detected in time. Therefore, 

from an equipment operator’s point of view, limited or no visibility causes disturbance of workflow, 

increases the risk of accidents and stresses the affected persons negatively. Current best-practice 

techniques rely on always-on passive measures such as back-up beepers on machines and personal 

protective equipment (PPE) on construction personnel. Wearing a hard hat and a reflective safety vest [12] 

for example, is required by law to improve visibility in hazardous proximity incidents that occur every day 

between workers and heavy construction equipment. However, such passive measures by themselves, 

unfortunately, are incapable of recognizing a hazard and do not warn personnel actively.  

An alternative approach to tackle this problem is by educating the workforce and thus, effectively reduce 

the opportunities for accidents. It requires identifying, registering and reviewing incidents that might lead 

to an accident or so-called close-calls. A close-call (i.e., a near-miss) is a subtle event in the chain leading to 

a potential accident that remains unrecognized but should be treated like an accident [13]. The required 

investigation and feedback to such incidents have always been a reactive measure so far. Although one may 

find the root cause that led to the event and prevent it from happening again, preventive or (better) 

predictive measures should be used to proactively plan for and maintain a safe working environment in the 

first place [14]. In short, to further improve construction safety performance, it is necessary to understand 

the underlying causes of accidents in much greater detail [15], [16]. 

1.1 Scope and Objectives of the Deliverable 

This deliverable presents a survey of the existing methods for enhancing safety in construction through 

proactive risk monitoring and detection. The deliverable also reports on the work that has been carried out 

within WP4 towards designing, developing and delivering a first prototype version of the Proactive Real-

time Risk Monitoring and Detection service which enables the H&S digital twin to predict hazardous 

situations. 

1.2 Relation to other Tasks and Deliverables 

This deliverable is based on the conceptual architecture defined in deliverables D2.4 Cogito System 

Architecture v1 and D2.5 Cogito System Architecture v2. The Proactive Real-Time Risk Monitoring and 

Detection application called ProactiveSafety receives location tracking data of the construction resources 

(i.e., pedestrian workers and heavy machinery/equipment) from the Digital Twin Platform (DTP) and more 

specifically from the IoT Data Pre-processing module.  

ProactiveSafety is responsible for communicating additional safety hazards to SafeConAI to enhance the 

safety analysis as well as for proactively issuing warnings through the Work Order Execution Assistance 

(WOEA) service. The identified health and safety hazards it is envisioned to be visualised both off-site and 

on-site. Digital Command Centre (DCC) is COGITO’s off-site data visualisation solution developed within 

T7.3 Data Transformation for 3D BIM Rendering and T7.4 3D Mesh Data Quality and Consistency Checker and 

3D Data Transformation Testing. The on-site data visualisation will be undertaken by the Digital Twin 

visualisation with Augmented Reality (DigiTAR) tool using Augmented Reality (AR) head mounted displays, 
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and it is developed within T5.4 User Interface for Construction. Finally, the health and safety hazards will be 

utilized by the VirtualSafety application to create realistic training scenarios to improve safety culture and 

increase awareness of potential hazards in construction. 

Quality Control” 

1.3 Structure of the Deliverable 

The deliverable is structured as follows; Section 2 presents the state-of the-art on methods for enhancing 

safety in construction and discusses the factors affecting the safe operation of construction equipment. 

Section 3 presents the available sensor-based methods for risk monitoring and detection, providing a 

comparison on a selection of technical characteristics of proximity sensing devices critical for the 

implementation in construction. Section 3.7 presents the state-of-the-art on trajectory prediction methods 

for enhancing safety in construction, whereas in Section 4 the Proactive Real-Time Risk Monitoring and 

Detection application is presented in detail. Finally, Section 5 concludes this report and describes the future 

developments planned for the second iteration of the Proactive Real-Time Risk Monitoring and Detection 

module. 
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2 Existing Methods for Enhancing Safety in Construction 

2.1 Hazard prevention 

A variety of means exist during the design of construction sites [17] to prevent pedestrian workers from 

getting in close contact with equipment in operation; much can be utilised long before the construction 

actually begins. As always, prevention is the safest method to avoid accidents [18]. Therefore, a good 

practice in occupational construction safety is to follow a hierarchy of protective measures; these include, 

but are not limited to (a) the identification of possible hazards in the operating area of the construction 

equipment, (b) the implementation of appropriate protective measures and (c) the documentation of such 

measures. Following the "S-T-O-P” principle (based on [19]), these have priority: 

• Substitution: Substitute the dangerous equipment with a safer alternative. 

• Technical measures: Apply technical measures to minimise the exposure of personnel in blind 

zones. For example, improve vision using a camera-mounted system (CMS). Check if/what other 

alert/sensor systems are valuable and necessary. 

• Organisational measures: Use organisational measures to decrease the number of personnel 

exposed to nearby equipment. For example: define and mark hazardous work areas; establish rules 

of conduct such as toolbox meetings before the work starts; regulate entry, use signallers, security 

guards; separate vehicle from pedestrian worker paths using barriers; observe and enforce order. 

• Personal measures: Protective measures applied to personnel, such as wearing personal protective 

equipment (PPE), e.g., high-visibility warning vests, as a barrier to exposure. While research 

concludes that in some cases low visibility issues are resolved using reflective vests that are worn 

by the workers, other research suggests that few technologies exist that pro-actively aid pedestrian 

workers or equipment operators in dangerous proximity incidents  [20], [21]. 

In brief, as research has shown, a risk assessment starts early in a project [22]; ideally, it should start before 

the selection and procurement of construction equipment [23]. The requirements and criteria for planning 

safe construction site layout plans must be specified. Research has already shown the benefits of its 

digitalisation, for example, through the use of Building Information Modeling (BIM) and virtual reality [14], 

[24], [25] methods. Such digital methods consider regulative and operational requirements while still 

involving employees' safety knowledge and experience. More recently, the integration of sensors in BIM-

based safety management applications appeared [26]. 

2.2 Factors affecting safe equipment operation and accident reporting 

Construction sites, contrary to work environments in the maritime [27]–[31], airline [32], agricultural or 

manufacturing [15], [33] sectors, perform activities in a defined but continuously evolving work space. This 

means safety issues can emerge dynamically and require attention at the right-time [12]. 

While several conditions are adversarial to create a safe working environment, equipment operator blind 

zones are among the most significant factors; such zones are a frequent cause of visibility-related fatal 

accidents. Several techniques exist to precisely quantify these accidents [34], [35]. Before equipment 

manufacturers can sell new machines, they must verify that a sufficient field of vision is provided (e.g., 

according to ISO 5006 for earth-moving machinery) [36]. Although several approaches have been 

investigated to mitigate blind zones (e.g., software-based identification of visibility issues - from 3D design, 

enhanced field-of-view through the use of mirrors, camera-monitor systems and/or work lights that 

enhance lighting conditions on working sites), more than plenty of visibility issues remain [34].  

Blind spots can be split into static and dynamic; static blind spots can be created by the equipment 

components themselves, while dynamic blind spots originate from the movement of the operator’s field of 

view (FOV) [34] and/or objects outside the equipment cabin. The latter requires the operator to exercise a 

greater level of vigilance and to conduct repeated vicinity checks to identify pedestrian workers and other 

significant obstructions. Further research [37] suggests a need to conduct inspections in areas that may 

appear unconventional to the operator, including underneath the equipment and anywhere in the vicinity 

of the task performance area. This also involves the operators checking areas previously known to be clear 

of personnel as they may have been re-occupied before the operators return to the same area. 
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Workers being in an equipment’s blind zone or “not seen because of obstructions” were mentioned in 56% 

of all visibility-related fatalities in construction [23]. Researchers concluded that equipment that deviates 

from its usual paths of operation increases the likelihood of accidents [38]. Other research found that 

decreasing vigilance results from workers being engaged in specific tasks while ignoring distracting noises 

[23]. When a truck or piece of machinery is reversing (in about 75% of all equipment-related accidents), a 

worker can be easily distracted by focusing on the assigned work task alone. Workers are probably more 

vigilant at the beginning of a project; at that time they pay more attention to alarm signals. Alarms can, 

nevertheless, quickly become routine to the workers and over time, the noise is processed more as an 

annoyance that tends to be ignored. 

Illumination factors are another vital aspect of visibility; however, they are frequently not recognized in 

accident descriptions [16]. Therefore, they also play a minor role in research. When an accident occurs, the 

typical response is to attribute the cause to the most apparent actor. For example, a worker in a blind zone 

has a risk of being struck and killed by a moving vehicle. Conventional industry procedure is to classify this 

incident as a “struck-by” fatality and the assumption from this occurrence is that equipment is dangerous. 

While this may be a “struck-by” accident, closer examination of the root cause may reveal that vision 

impairment was the primary factor and the equipment, because of its proximity, size and weight, was a 

secondary factor. Research showed that lighting was the primary contributing factor in about 7% of all 

visibility-related cases [23]. Overall, standards and guidelines in reporting accident and fatality events can 

be improved to conduct more thorough root cause analyses.  

2.3 Choice and impact of alarm types 

According to investigations of visibility-related accidents reports [23], in 87% of the cases, operators would 

have benefited from some use of technology for automated notification or intervention (e.g., obstacle 

detection, warning/alerting, and/or avoidance). So far, however, few machines use advanced technologies 

for monitoring their surroundings. To improve the awareness of operators and pedestrian workers, suitable 

alarms consisting of various warning and alert types must be carefully studied. Warnings generally notify 

of danger; alerts require immediate attention or action to prevent an accident. The predominant 

warning/alert signals for any technology are [20]: 

• Acoustic: Alarms range from a “hiss”, a composition of broadband/directional sounds also called 

“white” noise, or a “beep” i.e., a high pitch/omnidirectional alarm. They come from speakers 

installed on the equipment and are e.g., always activated when the equipment is reversing. Beepers 

sharpen the pedestrian workers’ attention with an audible signal. Especially beepers issue quite 

some noise nuisance [39], [40] (leading to annoyance and stress of employees/residents and 

ultimately to rejection). 

• Visual: Multiple ways exist to display a warning or alert in the equipment cabin on monitor or more 

recently on built-in displays installed on structural components of an equipment cabin [41]. 

• Vibration: An alarm will vibrate on a body part. Unless intelligent personnel protective equipment 

(PPE) is developed, vibration is only recommended in moderate climates when workers wear thin 

clothing. 

It is worth noting that warnings/alert signals generally turn off automatically once the person leaves the 

danger zone; this may decrease the risk for desensitizing operators. Some (older) systems previously 

allowed operators to manually configure alarms (e.g., turning them on/off), which is generally not advisable. 

The surrounding work environment and hearing thresholds are significant for the human perception of a 

produced sound signal in a construction area. Some pedestrian workers may even wear ear-muffs, 

protecting them from noise generated by another machine (e.g., a powered hand tool). When used as a 

warning tone, acoustic signals must be configured to adjust the volume according to the ambient noise levels 

(or enable smart/connected ear-muffs). 

2.4 Intelligent intervention and functional safety 

Digitalisation of construction equipment adds value by making machines more intelligent and increasing 

the automation of business and work processes. Regarding the construction safety, the concept of using 

automated technology to detect and mitigate hazards is relatively new as it requires "new forms of 
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cooperation" between workers/operators and machines. As an example, even if clear visibility is 

guaranteed and active warning systems ensure better attention, many other tasks remain for the operator 

to handle; depending on their skills they might require assistance in driving or manoeuvring. Examples are 

intelligent obstacle avoidance, machine performance optimisation and handling nuisance alerts. These and 

other automation tasks can be solved with a combination of robust sensor hardware and intelligent 

software. For example, 3D mapping and visualisation technologies play a crucial role in evaluating data that 

is directly communicated from the machine to a central monitoring system. Whereas (visual) sensor 

systems work independently of each other, e.g., automatic detection of pedestrian workers and/or objects 

in danger zones, the generation of alerts requires intelligent data processing and visualisation [42]. 

Intelligent intervention thus recognizes as part of sociotechnical systems (STS) the interaction between 

humans and technology in workplaces. The data acquired simultaneously from, for instance, a camera, an 

ultrasonic sensor and a Light Detection and Ranging (LiDAR) system are evaluated simultaneously. This 

superposition of the sensor signals increases reliability in detecting and recognising hazardous risks across 

a multitude of possible surrounding terrain scenarios (which are common in construction). The 

measurement result then triggers a predefined system intervention: When a danger is detected, the 

behaviour of a system is actively controlled to protect the detected workers and/or operators and bring the 

system back to a safe state, for example, via autonomous braking or an evasive manoeuvre [43]. 
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3 Sensor-based methods for risk monitoring and detection 

While safety education and training offer an additional way to increase awareness or change the behaviour, 

close proximity incidents between pedestrian workers and equipment will eventually require right-time 

proactive measures. As explained in [12], few solutions solve this problem for good. Up to now, construction 

equipment operators rely on their own judgement to detect close-by hazards. Consequently, operators often 

ignore alarms due to desensitisation or due to background noise [34], [39]. 

As illustrated in Figure 1, based on their principle of operation, the various existing Sensor-based System 

(SbS) can be categorised in:  

• Camera-monitor systems, 

• Ultrasonic systems, 

• RaDAR systems, 

• Radio systems, 

• 3D camera sensors (incl. infrared), 

• 3D time-of-flight sensor and 

• LiDAR/LaDAR systems. 

 

 
 

Figure 1 – Operating principles of Sensor-based Systems (SbS): (a) camera-monitor, (b) ultrasonic, 
(c) radar, (d) radio, (e) 3D camera, (f) 3D-TOF camera, and (g) LiDAR/LaDAR systems [17] 

Camera-Monitor-Systems (CMS) are auxiliary devices providing short-term, short-range visual aid to 

equipment operators e.g., during manoeuvring. Most CMS offer a flexible camera configuration to adapt to 

machine-specific designs/requirements (e.g., regarding the number of cable-connected cameras and their 

view angles, the need for little to no calibration or maintenance, the integration of pre-programmed 

monitors). Systems providing wireless signal transmission of video data over longer distances already exist 

(e.g., allowing the connection of cameras to monitors from remote mounting points), then, however, 

battery-powered cameras requiring charging on a daily basis become necessary. CMS typically use weather- 

and environment-resistant system components (e.g., IP 66K) and industrial connectors (e.g., M12).  

CMS have three predominant operating principles:  

• Single-view using a rear-, side-, or front-camera view only. It is specifically designed for equipment 

that reverses often or operates in carry-mode with front attachments (e.g., trucks, loaders, or 

forklifts [15], [33]). 

• Surround-view using four standard cameras which provide a panoramic view in the equipment 

cabin’s mounted monitor (Figure 1a). 
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• Bird-view generates digital images using ultra wide-angle cameras (e.g., mounted at the front, sides, 

and rear), which are further processed by video stitching and combined into a single 360° video 

image stream. 

 

One of the main applications utilising CMS is equipment involved in earthwork. While certain equipment 

operations were found to be more dangerous in reverse, some equipment experienced higher accident rates 

when traveling forward [23]. These cases were recognised explicitly in excavator operations [44]. This can 

be attributed to the dynamic blind spots created by the moving extensions of the equipment. Since 

excavators require constant adjustment of the bucket height, the increased likelihood of a broken line-of-

sight to a potential victim remains a significant concern. A potential solution to this problem can be the so-

called ‘smart cameras’ with Pan-Tilt-Zoom functionality [45]. Smart cameras combine image sensors with 

processing units that perform the imagery analysis, control and decision-making on the device.  

Likewise, commercially-available operator alert systems based on computer vision technology can detect 

operator’s fatigue and distraction, therefore assisting the latter to maintain the level of attention necessary 

for long work hours and monotonous tasks; in this case, however, additional (vision or other) sensorial 

systems are required for detecting hazards in the equipment’s vicinity [46]. Finally, making use of 

potentially integrated networking capabilities, not only the operators can be notified, but also the 

information can be transmitted to supervisors and central components such as a cloud environment for 

later data processing. 

3.1 Ultrasonic systems 

Ultrasonic waves measure the distance to a nearby object (from 0.1 to 3 meters, some even up to 9 meters) 

by calculating the time difference between sending and receiving a sound pulse with a frequency greater 

than 20 kHz (Figure 1b). Ultrasonic systems often appear on the rear, the sides or the front of the equipment; 

they can detect multiple objects at the same time, however, without the ability to distinguish them. A 

single/generic alert will be triggered regardless of the number of objects in close proximity to the 

equipment, e.g. a single object would be shown on the screen or a single sound would be triggered by the 

proximity buzzer in the equipment cabin. As soon as one object leaves the danger zone, any continuing alert 

will signify the presence of other remaining hazards. The application of ultrasonic systems is widely applied 

in automotive vehicles; some of its benefits and limitations in construction applications (e.g., unloading of 

delivery trucks or manoeuvring of forklifts) are: 

• it accurately detects a vast number of obstacle types, independent of colour, surface, or 

environmental conditions;  

• it is insensitive to dirt, dust, moisture, and potentially fog (system-dependent). 

• it offers a multi-level, auditory proximity warning system and the possibility of (semi-) automated 

stopping of the equipment. 

• it creates nuisance as all objects within the range of the sensor signal cause acoustic (potentially 

false) alerts, affecting the willingness to respond. 

3.2 Radar systems 

A Radio Detection and Ranging (RaDAR) sensor detects fixed and moving obstacles with the help of 

electromagnetic impulses. The operator can measure the distance between the equipment and the worker/ 

object on a screen in the equipment cabin. Electromagnetic waves transmitted by the RaDAR (i.e., the 

primary signal) are reflected on the object’s surface and are then received back as a secondary signal. The 

measured time between the transmission and the reception is used to determine the distance to the object 

(Figure 1c). Even in the harshest environments with the most inadequate visibility conditions, radar 

systems can detect people and objects reliably over a large range (typically up to 20 m) and at speeds of up 

to 20 km/h. Their high resistance to dirt, mud, dust, heavy rain, fog, darkness, smoke, humidity, heat, cold 

(optionally equipped with heated sensors), ultraviolet rays and vibration ensures reliable operation. 

Warning systems with radar sensors notify the operator with a brief time delay (50 milliseconds) from the 

time of object detection using an acoustic and/or optical signal (typically in a sequence of increasing speed). 

Furthermore, Controller Area Network (CAN) bus-capable radar systems provide an interface for proactive 

vehicle intervention. In construction applications, radar systems offering multi-level proximity alerting are 
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often coupled with CMS. The detection range is divided into several zones which helps prevent accidents by 

alerting the operators about to manoeuvre and reverse equipment. However, rough terrain can lead to 

frequent, unnecessary false alarms. In order to avoid false alarms, radar systems can be combined with 3D 

terrain mapping or object recognition with a (rear-view) camera. 

3.3 Radio systems 

In addition to the operating principles of the systems mentioned above, proactive systems can issue alarms 

from equipment to pedestrian workers. Radio systems (Figure 1d) using electromagnetic fields  detect 

pedestrian workers in close proximity to the equipment. Systems using radio frequency signals can also 

interact between vehicles, i.e. provide “vehicle-to-vehicle” communication, sending nearby equipment 

operators acoustic or visual alerts when approaching one another. They can instantly warn the machine 

operator and those at risk (e.g., pedestrian worker/s) in real-time; these systems effectively allow vehicle 

speeds of up to 25km/h [47]. Radio systems have been successfully used in the underground mining 

industry [48], [49], with implementations in construction applications being investigated [32], [47]. 

At least one radio transmitter mounted on the equipment emits a signal that an active transponder (i.e., a 

personal tag) returns; multiple transmitters would permit detecting the actual location of a personal tag. 

Radio signals have no blind spots, can penetrate through objects e.g., reinforced concrete, allowing the 

detection of persons behind obstacles (NB: some materials are susceptible or resistant to electromagnetic 

fields). While the personal tag issues an alert if a predefined distance criterion has been met, the operator 

receives a warning as well. All involved entities can react promptly: machines come to a stop or leave a 

danger zone; pedestrian workers’s level of awareness is raised in order to pay attention to the danger 

caused by equipment being too close. It should be noted, nonetheless, that existing data from radio systems, 

if logged at all, still require data fusion with a Global Navigation Satellite System (GNSS) to produce 

meaningful close-call positioning data. 

3.4 3D camera sensors 

3D camera sensors (Figure 1e) provide simultaneous capture of 2D images from at least two cameras. Data 

is processed into a single 3D image capturing the spatial component of the information. They can warn the 

operator in critical incidents, e.g., in case surrounding personnel or objects are in extremely close proximity, 

using acoustic and optical signals. In addition, the incident is visualised live in the cabin’s display monitor, 

as a CMS does, so the operator can remain focused on the main work task. A 3D camera sensor is superior 

to a CMS as it provides imagery with depth information (up to 60 m). It allows for more reliable distance 

measurement and object identification but still has similar disadvantages to a CMS. Some of these can be 

solved, e.g., integrating an infrared (IR) camera  provides powerful illumination in poor ambient light 

conditions. 

3D camera technology, e.g., stereo video cameras, although widely used for the observation of the 

environment in robotics and automotive assistance systems for private or commercial vehicles, are less 

common for construction equipment [50]–[54]. They are, however, one of the critical components in 

developing autonomous equipment. Efficient data processing enables fast object recognition from imagery 

data. Short-term data can also be recorded and used in performing an analysis of the root cause that 

contributed to accidents. 

3.5 3D time-of-flight sensors 

A Time-of-Flight (ToF) sensor (Figure 1f) captures a 3D point cloud of the work environment in real-time 

and processes the range data directly without the support of an external computer [55] offering 

customisable detection zones. ToF sensors send out an infrared light signal which is reflected by an object; 

for each pixel, the distance between the camera and the measuring object is calculated from the different 

light phase shifts. Thousands of pixels are captured in a single shot, thereby delivering a detailed three-

dimensional distance image; continuous images deliver video imagery with range depths. A limitation is 

that very reflective targets (e.g., fluorescent material on a safety vest) hardly return a useful signal - the 

overstimulation of the sensor does not allow for accurate range estimation. 3D ToF sensors have robust 

IP67 housings.  
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3.6 Lidar systems 

LiDAR or LaDAR (Light or Laser Detection and Ranging) (Figure 1g), a method for optical distance 

measurement, provides accurate results using a pulsed laser beam which is reflected by the target [17]. The 

reflected beam is detectable under all light conditions and can be used even in complete darkness. Once 

received by a detector, the time between transmission and reception of the reflected beam is measured, 

from which the distance is calculated. In contrast to a continuous wave laser, a pulsed laser has a higher 

power density (thus have an extended measurement range). The LiDAR technology is designed to be eye-

safe (laser class 1) and typically operate in fixed positions, e.g., fixed laser curtains (2D laser scanners) with 

a customisable opening angle or wide measurement zones. Given the high resolution on obtained object 

profiles, LiDAR systems can be directly used for worker or object detection and identification. A large 

number of parameters can be directly processed and visualised by means of a software interface. The 

system, however, is to some degree susceptible when used in very rough terrain, heavy dust and 

precipitation (which are likely to occur in outdoor construction environments).  

Table 1 summarises the characteristics of the aforementioned sensor systems. Noteworthy to mention are 

the characteristics such as: the signal, line-of-sight, range, false alarm frequency as well as the sensitivity to 

environmental and human factors: two-way-alarm, proactive alarm and nuisance alarm frequency. The 

qualitative values of the characteristics marked by an asterisk were determined based on the findings in 

literature. For example, CMS scores ‘medium’ because the false alarm rate (operator could easily ignore a 

display screen) is higher compared to a radio system (which can autonomously slow down the equipment). 

Radio systems, however, have higher initial investment and require continuous maintenance. Careful 

assessment of these characteristics should always be applied to each individual use case.
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Table 1 – Comparison of selected characteristics of proximity sensing devices (common technical specifications according to manufacturers; * represent 
findings in the literature and own research) [17] 

Sensor system CMS Ultrasonic Radar Radio systems 3D camera 3D-TOF Lidar 

    Magnetic 

field 

UHF    

Signal line-of-sight required Yes Yes Yes No Yes/No Yes Yes Yes 

Maximum range [m] 5-100 3 8-17 18 >20 60 10 2-100 

Multi-level alarm zones No Yes Yes Yes Yes Yes Yes Yes 

Adjustable range No No Yes Yes Yes No No No 

Adjustable angle Yes No Yes No No Yes Yes Yes 

Predominant use Surround Rear Forward/Side Surround Surround Forward Forward Curtain 

Proactive alarm No Yes Yes Yes Yes Yes Yes Yes 

Two-way alarm (vehicle-to-
person and vehicle-to-vehicle) 

No No No Yes Yes No No No 

False alarm frequency* Medium Medium Medium Low Low Medium Medium Medium 

Sensitivity to environment* High Low Medium Low Low Medium High Medium 

Nuisance alarm frequency* Medium High High Medium Medium Medium Medium Medium 

Installation, operation, and 
maintenance* 

Low Low Low 
Medium to 

High 
Medium to 

High 
Medium Medium Medium 

Object detection/recognition No/No Yes/No Yes/No Yes/Yes Yes/Yes Yes/Yes Yes/Yes Yes/Yes 

Data logging Limited No No Yes Yes Limited Limited No 

Functional safety* High High High Medium/High Medium/High High High High 

Industrial security* Medium Medium Medium Medium Medium Medium Medium Medium 

Overall investment (incl. cost, 
installation, maintenance)* 

Low Low 
Low to 

Medium 
Medium to 

High 
Medium to 

High 
Medium High High 
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3.7 Trajectory prediction in construction 

Trajectory prediction in construction refers to the short-term (i.e., 1 to 10 seconds ahead) spatial prediction 

of the path followed by a moving object and focuses on two main aspects. First, the development of proactive 

real-time safety systems based on proximity monitoring for accident prevention [17] and second, the 

transition of the construction industry to automation and autonomy, where trajectory prediction is critical 

for safety planning and collision avoidance in human-robot collaboration. Automation involves a set of 

human-defined functions performed by robots or equipment in construction, whereas autonomy refers to 

the state in which robots or equipment operate independently, without explicit instructions from a human 

operator. Although the future of automation and robotics in construction is promising [56], the majority of 

the identified publications in [57] focus on proximity monitoring for accident prevention rather than the 

automation of construction equipment operations. Three categories of input data were found to be used for 

trajectory prediction in the construction literature: vision-based data, raw location tracking data and 3-

dimensional point cloud data from LiDAR sensors. 

3.7.1 Vision-based Data 

Video recorded footage is used to predict the movement of workers and equipment in construction sites 

through vision-based object recognition. The tracked objects (i.e., workers and equipment) are identified in 

the frames using computer vision and the motion vector is then calculated. Short-term prediction is 

commonly performed based on Neural Network (NN) models and Kalman Filters (KF), whereas Hidden 

Markov Models (HMM) are less frequently applied being outperformed by NNs.  Zhu et al. [58] proposed a 

framework for computer vision-based estimation of position and short-term prediction of workers’ and 

mobile equipment trajectories. The researchers assumed clear and high- quality videos with limited 

occlusions, which makes the framework susceptible to inferior quality input. To solve the tracking 

limitations in construction environments, Rezazaddeh Azar [59] developed a vision-based equipment 

tracking algorithm for automated camera control with predictive capability by estimating the motion vector 

and speed of the tracked object. 

To increase the accuracy of the predictive models, semantic and contextual information is used combining 

input from other sensorial technologies. For instance, Papaioannou et al. [60] introduced a system that uses 

footage from CCTV camera infrastructure and data from inertial sensors embedded on modern 

smartphones and applied the Social Force Model (SFM) to identify obstacles and other people in the scene, 

assuming that they affect the behaviour of human motion and represent their effect as repulsive forces. Cai 

et al. [61] designed a Long Short-Term Memory (LSTM) model to predict worker trajectories in construction 

environments, considering additional contextual information, namely the distance to the nearest neighbour, 

the relationship between that neighbour and the tracked worker and the distance to destination. An LSTM 

network combined with a Mixture Density Network (MDN) for construction workers and equipment path 

prediction towards right time intervention of collision and intrusion was constructed by Tang et al. [62]. 

The model considers two contextual cues, namely the distance between moving and static objects and the 

type of objects (i.e., worker and vehicle) to predict their trajectory up to 2 seconds in the future. Although 

the model outperforms other existing trajectory prediction models, it is still limited by the dynamic visual 

occlusions due to other moving construction resources. Semantic information in the form of predefined 

hazard zones is also considered in the literature. Deng et al. [63] used Kalman Filters (KF) to predict the 

movement of workers in construction sites and the estimated trajectory is checked against a set of artificial 

danger zone boundaries to determine whether the prediction point lies inside or outside of the zones. 

Considering the occlusion limitations, the researchers performed multi-angle detection which, however, is 

limited by the camera resolution, especially when the workers are far from the camera position. Kong et al. 

[64] proposed a framework for workers’ trajectory prediction in construction sites based on the Social 

LSTM architecture. The framework takes into consideration the workers’ unsafe behaviour, defined as any 

movement towards predefined hazardous areas, and corrects the predicted trajectories using KF. One 

important shortcoming of that study is related to the validation of the pre-trained model, performed on 

their own dataset with limited scenarios, preventing it from being generalisable. 

Only two of the identified publications focus on the future of construction industry, where human workers 

and robots co-exist and collaborate [57]. Kim et al. [65] proposed a framework based on Social Generative 

Adversarial Network (S-GAN) for trajectory prediction to tackle contact-driven hazards in construction 
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between workers and autonomous trucks. Their results showed that longer observation periods do not 

necessarily lead to higher prediction accuracy, due to the inclusion of less relevant time steps in the 

prediction. In a later study, they evaluated the model on a controlled testbed, including a worker and a truck 

following three predefined movement patterns [66]. Hu et al. [67] expanded the application of the LSTM 

model developed by Cai et al. [61], by implementing the A* path planning algorithm for autonomous robots 

in construction sites. However, the study validates the worker trajectory and path planning algorithms 

separately assuming a flat ground surface. 

3.7.2 Location Tracking Data 

GNSS refers to a set of navigation technologies that depend on the satellites orbiting around the earth. 

Existing studies have deployed low-cost GNSS technology for tracking construction resources to enhance 

construction safety, planning and management [68]. GNSS data have also been used as input to trajectory 

prediction models in construction applications. Rashid and Behzadan [69] developed a smartphone-based 

application for trajectory prediction of workers to prevent contact-driven accidents in construction sites. 

The underlying model is based on HMM. A risk factor is introduced and ranges between 0 and 1 depending 

on the angle between the trajectory and the centre of one stationary and user-defined hazard zone [70]. The 

model was further developed to consider one static or dynamic hazard (i.e., moving between two points) 

and validated it by comparing to a benchmark Polynomial Regression model, showing better prediction 

accuracy [71]. Both models however, are error-prone in predicting trajectories with sharp turns and are 

limited to a single pedestrian worker and a predefined hazard. Furthermore, the application considers 

outdoor construction activities due to the limitations of GNSS technologies in indoor environments. Another 

shortcoming is related to the large number of detected close-call events (n=369) and potential collisions 

(n=77) in a 30-minute experiment, which could hinder the users’ situational awareness and trust in the 

warning system and lead to delays.  

3.7.3 Point Clouds 

Point clouds are sets of data points in space that can represent 3-dimensional objects, where each point has 

its own set of x, y and z coordinates. In a recent study, a LiDAR sensor was utilised to acquire point cloud 

data to track the positions of heavy machinery and obstacles in a construction site [72], [73]. The raw point 

cloud data were analysed to first detect the heavy machinery (i.e., excavator) and then perform detection 

and clustering of other objects (i.e., workers and machinery) of a width greater than 0.4m, which is the 

average chest width of a human being. The Extended Kalman Filter (EKF) was adopted for predicting the 

position and velocity of the moving objects, whereas the excavator’s predicted working area was calculated 

based on kinematics analysis and data from embedded stroke sensors and a rotational encoder [72]. In a 

later study, an unscented Kalman filtering (UKF) was used to predict the non-linear motion dynamics of the 

moving objects. In both studies two safety indices are defined and used, namely the time to collision (TTC), 

and the warning index (x) defined as the degree of potential collision risks. 
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4 Proactive Real-Time Risk Monitoring and Detection 

In the COGITO System Architecture, the Proactive Real-time Risk Monitoring and Detection component, 

called ProactiveSafety, enables the H&S digital twin to predict hazardous situations (e.g., through risk heat 

map generation, probability density calculations), based on state-of-the art machine learning techniques on 

up-to-date data queried from the digital twin platform. For this, sample location tracking data have been 

utilised to train a type of artificial Recurrent Neural Networks (RNN) called LSTM network to perform short-

term proactive monitoring of hazards of moving workers and equipment in the dynamic construction 

environment.  

4.1 GNSS location tracking technology 

In the current experimental setup, GNSS location tracking technology has been deployed to provide location 

tracking data for the outdoor environment. GNSS is infrastructure-less technology and thus suitable for 

complex and dynamic environments such as construction sites. A prototype system developed by Rhomberg 

Sersa Rail Group was used for acquiring high-accuracy timestamped location datasets for various 

construction resources (i.e., pedestrian workers and moving equipment). The system utilises smartphone 

devices equipped with dual-frequency GNSS sensors that outperform the older embedded GNSS 

technologies achieving better positioning accuracy [74]. In addition, the experimental setup supports the 

installation of Real-Time Kinematic (RTK)  equipment to further increase its accuracy. The RTK equipment 

consists of an integrated RTK antenna mounted on a safety helmet, RTK base stations and RTK receivers 

mounted on the smartphone devices (see Figure 2). 

 

  

Figure 2 – ‘Owl’ system for on-site location tracking. Smartphone app (left) and RTK setup (right) 
for enhanced accuracy, including an integrated RTK antenna, RTK receiver and RTK base station 

[75]. 

The GNSS RTK system called ‘Owl’1 aims to provide precise real-time location data for the workers and 

heavy machinery/equipment at a construction site. Since this information creates a view of the locations of 

workers and equipment, errors are avoided and accidents are prevented; the latter is possible thanks to the 

simplified communication and automatic logging which relieves workplace coordination needs. Using a 

smartphone application and a GNSS tracker, the positions of construction workers and machinery are 

recorded and an overview is displayed at the web-based application. The web-based software application 

also facilitates direct, simultaneous communication between several people (see Figure 3). Every user has 

access to the current construction site overview and direct text messages can be answered on smartphones 

and smartwatches. All steps taken are automatically recorded in the running log. Potential danger zones can 

 
1 https://magazine.rhomberg-sersa.com/en/articles/excellent-improvements 
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be set up manually through the web-based application so that the system issues automatic messages. For 

example, if an unauthorised person approaches an excavator in operation, the person and the excavator 

driver both receive a warning. This also applies to the loading zones, crossings, assembly points and logistics 

routes; collision warnings are also issued to machines dangerously approaching each other. RTK-GNSS 

provides ground truth data of pedestrian workers and vehicles. 

 

Figure 3 – ‘Owl’ system web-based platform for safety monitoring and coordination [75]. 

4.2 ProactiveSafety 

The ProactiveSafety application receives location tracking data of the construction resources (i.e., 

pedestrian workers and moving heavy equipment) from the Digital Twin Platform and more specifically 

from the IoT Data Pre-processing module; it consists of four modules, namely (i) the data analysis module, 

(ii) the trajectory prediction module, (iii) the hazard zones checking module and (iv) the risk analysis 

module. ProactiveSafety is responsible for the proactive issuing of warnings through the Work Order 

Execution Assistance (WOEA) service; moreover, additional safety hazards (see Figure 14) are 

communicated to the SafeConAI to enhance the safety analysis. The additional safety hazards are identified 

through the close-proximity events analysis performed in the ProactiveSafety application. 

In the second version of the Proactive Real-time Risk Monitoring and Detection application, construction 

semantic information (e.g., construction site layout plans) will be integrated by inferring and extracting 

from the BIM models existing hazard spaces (e.g., excavation pits). The identified hazard spaces will then 

be converted into geospatial elements (e.g., polygons) and ProactiveSafety will perform spatial analysis to 

identify and proactively alert pedestrian construction workers and mobile equipment heading towards 

those hazard zones. Figure 4 illustrates the components of ProactiveSafety and their dependencies to other 

modules and services. In the following sections each module is described in detail (with the exception of the 

risk analysis module that will be reported in the second version of the deliverable). 



 D4.3 Proactive Real-time Risk Monitoring and Detection Methods v1 22 

 

 
  

 
COGITO – GA ID. 958310  

COnstruction phase 

diGItal Twin mOdel 

 
  

 

 

Figure 4 – Component diagram of the ProactiveSafety service as defined in deliverables D2.4 and 
D2.5. 

4.2.1 Data analysis module 

The current structure of the data analysis module is applicable only during the development and 

experimental phases. It should be noted that the development of ProactiveSafety and of the relevant COGITO 

components is ongoing and the integration will be gradual. Also, the experimental version of 

ProactiveSafety does not entirely reflect how the final system will be operation in COGITO. The second 

version of the deliverable will integrate the IoT Data-Preprocessing Module developed within the COGITO 

Deliverable 3.5 which is a technology-agnostic component that “is able to fuse various Real-Time Locating 

System (RTLS) techniques currently available in a unified and consistent manner”. 

Currently, the data analysis module ingests location tracking data that have been generated by the GNSS 

location tracking technology. In some datasets, there exist initial points whose location is severely 

inaccurate. This is likely due to initialisation of the GNSS receivers and the time required to acquire signals 

from satellites in the first run. To overcome this issue in an automated manner, an initial outlier search and 

elimination is performed by calculating the difference of each point’s latitude and longitude coordinates 

with the mean values of coordinates for each dataset. The difference threshold is set to 0.5 degrees which 

is approximately equal to 35 km in longitude and 55 km in latitude. Although railway construction works 

often extend over several kilometres, data points exceeding the aforementioned distance threshold are 

most likely outliers. In order to confirm that the eliminated data points are indeed outliers, we perform a 

check to count the number of the eliminated data points, which vary from zero to two in some datasets. A 

selection of datasets with eliminated data points is presented in Table 2. In Figure 5 the start- and end-times 

of the location tracking for all imported datasets is illustrated providing an overview of the location tracking 

for each construction resource being monitored. 

 

Table 2 – Eliminated data points in datasets as part of the initial data pre-processing within the 
data analysis module. 

Dataset Length_prev Length_new Delta 

D1-WorkerB-20190603 42214 42212 2 

D2-WorkerB-20190603 36096 36094 2 

D3-WorkerC-20190603 39559 39558 1 

D4-WorkerD-20190603 44451 44449 2 
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Figure 5 – Duration of the trajectory datasets to show the activity logging start- and end-times. 

The trajectories corresponding to pedestrian workers and heavy machinery are visualised in 

ProactiveSafety using the OpenStreetMap mapping service under the Open Database License (ODbL) as 

shown in Figure 7. The close proximity analysis is performed by calculating the geodesic distance of each 

data point in the datasets to the data points of other construction resources recorded at the same time (i.e., 

matching timestamp). The calculation of the geodesic distance is performed with GeoPy2 library for Python. 

The analysis is done for a user-defined distance rule that can be changed. For instance, 12 meters would 

represent the visibility circle as defined in ISO 5006:2017 [36]. The result of the analysis depends on the 

error of the raw localisation data. ProactiveSafety visualises the proximity events of user-selected 

construction resources on OpenStreetMap map as described previously (see Figure 8). The algorithm 

iterates over all available datasets and calculates the distances only once to minimize the computational 

expense. For this, the upper diagonal of the square adjacency matrix is used to represent all unique 

trajectory dataset combinations avoiding the redundant calculations. This process is illustrated in Figure 6. 

 

Figure 6 – Upper diagonal in the adjacency matrix of n available trajectory datasets used to iterate 
over all unique dataset combinations avoiding redundant calculations and thus, minimising the 

computational expense. 

 
2 GeoPy (Python) documentation available at https://geopy.readthedocs.io/en/stable/#module-
geopy.distance  

https://geopy.readthedocs.io/en/stable/#module-geopy.distance
https://geopy.readthedocs.io/en/stable/#module-geopy.distance
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The results of the proximity analysis are exported and saved as text files, for further analysis. The current 

version of the algorithm can import the previously saved files without the need of repeating the analysis 

process.  

 

Figure 7 – Visualisation of construction heavy equipment trajectory  
working on a railway construction project. 

 

Figure 8 – Heatmap of close proximity events between two construction heavy machinery objects. 
The relative number of close proximity events in each clustering area is represented in a colour 

scale mapping in the zoom plot on the right, whereas the total number of the identified close 
proximity events in each clustering area is provided in numbers within coloured circles. 

The performed data analysis includes the calculation of speed based on the recorded location tracking data 

and the corresponding timestamps. The calculated speed is compared to the “raw” GNSS recorded speed in 

order to validate the former’s accuracy; the latter can be considered as the ground truth for validation. In 

Figure 9, the “raw” GNSS recorded speed and the calculated speed are depicted. Although the calculated 

speed follows the overall pattern of the GNSS recorded speed, it is shown that it significantly deviates from 

the ground truth. In addition, the deviation illustrated in the following figure, suggests that the internal dual-

frequency GNSS sensor infers the speed without considering the location (i.e., longitude and latitude) and 

time for its calculation, otherwise the two plots would be overlapping. The significant deviation between 

the calculated and recorded speeds signifies the existence of noise in the dataset and highlights the 

importance of performing data filtering prior to the analysis. It is therefore noteworthy that the COGITO IoT 

Data Pre-Processing Module allows for data filtering as described in the corresponding deliverables D3.5 

and D3.6. 
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Figure 9 – Calculated and GNSS recorded speed. 

4.2.2 Trajectory prediction module 

The trajectory prediction module is tasked to perform the short-term trajectory prediction of moving 

construction resources. For this, a long short-term memory (LSTM) model has been developed. Based on 

the review of the state-of-the-art in trajectory prediction in construction, LSTM models are used to enhance 

safety by predicting the trajectories of moving heavy construction equipment and pedestrian workers. Our 

model is trained on 60% of the sample dataset, whereas the test is performed on the remaining 40% of the 

dataset. Figure 10 illustrates the split train and test sets from the input dataset. For the prediction, the 

geographic coordinates (i.e., latitude and longitude) are converted to x, y Cartesian coordinates in meters 

with GeoPy by calculating the geodesic distance of each point to the ones of minimum longitude and 

minimum latitude respectively. 

 

Figure 10 – Test and train dataset split for the LSTM model for short-term trajectory prediction. 
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The current set up of the LSTM model takes as input sequences of 12 steps in the past corresponding to 12 

seconds of location tracking data and predicts 4 steps in the future (i.e., 4 seconds). This is performed for 

every data point in the training set. The concept of the trajectory prediction is depicted in Figure 11. 

 

Figure 11 – Short-term trajectory prediction 

As the model predicts 4 steps in the future at each time-step, namely t, t+1, t+2 and so on, there are data 

points that are predicted up to four times. For each predicted data point, the mean of predicted (x, y) 

coordinates (in meters) is calculated as depicted in Figure 12, where cx,y denotes the (x, y) coordinates in 

meters and n is the number of predictions for each point.  

𝑚𝑥,𝑦 = ∑
𝑐𝑥,𝑦

𝑛
   (1) 

 

Figure 12 – Calculation of the mean (x, y) predicted coordinates of each predicted point. Marked in 
red, are the four predicted (x, y) coordinates in four consecutive time-steps for the same trajectory 

point. 
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Figure 13 – True and predicted trajectories on the test set of the sample dataset. 

 

The overall predicted trajectory is plotted over the true trajectory as illustrated in Figure 13. The dataset 

used to train the model is small and thus, there is large deviation in the predicted trajectory at locations that 

are not traversed in both the test and train set, resulting in poor performance of the model. An example of 

that can be seen in Figure 10 at the top left part of the trajectories, where the path of the test set trajectory 

has not been traversed within the train set trajectory. However, this is not the case at locations that exist in 

both sets. Therefore, the performance of the model is expected to increase significantly with further data 

collection.  

4.2.3 Hazard zones checking 

Hazard zones are inferred dynamically based on the analysis of proximity events. The individual points of 

recorded proximity events are currently visualised on OSM mapping service and will be clustered according 

to user-defined spatial rules into hazard zones in the second version of this application prototype. An 

illustration of the input trajectory data, the short-term trajectory prediction and the identified, through the 

proximity events analysis, hazard zones is depicted in Figure 14. The identified hazard zones will 

supplement the prediction model described in the previous sub-section. 

For future development of the ProactiveSafety tool, the integration with construction semantic information 

(e.g., construction site layout plans) is planned. To this end, existing hazard spaces, e.g., excavation pits, will 

be inferred and extracted from the BIM model and then be converted into geospatial elements (e.g., 

polygons). ProactiveSafety will perform spatial analysis using the geospatial elements to identify and 

proactively alert pedestrian construction workers and mobile equipment heading towards those hazard 

zones. Additional hazard zones will be provided by SafeConAI to further enhance the safety analysis. 

 

 

Figure 14 – Hazard zone identification and trajectory prediction for proactive safety warning. Two 
occasions (1 and 2) where equipment reached into the other rail track which could potentially be 

dangerous. 
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5 Conclusions 

The COGITO Deliverable D4.3 “Proactive Real-time Risk Monitoring and Detection Methods v1” reported on 

the state-of-the-art on research of the existing methods for enhancing safety in construction, focusing 

primarily on two areas that are relevant for COGITO. First, the sensor-based methods for risk monitoring 

and detection and, second, on the trajectory prediction of moving, heavy construction equipment and 

pedestrian workers to enhance safety in complex and dynamic construction environments. 

The Proactive Real-time Risk Monitoring and Detection application, namely ProactiveSafety, enables the 

prediction of potentially hazardous events through the analysis of close proximity events between 

pedestrian workers and heavy construction equipment. Furthermore, ProactiveSafety implements state-of-

the-art machine learning techniques and up-to-date location tracking data and construction semantic 

information queried from the COGITO Digital Twin Platform. Specifically, sample location tracking data have 

been utilized to train a type of artificial recurrent neural networks (RNN) called LSTM network to perform 

short-term proactive monitoring of hazards of pedestrian workers and moving equipment in the dynamic 

construction environment. Future development will focus on the risk analysis module and will integrate 

construction semantic information (e.g., construction site layout plans), and hazard zones checking to 

further enhance the safety analysis. The future developments will be reported in the second version of this 

deliverable. 
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