

COGITO

CONSTRUCTION PHASE DIGITAL TWIN MODEL

cogito-project.eu

COGITO System Architecture v1

s project has received funding from the Europeon Union's rison 2020 research and innovation programme under grant reement No 958310

D2.4 – COGITO System Architecture v1

Dissemination Level:	Public
Deliverable Type:	Report
Lead Partner:	Hypertech
Contributing Partners:	UCL, AU, UEDIN, CERTH, UPM, BOC, QUE, NT
Due date:	31-07-2021
Actual submission date:	31-07-2021

Authors

Name	Beneficiary	Email	
Giannakis, Giorgos	Hypertech	g.giannakis@hypertech.gr	
Valalaki, Katerina	Hypertech	k.valalaki@hypertech.gr	
Vassiliadis, Michalis	Hypertech	m.vassiliadis@hypertech.gr	
Rovas, Dimitrios	UCL	d.rovas@ucl.ac.uk	
Lilis, Georgios	UCL	g.lilis@ucl.ac.uk	
Katsigarakis, Kyriakos	UCL	k.katsigarakis@ucl.ac.uk	
Teizer, Jochen	AU	<u>teizer@eng.au.dk</u>	
Esterle, Lukas	AU	lukas.esterle@eng.au.dk	
Schultz, Carl	AU	cschultz@eng.au.dk	
Chronopoulos, Christos	AU	<u>chrichr@cae.au.dk</u>	
Bosché, Frédéric	UEDIN	<u>f.bosche@ed.ac.uk</u>	
Bueno Esposito, Martín	UEDIN	martin.bueno@ed.ac.uk	
Valero, Enrique	UEDIN	e.valero@ed.ac.uk	
Robertson, Gail	UEDIN	gail.robertson@ed.ac.uk	
Dent, Chris	UEDIN	<u>chris.dent@ed.ac.uk</u>	
Wilson, Amy	UEDIN	Amy.L.Wilson@ed.ac.uk	
Kaheh, Zohreh	UEDIN	zkaheh@exseed.ed.ac.uk	
Tsakiris, Thanos	CERTH	<u>atsakir@iti.gr</u>	
Gounaridou, Apostolia	CERTH	agounaridou@iti.gr	
Karkanis, Vasilios	CERTH	<u>vkarkanis@iti.gr</u>	
Chatzakis, Michael	CERTH	<u>mchatzak@iti.gr</u>	
García-Castro, Raúl	UPM	<u>rgarcia@fi.upm.es</u>	
Fernández Izquierdo, Alba	UPM	albafernandez@fi.upm.es	
Chávez, Serge	UPM	serge.chavez.feria@upm.es	
González-Gerpe, Salvador	UPM	salvador.gonzalez.gerpe@upm.es	
Bernardos, Socorro	UPM	<u>sbernardos@fi.upm.es</u>	
Woitsch, Robert	BOC	robert.woitsch@boc-eu.com	
Falcioni, Damiano	BOC	damiano.falcioni@boc-eu.com	
Andriopoulos, Panos	QUE	panos@que-tech.com	
Zografou, Chara	QUE	c.zografou@que-tech.com	
Varga, Ján	NT	varga@novitechgroup.sk	
Straka, Martin	NT	straka@novitechgroup.sk	
Baňas, Vladislav	NT	banas@novitechgroup.sk	
Fedor, Jozef	NT	fedor@novitechgroup.sk	
Lofaj, Stanislav	NT	<u>lofaj@novitechgroup.sk</u>	

COGITO - GA ID. 958310

Reviewers

Name	Beneficiary	Email
Bueno Esposito, Martín	UEDIN	martin.bueno@ed.ac.uk
Rovas, Dimitrios	UCL	<u>d.rovas@ucl.ac.uk</u>
Lilis, Georgios	UCL	g.lilis@ucl.ac.uk
Katsigarakis, Kyriakos	UCL	k.katsigarakis@ucl.ac.uk

Version History

Version	Editors	Date	Comment	
0.1	All contributing partners		Conceptual Architecture - Revision	
0.2	Hypertech	23.04.2021	Sections 1 and 2 drafting	
0.3	Hypertech	30.04.2021	UCs sequence diagrams drafting	
0.4	All contributing partners	14.05.2021	UCs sequence diagrams review	
0.5	Hypertech	21.05.2021	Section 3 drafting	
0.6	All contributing partners	07.06.2021	2021 Requirements and Interfaces tables	
0.7	Hypertech	30.06.2021	Component Diagrams	
0.8	All contributing partners	20.07.2021	Sections 4, 5 and 6 drafting	
0.9	0.9 UCL, UEDIN		Deliverable internal review	
1.0	Hypertech	31.07.2021	Submission to the EC	

Disclaimer

©COGITO Consortium Partners. All right reserved. COGITO is a HORIZON2020 Project supported by the European Commission under Grant Agreement No. 958310. The document is proprietary of the COGITO consortium members. No copying or distributing, in any form or by any means, is allowed without the prior written agreement of the owner of the property rights. The information in this document is subject to change without notice. Company or product names mentioned in this document may be trademarks or registered trademarks of their respective companies. The information and views set out in this publication are those of the author(s) and do not necessarily reflect the official opinion of the European Communities. Neither the European Union institutions and bodies nor any person acting on their behalf may be held responsible for the use, which may be made, of the information contained therein.

Executive Summary

This deliverable defines the overall COGITO software architecture, including the specification of core components along with their functionalities. It provides information about the first version of the architecture [1], detailing the outcomes of work performed thus far and including:

- 1. **Definition of the Conceptual Architecture**: The Conceptual Architecture constitutes a high-level illustration of the COGITO solution with the various components involved, as have been reviewed and refined in the deliverable "D2.1 Stakeholder requirements for the COGITO system" [2]. It also provides a high-level description of the components with their main functionalities that complements the conceptual architecture design.
- 2. **Use Case Sequence Diagrams**: We developed UML sequence diagrams for each COGITO Use Cases (UCs) to convey high-level information about the relationships among the different components. We gave special attention to identifying and defining the relationships of each component with the Digital Twin Platform the core interoperability component.
- 3. **Component requirements and specifications**: A high-level sketch of dependencies among different parts of the COGITO system (e.g., individual components interfaces, etc.) is delivered, including information about the functional and non-functional requirements, the constraints of the different elements in terms of software and hardware resources, compatibility with standards, etc.
- 4. **The internal design of individual components**: We provide UML component diagrams with information about each COGITO component's sub-components.

This first version of the deliverable provides a solid basis for the further detailed specification and development of individual components. These developments will undoubtedly lead to necessary adaptations to the overall architecture that will be documented in the second version of this deliverable to be delivered on M18 of the project.

Table of contents

Ez	kecutive	Summary
Та	able of c	ontents4
Li	st of Fig	ures6
Li	st of Tal	bles7
Li	st of Acı	conyms
1	Intro	duction
	1.1	Scope and Objectives of the Deliverable
	1.2	Relation to other Tasks and Deliverables11
	1.3	Structure of the Deliverable
2	COGI	TO Conceptual Architecture
	2.1	Multi-Source Data Pre-Processing
	2.2	Digital Twin Platform
	2.3	Adaptive Process Modelling and Workflow Management
	2.4	Quality Control
	2.5	Health and Safety15
	2.6	On-site and Off-Site Data Visualisation
	2.7	Revised Conceptual Architecture and Information Flow
3	COGI	TO Use Cases – Sequence Diagrams
	3.1 schedu	UC-1.1 – Efficient and Detailed project workflow planning using the project's construction le and as-planned BIM model19
	3.2	UC-1.2 – Systematic and secure execution, monitoring and updating of the project workflow $\dots 20$
	3.3 allocati	UC-2.1 – Automated geometric tolerance compliance checking in 3D point cloud data and ion to DT building component
	3.4 AR and	UC-2.2 – (Semi-)Automated detection of construction defects from visual input captured using drones
	3.5	UC-3.1 – BIM-based safety planning and hazard prevention before construction starts
	3.6 sites	UC-3.2 – Monitoring, reporting, and proactive alarming of safety risks on outdoor construction 24
	3.7	UC-3.3 – Safety-augmented Digital Twin is used for construction safety training
	3.8 Quality	UC-4.1 – Remote visualisation of DT model information (Data Acquisition, Workflow, Safety,) using the Digital Command Centre
	3.9	UC-4.2 – On-site visualisation of QC and Safety Planning information using AR/mobile device.27
4	COGI	TO Components – Requirements and Specifications
	4.1	Visual Data Pre-Processing
	4.2	IoT Data Pre-Processing
	4.3	Digital Twin Platform – DT Platform
	44	Work Order Definition and Monitoring – WODM 33

Z	4.5	Work Order Execution Assistance – WOEA	35
L	1.6	Process Modelling and Simulation – PMS	36
Z	1.7	Service-Level Agreement Manager – SLAM	37
Z	4.8	BlockChain Platform – BCSC	38
Z	4.9	Geometric Quality Control – GeometricQC	39
Z	4.10	Visual Quality Control – VisualQC	40
L	1 .11	SafeConAI	41
Z	4.12	ProActiveSafety	42
Z	4.13	VirtualSafety	43
Z	4.14	Digital Command Centre – DCC	43
Z	4.15	Digital Twin visualisation with Augmented Reality – DigiTAR	45
5	Depl	oyment and Data Protection	47
[5.1	Components diagrams	47
	5.1.1	Visual Data Pre-Processing	47
	5.1.2	IoT Data Pre-Processing	47
	5.1.3	Digital Twin Platform	48
	5.1.4	Work Order Definition and Monitoring – WODM	49
	5.1.5	Work Order Execution Assistance – WOEA	49
	5.1.6	Process Modelling and Simulation tool – PMS	50
	5.1.7	Service-Level Agreement Manager – SLAM	50
	5.1.8	BlockChain Platform – BCSC	51
	5.1.9	Geometric Quality Control – GeometricQC	51
	5.1.1	0 Visual Quality Control – VisualQC	52
	5.1.1	1 SafeConAI	53
	5.1.1	2 ProActiveSafety	53
	5.1.1	3 VirtualSafety	54
	5.1.1	4 Digital Command Centre – DCC	54
	5.1.1	5 Digital Twin visualisation with Augmented Reality – DigiTAR	55
[5.2	Data Protection	56
6	Conc	lusions	58
Ref	erence	25	59
Anı	nex A -	- Component Functional, Non-Functional Requirements and Interfaces Template	60

List of Figures

Figure 1 – Methodology for the definition COGITO system architecture - version 1	11
Figure 2 – Dependencies on other tasks of the COGITO work plan	12
Figure 3 – COGITO system architecture [1]	
Figure 4 – Revised Conceptual Architecture: Before Construction Starts	
Figure 5 – Revised Conceptual Architecture: Construction Phase	17
Figure 6 – Sequence diagram of UC-1.1	19
Figure 7 – Sequence diagram of UC-1.2	21
Figure 8 – Sequence diagram of UC-2.1	
Figure 9 – Sequence diagram of UC-2.2	
Figure 10 – Sequence diagram of UC-3.1	
Figure 11 – Sequence diagram of UC-3.2	25
Figure 12 – Sequence diagram of UC-3.3	26
Figure 13 – Sequence diagram of UC-4.1	
Figure 14 – Sequence diagram of UC-4.2	
Figure 15 – Component diagram of the visual data pre-processing tool	47
Figure 16 – Component diagram of the IoT data pre-processing tool	
Figure 17 – Component diagram of the Digital Twin platform	
Figure 18 – Component diagram of the WODM tool	49
Figure 19 – Component diagram of the WOEA tool	
Figure 20 – Component diagram of the PMS tool	50
Figure 21 - Component diagram of the SLA Manager	
Figure 22 – Component diagram of the BCSC tool	
Figure 23 – Component diagram of the GeometricQC tool	
Figure 24 – Component diagram of the VisualQC tool	53
Figure 25 – Component diagram of the SafeConAI tool	
Figure 26 – Component diagram of the ProactiveSafety tool	54
Figure 27 – Component diagram of the VirtualSafety tool	
Figure 28 – Component diagram of the DCC	55
Figure 29 – Component diagram of the DigiTAR tool in (a) QC mode and (b) safety mode	56

List of Tables

Table 1 – Visual Data Pre-Processing: Functional, Non-Functional Requirements and Interfaces
Table 2 – IoT Data Pre-Processing: Functional, Non-Functional Requirements and Interfaces
Table 3 – DT Platform: Functional, Non-Functional Requirements and Interfaces
Table 4 – WODM: Functional, Non-Functional Requirements and Interfaces
Table 5 – WOEA tool: Functional, Non-Functional Requirements and Interfaces
Table 6 – PMS: Functional, Non-Functional Requirements and Interfaces
Table 7 – SLAM: Functional, Non-Functional Requirements and Interfaces
Table 8 – BlockChain Platform: Functional, Non-Functional Requirements and Interfaces
Table 9 – GeometricQC tool: Functional, Non-Functional Requirements and Interfaces
Table 10 – VisualQC tool: Functional, Non-Functional Requirements and Interfaces
Table 11 – SafeConAI: Functional, Non-Functional Requirements and Interfaces
Table 12 – ProActiveSafety: Functional, Non-Functional Requirements and Interfaces
Table 13 – VirtualSafety: Functional, Non-Functional Requirements and Interfaces
Table 14 – DCC: Functional, Non-Functional Requirements and Interfaces
Table 15 – DCC: Functional, Non-Functional Requirements and Interfaces
Table 16 – Technical measures to ensure data protection and privacy throughout the COGITO system57
Table 17 – <component name="">: Functional, Non-Functional Requirements and Interfaces</component>

List of Acronyms

Term	Description		
AI	Artificial Intelligence		
API	Application Programming Interface		
AR	Augmented Reality		
BCSC	BlockChain Smart Contract		
BIM	Building Information Model		
BPMN	Business Process Model and Notation		
COGITO	Construction Phase diGItal Twin mOdel		
DB	DataBase		
DCC	Digital Command Centre		
DigiTAR	Digital Twin visualisation with AR		
DoA	Description of Action		
DT	Digital Twin		
GDPR	General Data Protection Regulation		
H&S	Health and Safety		
HMD	Head Mounted Display		
HSE	Health, Safety and Environment		
HSEM	Health, Safety and Environment Manager		
HSES	Health, Safety and Environment Supervisor		
HSET	Health, Safety and Environment Trainer		
ІоТ	Internet of Things		
КРІ	Key Performance Indicator		
POPD	Protection Of Personal Data		
РМ	Project Manager		
PMS	Process Modelling and Simulation		
QC	Quality Control		
QM	Quality Manager		
QS	Quantity Surveyor		
REST	Representational State Transfer		
SDK	Software Development Kit		
SLAs	Service Level Agreements		
SLAM	Service Level Agreements Manager		
SM	Site Manager		
Т	Task		
UAV	Unmanned Aerial Vehicle		
UC	Use Case		
UDI	User-Driven Innovation		
UI	User Interface		
UML	Unified Modelling Language		
UR	User Requirement		

VR	Virtual Reality	
WODM	Work Order Definition and Monitoring tool	
WOEA	Work Order Execution Assistance tool	
WP	Work package	

1 Introduction

This deliverable reports on the first version of COGITO system architecture, and it constitutes the first outcome of "*T2.4 – COGITO System Architecture Design*". This work delivers the overall COGITO architecture and the specifications of core components along with their functionalities. The COGITO partners followed a specific methodology to design the software architecture that will act as the backbone of all the subsequent developments foreseen in the project.

To deliver the architectural definitions and to materialise the conceptual architecture design, well-known and well-established software engineering tools have been used (e.g. sequence diagrams, deployment views). The Unified Modelling Language (UML) has been used [3], a modelling standard that facilitates the creation of standardised diagrams towards improving communication and increasing project stakeholders' engagement. In general, increased engagement is likely to contribute to:

- improved quality during the design and development of the software;
- reduction of errors; and
- improvement of the end-user acceptance of the solution.

UML dramatically facilitates the design process: diagrams and specifications can be created, studied, reviewed, and modified collaboratively, promoting common understanding. The UML is assumed as the de facto standard for software modelling [3], and, thus, it is adopted in the COGITO architectural design.

The methodology has been based on agile principles with multiple iterations and continuous and interactive communication with the COGITO partners, as illustrated in Figure 1. The process consists of six (6) steps as defined below:

- **Step 1:** Revision of the DoA conceptual architecture updating the COGITO components to align with the most recent work detailed in the D2.1 "Stakeholder requirements for the COGITO system";
- Step 2: Definition of the conceptual data flow and high-level building blocks' dependencies;
- **Step 3:** Creation of UML sequence diagrams of all the Use Cases (UCs) defined in the D2.1;
- **Step 4:** Identification of components requirements in terms of software / hardware, programming language (s), etc. as well as functional & non-functional specifications and internal/external dependencies; a clear definition of interfaces required for their operation (input/output data, format, method, endpoint, and protocol) see Annex A for the template created to support this activity;
- **Step 5**: Creation of UML component diagrams aligned with the components' requirements and interfaces table (step 4) and the UML sequence diagrams (step 3);
- **Step 6**: Finalisation of the conceptual architecture and drafting the current document, including the most recent version of all UML diagrams and the respective components' tables.

Online collaborative tools involving all partners were extensively used to ensure alignment, consistency, and shared understanding among the consortium members. Key meetings where critical decisions were taken regarding the definition of the architecture were:

- The **Work Package (WP) targeted online meetings**, organised with the participation of all involved partners and aimed at defining components requirements aligned with the WPs / Tasks description. Inter-dependencies, as regards the work and time plan were also identified during these telcos;
- Two (2) **technical workshops**, organised with the participation of all partners and aimed at discussing, fine-tuning, and agreeing on the UML sequence diagrams of all the COGITO UCs.

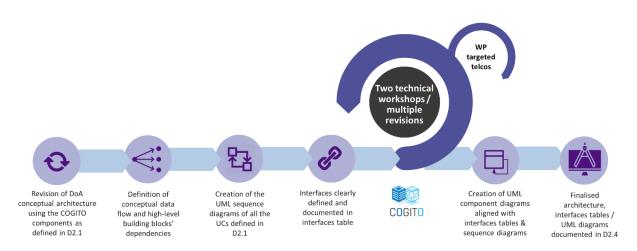


Figure 1 – Methodology for the definition COGITO system architecture - version 1

1.1 Scope and Objectives of the Deliverable

Based on the COGITO DoA, the scope of the current document is to deliver the overall architecture of the COGITO solution and the specifications of the key components along with their functionalities. The objective is to provide an appropriate decomposition of the COGITO solution without detailing the interface specifications, to be elaborated in *"WP3 – COGITO Data Model and Reality Capture Data Tools"*. To this end, critical architectural elements were identified, including components and their relationships, as well as relevant architectural mechanisms to address cross-cutting relationships (i.e., those not localized within a single component but affecting the design and operation of other parts of the architecture). One of the core outcomes of this work is the updated conceptual architecture diagram, presented in this document, that identifies the system components and interconnections (data flows) amongst them.

Aspects pertaining to deployment and the implementation technologies/platforms of the various COGITO tools are also investigated as part of this deliverable. This is to ensure operational capacity in the various environments where the tools will be deployed – from cloud-based ICT tools to Augmented Reality (AR) glasses and construction site Internet of Things (IoT) components. Finally, the mechanisms defined as part of COGITO architecture design that will guarantee data protection and privacy throughout the COGITO system are discussed in alignment with the "D10.2 - POPD - Requirement No. 2" [4] and the "D1.2 - Data Management Plan" [5].

1.2 Relation to other Tasks and Deliverables

This document is the first tangible outcome of the "*T2.4 – COGITO System Architecture Design*", which – based on the DoA – falls under the activities of "*WP2 – Stakeholders Requirements, Evaluation Planning and Architecture Design*". The work performed strongly depends on various tasks and deliverables within the WP2 and beyond as depicted in Figure 2. More specifically:

- Architecture design is primarily based on the work performed in "*T2.1 Elicitation of Stakeholder Requirements*" and its primary outcome i.e., "*D2.1 Analysis of digital tools market and prevailing regulatory frameworks*". More specifically, the COGITO components and their involvement in the various UCs were essential for developing this version of COGITO system architecture.
- Another important input was the work performed within "*T3.1 Survey of Existing Data Models & Ontologies & Associated Standardization Efforts*" and its deliverable "*D3.1 Survey of Existing Models & Ontologies & Associated Standardization Efforts*" [6] including a comprehensive review of the relevant data models, ontologies, and standardisation initiatives.
- "D2.3 COGITO evaluation methodology" (output of "T2.3 Development of an Evaluation Methodology for the Impact of COGITO Tools") provided the methodology for the evaluation of the COGITO solution and tools, from both functional and usability viewpoints supporting the consortium to ensure alignment with the overall solution design;

• From a market viewpoint, "*T2.2 – Analysis of Regulations & Markets for Digitalization in Construction Industry*" provided the analysis of the regulatory and market conditions within which the COGITO digital twin tools will be called upon to make an impact. This supported consortium members to guide architectural decisions, taking into account business opportunities as well.

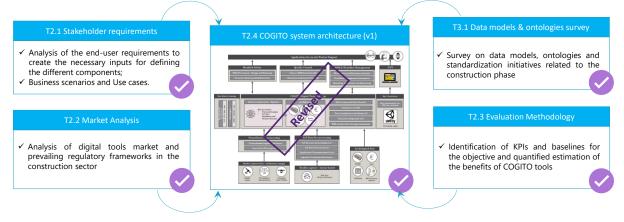


Figure 2 - Dependencies on other tasks of the COGITO work plan

Apart from the abovementioned tasks/deliverables that were valuable inputs for this work, this document (along with its next version) will act as the backbone of all sub-sequent developments foreseen in the project. Thus, D2.4 will guide the activities to be performed in all WPs / Tasks dealing with the design and development of the various COGITO components, namely:

- "WP3 COGITO Data Model and Reality Capture Data Tools";
- "WP4 On-site Workers' Health & Safety Assurance Tools";
- "WP5 Geometric and Visual Quality Control Tools";
- "WP6 Adaptive Workflow Modelling and Workflow Management Automation Tools";
- "WP7 COGITO Digital Twin Platform"; and
- "T8.1 End-to-end ICT System Integration, Testing and Refinement".

1.3 Structure of the Deliverable

The deliverable is structured as follows:

- Section 1 introduces the document;
- Section 2 describes the COGITO conceptual architecture, the updates made as regards the relevant diagram provided in the COGITO DoA and the core building blocks of the solution;
- Section 3 provides the UML sequence diagrams of all COGITO UCs along with a brief description of the interactions that are taking place in each of them;
- Section 4 provides the requirements and specifications of all the components of COGITO architecture following the template in Annex A;
- Section 5 provides the UML component diagrams of all the components of COGITO architecture accompanied by a description of their main sub-elements. In the same section the main technical data protection mechanisms already identified are presented; and
- Finally, Section 6 concludes the document.

2 COGITO Conceptual Architecture

This section provides information about the role of each high-level key component, as appeared in the initial conceptual architecture diagram of the project, introduced in the Description of Action (DoA) [1]. The COGITO system architecture comprises:

- the COGITO Digital Twin (DT) Platform, a data integration middleware that supports the complex requirements of each of the applications;
- the Multi-source Visual and IoT Data Pre-processing components to pre-process raw visual and IoT data respectively;
- the Health & Safety (H&S) components to generate rules for hazard detection based on design & planning, and issue preventive warnings or alerts to construction workers and operating suggestions for equipment operators to mitigate dangerous situations leveraging real-time information from the site;
- the Quality Control components to retrieve as-designed and as-is data from the DT Platform and detect defects and areas out of tolerance using advanced algorithms;
- the Workflow modelling, simulation and management components to monitor and optimise the construction processes in terms of cost and time; and
- applications (apps) for AEC stakeholders, that retrieve metrics and messages populated by the health & safety, Quality Control and workflow management services from the DT Platform to support off-site and on-site crew activities and training.

Common ground of all above is the COGITO data models and ontologies, which organise data elements and standardise their relations, to the extent possible.

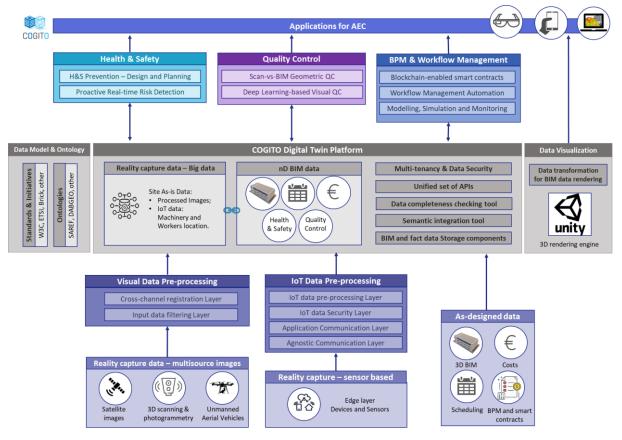


Figure 3 - COGITO system architecture [1]

These component groups, reviewed and refined in the context of "*T2.1 – Elicitation of the Stakeholders requirements*" activities [2], are introduced below.

This section aims to briefly present each component's scope before illustrating the revised conceptual architecture and the information flow among them.

2.1 Multi-Source Data Pre-Processing

The Visual and IoT Data Pre-processing components will be responsible for filtering and processing raw data acquired on-site and serving data requested for real-time resources tracking (personnel and heavy machinery) and objects detection and recognition.

The **Visual Data Pre-processing** component, designed, developed, and delivered in "*T3.5 – Visual Data Pre-processing Module*", will be in charge of smoothing, denoising and enhancing raw data acquired by laser scanners and photogrammetry on the ground or mounted on Unmanned Aerial Vehicles (UAVs).

In "*T3.3 - IoT solution in Construction Phase*" we investigate the sensors and relevant communication protocols capable of capturing construction site as-is data. The survey mentioned above will conclude to the IoT sensor network that will feed the **IoT Data Pre-processing** component, developed in "*T3.4 - IoT Data Pre-Processing Module*". The IoT Data Pre-processing component will filter raw data from IoT devices installed on the construction field and generate datasets stored in the COGITO DT Platform. This component will apply advanced data cleansing techniques, focusing on detecting and removing potential errors and inconsistencies in the raw datasets. A seamless communication with the DT Platform will be achieved using RESTful Application Programming Interfaces (APIs).

2.2 Digital Twin Platform

The Digital Twin platform (**DT Platform**), to be designed and specified in "*T7.1 – Digital Twin Platform Design & Interface Specification*" and developed within "*T7.2 – Extraction, Transformation & Loading Tools and Model Checking*", is a semantically-enabled data integration middleware. The core functionalities to be provided by the DT platform include Master Data Management services, which include operational support for storing, versioning, routing and consistent updating of the data that comprise the virtual representation of the construction site.

The DT Platform will support the COGITO services and applications by providing a central repository for all types of data available before construction (e.g., 3D BIM models, schedules, and resources), during construction (point clouds, images, sensor tracking data and videos), and derived quantities like performance data Visual and Geometric Quality Control results, or even Health and Safety Rules.

The proposed central repository will be supported by an ontology framework that will be capable to capture all data requirements for the digital representation of the COGITO environment, to integrate the data provided by the different COGITO components and to respond efficiently to various data needs of the COGITO services and applications. The COGITO ontology framework will be also aligned with well-known standards such as SAREF¹, which is supported by the European Telecommunications Standards Institute, and W3C Thing Description².

2.3 Adaptive Process Modelling and Workflow Management

For the Adaptive Process Modelling and Workflow Management, five components will be deployed.

1. The Process Modelling and Simulation (**PMS**) tool, developed in "*T6.2 – Adaptive Processes/Workflow Modelling and Simulation-based Optimisation*", will be used in the planning phase (before the actual construction starts) to develop process and workflow models of all interactions between the various tasks, building components and resources that a construction project entails. In the construction phase, the PMS will provide functionalities for (a) simulation and formal verification of the process of the designed construction project to allow the project managers to identify process steps or interactions that are critical for the successful implementation of the project, (b) optimisation opportunities to minimise time and/or cost.

¹ <u>https://saref.etsi.org/</u>

² <u>https://www.w3.org/2019/wot/td</u>

- 2. The Work Order Definition and Monitoring (WODM) tool, developed in "*T6.3 Adaptive Workflow Management and Automation*", will be used to define work order templates, generate work orders and executing/monitoring the defined workflow. Adaptiveness is necessary to account for unexpected effects leading to updates of the work orders and assignments to personnel, such as: weather patterns that may prohibit specific works, equipment availability shortness, etc. The WODM User Interface (UI) will be designed and delivered in the context of "*T6.4 Personalised Onsite Works Support and Relevant Apps Development*".
- 3. The Work Order Execution Assistance (**WOEA**) is an application for on-site workers, that will provide functionalities to assist them in reporting work progress and alert them for hazardous components and areas. This component will be another outcome of T6.4 activities.
- 4. Blockchain-enabled smart contracts will interact with the WODM tool to provide trusted means to verify the completion of construction tasks. To this direction two main components are designed, developed and delivered within "T6.1 Blockchain & Smart Contracts on the Workflow Modelling and Management", the Service Level Agreements Manager (**SLAM**) and the BlockChain-enabled Smart Contracts (**BCSC**) platform.

2.4 Quality Control

For the as-built Quality Control management, within COGITO, two main components are being developed: the Scan-vs-BIM-based Geometric Quality Control (**GeometricQC**) and the Deep Learning-based Visual Quality Control (**VisualQC**) components.

GeometricQC, to be designed, developed, and delivered within "*T5.1 – Scan-vs-BIM Geometric Quality Control*" and "*T5.3 – BIM-based Standard Test Methods for Geometric Quality Control*", aims to automatically control the geometric quality of the executed works against the specified geometric dimensions and tolerances, given the as-built 3D data acquired on-site. The as-built 3D data consist of (dense laser scanned) point clouds acquired on-site. The specified dimensions are obtained from the as-planned 4D BIM data, whereas the specified tolerances are obtained from ISO/CEN standards used by industry (and translated digitally to enable the automated process). The QC results are modelled and semantically linked to the BIM/DT model.

The VisualQC tool will automatically detect common visible defects of constructed/erected concrete components and their severity in colour images (visual spectrum). The QC results are modelled and semantically linked to the BIM/DT data models. The VisualQC will result from "*T5.2 – Deep Learning Image Processing for Visual Quality Control*".

2.5 Health and Safety

Health and safety measures can be taken during the design and planning phase to prevent accidents on the construction site. In this direction, within COGITO, the **SafeConAI** component is being developed in "*T4.1 – Health & Safety Prevention through Design and Planning*". SafeConAI aims to process the as planned 4D BIM data of a construction project and based on a health and safety rule checking prototype, propose mitigation measures, enhancing the 4D BIM data with relevant information.

ProActiveSafety will be the solution to accidents prevention in the construction phase. This component, main outcome of "*T4.2 – Proactive Real-time Risk Monitoring and Detection*" and "*T4.3 – Tools for Personalized Alerts, Prediction and Feedback*" will utilise behavioural data of resources (equipment and personnel) on the construction site to avoid close-calls, accidents, and collateral damage. The location data, acquired by the IoT Data Pre-processing component will be utilised to analyse and predict trajectories of resources with a focus on four primary areas that reflect detection, avoidance, tracking, prediction, and learning. Estimated paths will be cross-checked with potential hazards based on previous experiences/observations, rules, and the probability of hazards given the dynamic nature of the work environment. Functionalities for performing timely data processing using cloud-based artificial intelligence, and issuing preventive warnings or alerts to construction workers will be supported by this component.

2.6 On-site and Off-Site Data Visualisation

The Digital Command Centre (**DCC**) will be the off-site data visualisation solution, that will help the Project Manager to monitor through visualisation the construction progress, detected QC defects and H&S issues. It will be used to visualise, navigate and walkthrough the 3D BIM model, focusing on the geometric data, construction resources data and other data and annotations generated by the QC, H&S and Workflow tools (available through the DT platform). The DCC will be the main output of "*T7.3 – Data Transformation for 3D BIM Rendering*" and "*T7.4 – 3D Mesh Data Quality and Consistency Checker and 3D Data Transformation Testing*".

The Digital Twin visualisation with Augmented Reality (**DigiTAR**) tool, a software package for commercial AR head mounted displays, prototyped, developed and delivered in "*T5.4 – User Interface for Construction Quality Control*", will provide on-site visualisation of useful information such as geometric and visual quality control results (defects) as well as safety hazards using AR/mobile device.

Apart from the on-site and off-site data visualisation solutions mentioned above and intended to be used in the construction phase, **VirtualSafety** is another application planned for Health and Safety educational and training purposes. It will be developed within "*T4.4 – Personalised Safety Education and Learning*".

2.7 Revised Conceptual Architecture and Information Flow

Having concluded a list of fifteen COGITO main components, introduced above, the conceptual COGITO system architecture of Figure 3 has been reviewed and refined to illustrate the high-level interactions and information flow among these components. To reflect the information flow on the system architecture and improve its readability, we decided to split the overall solution into two diagrams. The first diagram depicts the revised conceptual architecture that involves all COGITO components that are used in the planning phase, before the actual construction works start (see Figure 4). In contrast, the second diagram represents the information flow between the COGITO components that are applied in the construction phase (see Figure 5). In both Figures, information about the partner leading each component development is provided.

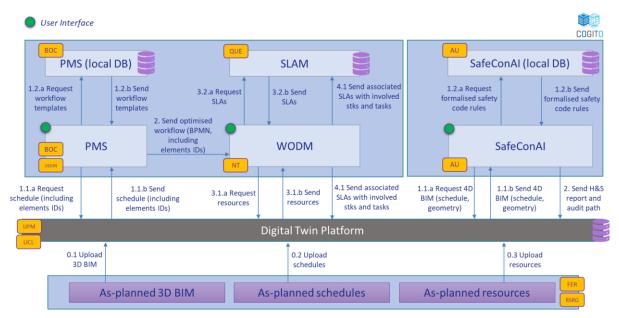


Figure 4 - Revised Conceptual Architecture: Before Construction Starts

As can be seen in Figure 4, before the construction works of a project start, the as-planned data of the project are uploaded to the DT platform. As-planned data includes the 3D BIM model, scheduling data that could be the fourth dimension of the BIM model, and the resources (workers and their roles and heavy machinery). Then, the information flows as follows:

1. The PMS tool requests and receives a subset of the 4D BIM data (as-planned schedule including construction elements IDs) from the DT Platform. Using process and workflow templates, that have

been designed and store in its local Database (DB), it generates an optimised business process and workflow model that is sent to the WODM tool. In parallel, SafeConAI requests and receives (a) the 4D BIM data from the DT Platform, and (b) formalised safety code rules from its local DB, to enhance the 4D BIM data with health and safety information. The enhanced 4D BIM model is forwarded to the DT Platform.

2. The WODM tool requests and receives (a) the as-planned resources data from the DT Platform and (b) the SLAs templates from SLAM, and after the user input to define the work orders and their assignments to personnel, it sends the associated SLAs along with involved personnel and tasks back to SLAM (this information might also be sent to the DT Platform).

In the construction phase (see Figure 5), groups of components are collaborating to provide support for the Worflow, QC and H&S management.

- 1. The IoT and Visual Data Pre-processing component feed the DT Platform with the as-built data acquired on-site.
- 2. With regards to the workflow management, the WODM tool sends notifications to workers about tasks that have been assigned to them through the WOEA application. This application is also used by the workers to report their tasks progress back to WODM. The PMS tool requests and received resources tracking data from the DT platform, combines it with the reported tasks progress data, runs scenarios simulation and optimisation, resulting to updates of the process and workflow model. The updated model is received by WODM, which in turn sends that tasks progress and the updated work orders (workflow) to the DT Platform.
- 3. Concerning the prevention of the construction on-site accidents, ProactiveSafety receives the resources tracking data from the DT platform and processes it in combination with the 4D BIM model enhanced with health and safety information, to generate alarms for H&S risks that are sent as notifications to WOEA. Further information is populated by ProactiveSafety to update the H&S parameters and rules of the SafeConAI's local DB.
- 4. For the Quality Control checking, the GeometricQC tool requests and receives the 4D BIM model and point cloud data from the DT platform to produce the geometric QC results that are forwarded to the DT Platform. In a similar manner, the VisualQC tool requests and receives the 4D BIM model and visual (imagery) data from the DT platform to produce the visual QC results that are forwarded to the DT Platform.
- 5. DCC, DigiTAR and VirtualSafety are mainly used for visualisation purposes, as described in Section 2.6.

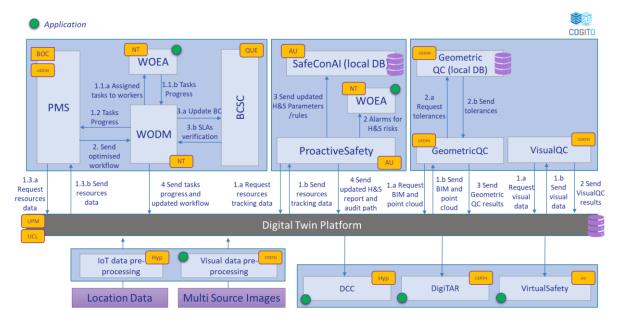


Figure 5 - Revised Conceptual Architecture: Construction Phase

As mentioned earlier, each of the steps entails significant complexity that a high-level conceptual architecture cannot capture. In the following sections, delving deeper into the sequence diagrams of the UCs, the components requirements, specifications, and diagrams (including all sub-components), these steps should become more evident.

3 COGITO Use Cases – Sequence Diagrams

In this section, high-level information about the relationships among the different components, required for the realisation of the COGITO UCs, is provided in the form of UML sequence diagrams. Although a detailed description of all the UCs can be found in the D2.1, a concise summary is provided in each of the following sections for clarity and consistency purposes.

3.1 UC-1.1 – Efficient and Detailed project workflow planning using the project's construction schedule and as-planned BIM model

In this UC, a detailed construction project workflow is derived from the as-planned 4D BIM model using a data-driven approach. In particular, as shown in Figure 6, the UC is initiated by its stakeholder (actor).

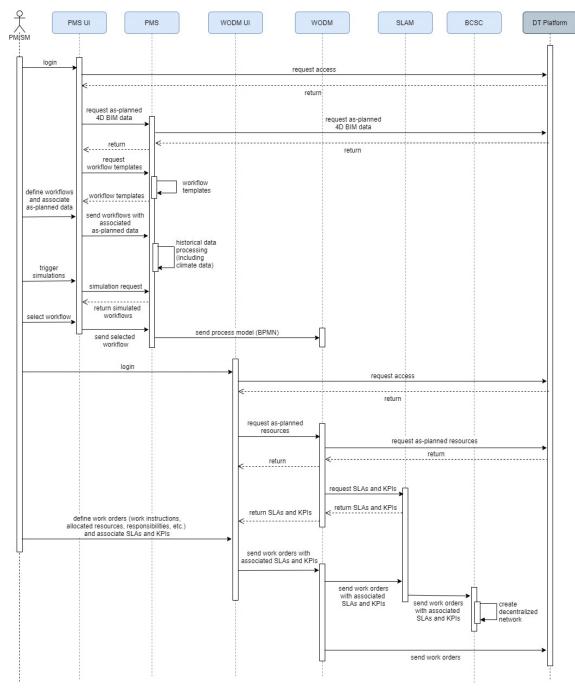


Figure 6 – Sequence diagram of UC-1.1

After the login is processed (credentials provided centrally by the DT platform), the simulation part of the UC to extract the BMPN file is followed. In order to guarantee the execution of this part, the following steps/communications between components should take place:

- 1. PMS requests and receives from the DT platform the as-planned 4D BIM model of the project;
- 2. Pre-defined workflow templates are loaded and visualised in the PMS UI;
- 3. The actor (PM/SM) defines the workflows that are required for the specific project and associates them with the already received as-planned data;
- 4. The PMS start the processing of productivity / climate / etc. historical data (already available in a local database);
- 5. The actor (PM/SM) triggers the simulation initiation;
- 6. The PMS runs the simulations and visualise the simulated workflows for the project;
- 7. The actor (PM/SM) selects the simulated workflows that s/he prefers;
- 8. The PMS creates the BMPN file that is sent to the WODM for further processing.

Having the simulation part finalised, the workflow process for defining the relevant work orders can be initiated. The workflow is secured using blockchain technology. For this to be executed, the following steps/communications between components should take place (Figure 6):

- 1. The actor (PM/SM) logs in the WODM UI (the credentials are provided centrally by the DT platform);
- 2. WODM requests and receives the as-planned resources of the project from the DT platform;
- 3. WODM requests and receives relevant SLAs and KPIs from the SLAM;
- 4. As planned resources along with SLAs and KPIs are visualised in the WODM UI;
- 5. The actor (PM/SM) defines the work orders and associates them with SLAs and KPIs;
- 6. WODM sends the work orders with associated SLAs and KPIs to the SLAM;
- 7. SLAM sends the work orders with associated SLAs and KPIs to the BC-SC;
- 8. BC-SC creates a decentralised network for enabling blockchain realisation;
- 9. WODM sends the work orders to the DT platform where they are centrally stored.

3.2 UC-1.2 – Systematic and secure execution, monitoring and updating of the project workflow

In this UC, it is assessed whether the project is executed according to the planned workflow (see UC-1.1) and is continuously monitored, keeping the workflow updated. As shown in Figure 7, for this to be executed, the following steps / communications between components should take place:

- 1. The actor (Worker/Foreman/QS/Surveyor/HSE) logs in the WOEA (the credentials are provided centrally by the DT platform);
- 2. The actor (Worker/Foreman/QS/Surveyor/HSE) requests through WOEA the assigned tasks that s/he wants to be displayed;
- 3. WOEA requests and receives from the WODM the assigned tasks and displays them;
- 4. The actor (Worker/Foreman/QS/Surveyor/HSE) reports through WOEA the progress made on the assigned tasks;
- 5. WOEA sends the tasks' progress to WODM;
- 6. WODM send the tasks' progress to PMS;
- 7. PMS requests and receives from the DT platform the (a) location tracking data of the involved resources, (b) quality control and (c) health and safety issues relevant to the ongoing tasks;
- 8. PMS estimates the progress already made and runs an optimisation for optimal workflow management;
- 9. PMS extracts an updated optimised BPMN that is sent to WODM;
- 10. WODM updates the relevant progress-related KPIs and sends them to BC-SC;
- 11. BC-SC assesses the performance of the relevant SLAs and sends this information back to WODM.

Having the simulation part finalised and the updated KPIs and SLAs performance, the workflow process for updating the relevant work orders can be re-initiated. The following steps / communications between components should take place in order to achieve this task (Figure 7):

 $\langle 0 \rangle_{\rm c}$

- 1. The actor (PM/SM/QM) logs in the WODM UI (the credentials are provided centrally by the DT platform);
- 2. The actor (PM/SM) updates the work orders and re-associates them with SLAs and KPIs;
- 3. WODM sends the updated work orders with associated SLAs and KPIs to the BC-SC;
- 4. BC-SC assesses the performance of the relevant SLAs and sends this information back to WODM;
- 5. WODM sends updated work orders and task progress to the DT platform for being centrally stored.

Each time an actor (SM/PM/QM) wants to visualise performance and work progress data:

- 1. The actor (SM/PM/QM) makes a request to WODM UI;
- 2. WODM visualises this information.

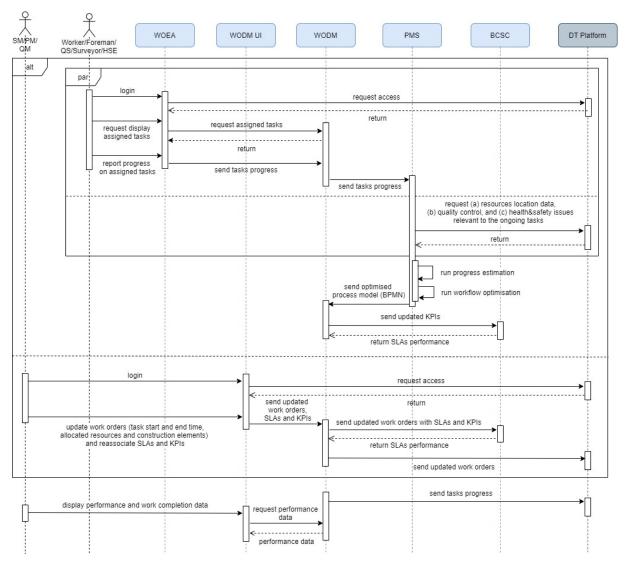


Figure 7 – Sequence diagram of UC-1.2

3.3 UC-2.1 – Automated geometric tolerance compliance checking in 3D point cloud data and allocation to DT building component

In this UC, accurate geometric data are acquired, and the geometric tolerance specifications are checked automatically by matching that data to the BIM model and apply standard tolerance control methods. As shown in Figure 8, for this to be executed, the following steps/communications between components should take place:

1. The actor (Surveyor) performs a 3D scanning of the site of interest to acquire a 3D point cloud;

- 2. The actor (Surveyor) logs in the Visual Data Pre-processing UI (the credentials are provided centrally by the DT platform);
- 3. The actor (Surveyor) starts the visual data collection job (incl. capture/send on-site visual data, provide information about camera orientation/location);
- 4. The Visual Data Pre-processing requests and receives from the DT platform the building components and the relevant tasks that are visualised in its UI;
- 5. The actor (Surveyor) attributes components/tasks to the 3D point cloud data;
- 6. The Visual Data Pre-processing processes the 3D point cloud data linked with components/tasks;
- 7. The processed 3D point cloud data along with its metadata are sent and centrally stored in the DT platform;
- 8. The processed 3D point cloud data along with its metadata are sent to the GeometricQC;
- 9. The GeometricQC performs the geometric QC check;
- 10. The QC results and relevant metadata are sent and centrally stored in the DT platform.

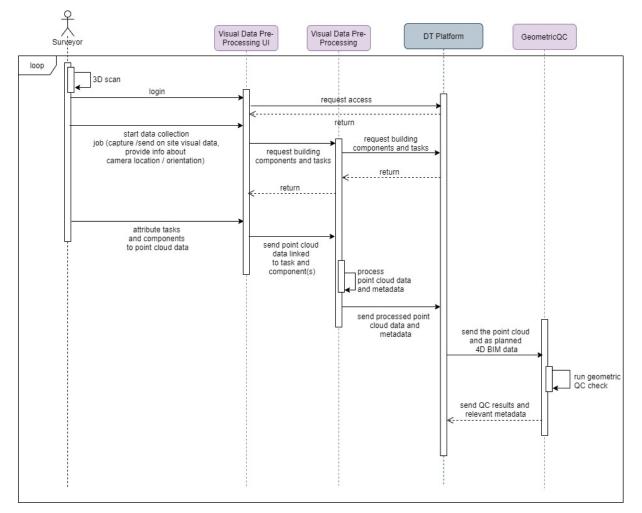


Figure 8 - Sequence diagram of UC-2.1

3.4 UC-2.2 – (Semi-)Automated detection of construction defects from visual input captured using AR and drones

In this UC, visual data from the site are captured and regions of risk in infrastructure (i.e. concrete defects, cracks, material displacements) are detected while their severity is estimated.

Figure 9 – Sequence diagram of UC-2.2

As shown in Figure 9, for this to be executed, the following steps / communications between components should take place:

- 1. The actor (Surveyor) logs in the Visual Data Pre-processing UI (the credentials are provided centrally by the DT platform);
- 2. The actor (Surveyor) starts the visual data collection job (incl. capture/send on site visual data, provide information about camera orientation / location);
- 3. The Visual Data Pre-processing requests and receives from the DT platform the building components and the relevant tasks that are visualised in its UI;
- 4. The actor (Surveyor) attributes components / tasks to the visual data;
- 5. The visual data linked with components / tasks are processed by the Visual Data Pre-processing;
- 6. The processed multi-source visual data along with its metadata are sent and centrally stored in the DT platform;
- 7. DT platform sends a notification to the VisualQC that new visual data are available;
- 8. VisualQC requests and receives from the DT platform the new visual data along with its metadata;
- 9. VisualQC processes the new visual data and detects defects;
- 10. VisualQC sends defects with relevant metadata to DT platform to be centrally stored;
- 11. DT platform sends defects with relevant metadata to Visual Data Pre-Processing, which are visualised in the Visual Data Pre-Processing UI;
- 12. The actor (Surveyor) confirms defects detected through the Visual Data Pre-Processing UI;
- 13. Visual Data Pre-Processing sends confirmed defects and relevant metadata to the DT platform to be centrally stored.

3.5 UC-3.1 – BIM-based safety planning and hazard prevention before construction starts

In this UC, the regions of the construction site where specific hazards exist are identified and mitigation measures are proposed and linked to the BIM model. As shown in Figure 10, for this to be executed, the following steps/communications between components should take place:

- 1. The actor (HSE Manager/HSE Supervisor) logs in the SafeConAI UI (the credentials are provided centrally by the DT platform);
- 2. The actor (HSE Manager/HSE Supervisor) selects the safety code rules to be applied;
- 3. SafeConAI requests and receives from the DT platform the as-panned 4D BIM;
- 4. SafeConAI analyses the 4D BIM as opposed to the selected safety code rules and produces a 4D BIM model enhanced with safety information;
- 5. The 4D BIM model enhanced with safety information is sent and stored centrally in the DT platform;
- 6. 4D BIM model enhanced with safety information is visualised in the SafeConAI UI.

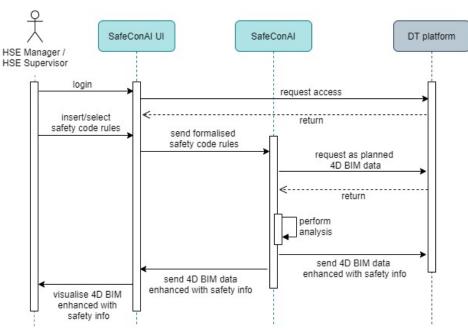
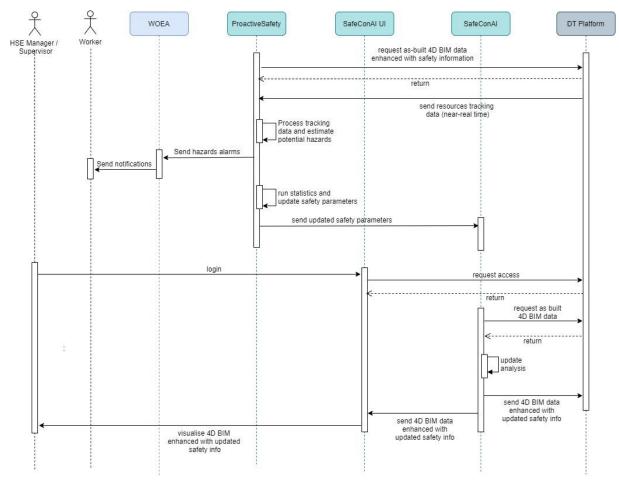


Figure 10 - Sequence diagram of UC-3.1

3.6 UC-3.2 – Monitoring, reporting, and proactive alarming of safety risks on outdoor construction sites

In this UC, location data of resources (equipment and personnel) on the construction site are monitored to avoid collision close-calls and accidents, and collateral damage. As shown in Figure 11, for this to be executed, the following steps/communications between components should take place:


- 1. ProactiveSafety request and receives from the DT platform the as-built 4D BIM model enhanced with safety information;
- 2. DT platform is continuously feeding ProactiveSafety with the real-time IoT location tracking data of the involved resources;
- 3. ProactiveSafety analyses location tracking data against the 4D BIM model enhanced with safety information and estimates potential hazards;
- 4. ProactiveSafety sends hazards' alarms to WOEA;
- 5. WOEA notifies the concerned actor (worker) about these alarms;
- 6. ProactiveSafety runs statistical models and updates the safety parameters which are then sent to the SafeConAI;

Once the safety parameters are updated, part of the sequence of UC3.1 is executed again towards updating the 4D BIM model enhanced with safety information. In particular:

- 1. The actor (HSE Manager/HSE Supervisor) logs in the SafeConAI UI (the credentials are provided centrally by the DT platform);
- 2. SafeConAI requests and receives the as-built 4D BIM from the DT platform;
- 3. SafeConAI analyses the as-built 4D BIM and the updated safety parameters and produces an updated 4D BIM model enhanced with safety information;
- 4. The updated 4D BIM model enhanced with safety information is sent and stored centrally in the DT platform;
- 5. The updated 4D BIM model enhanced with safety information is visualised in the SafeConAI UI.

3.7 UC-3.3 – Safety-augmented Digital Twin is used for construction safety training

In this UC, personalised construction safety education and training is provided. As shown in Figure 12, for this to be executed, the following steps / communications between components should take place:

- 1. The actor (HSE Trainer) introduces the training platform to another actor (worker);
- 2. The actor (Worker) logs in the VirtualSafety (the credentials are provided centrally by the DT platform);
- 3. VirtualSafety requests and receives from the DT platform information about the construction site and the relevant hazard types;
- 4. The actor (HSE Trainer) selects a training scenario;
- 5. VirtualSafety generates a game including questionnaires;
- 6. The actor (Worker) fills in a pre-game questionnaire and starts the training experience;

- 7. VirtualSafety collects and analyses the data from the training experience and creates personalised feedback for this specific actor;
- 8. The actor (Worker) fills in a post-game questionnaire;
- 9. VirtualSafety collects and analyses the data from the post-game questionnaire and creates personalised feedback that is visualised to the actor (worker);
- 10. The overall training feedback is sent and centrally stored in the DT platform;
- 11. Performance data from the training are visualised to the actor (HSE trainer).

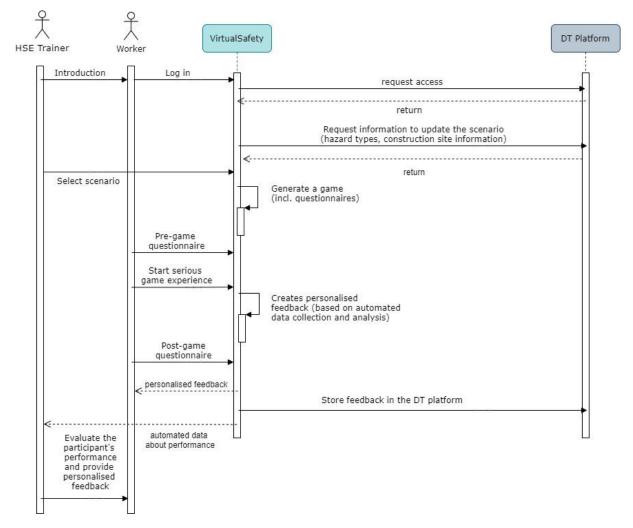
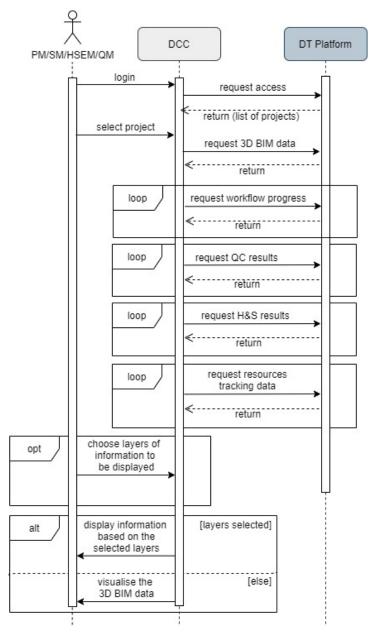
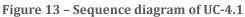


Figure 12 - Sequence diagram of UC-3.3

3.8 UC-4.1 – Remote visualisation of DT model information (Data Acquisition, Workflow, Safety, Quality) using the Digital Command Centre


In this UC, the 3D BIM model, IoT data and annotations generated by the QC, HSE and Workflow tools are rendered and visualised in different layers to the concerned actors. As shown in Figure 13, for this to be executed, the following steps/communications between components should take place:


- The actor (PM/SM/HSEM/QM) logs in the DCC (the credentials are provided centrally by the DT platform);
- 2. DT platform offers a list of available projects;
- 3. The actor (PM/SM/HSEM/QM) selects the project of interest;
- 4. DCC requests and receives from the DT platform:
 - the 3D BIM data;
 - the workflow progress;

- the QC results;
- the H&S results;
- resources' tracking data;
- 5. DCC visualises the 3D BIM;
- 6. Once the actor (PM/SM/HSEM/QM) selects the layers of information to be displayed, the relevant information is also displayed based on this selection.

3.9 UC-4.2 – On-site visualisation of QC and Safety Planning information using AR/mobile device

In this UC, during the construction phase, the QC/safety information is displayed in an AR/mobile device to help effectively define the required remedy activities/mitigation measures. As shown in Figure 14, for this to be executed, the following steps / communications between components should take place:

- 1. The actor (PM/SM/HSEM/QM) logs in the DigiTAR (the credentials are provided centrally by the DT platform);
- 2. DT platform provides a list of available projects;

3. The actor (PM/SM/HSEM/QM) selects the project of interest and the mode of operation;

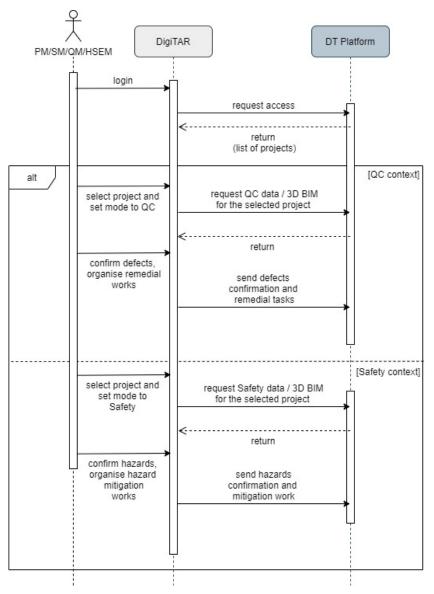


Figure 14 – Sequence diagram of UC-4.2

If **QC mode** is selected:

- 4a. DigiTAR requests and receives from the DT platform the 3D BIM model and the QC data for the selected project;
- 5a. The actor (PM/SM/QM) confirms the defects identified and organise remedial works in the DigiTAR;
- 6a. The DigiTAR sends the defects' confirmation and the remedial works to the DT platform to be centrally stored.

If **Safety mode** is selected:

- 4b. DigiTAR requests and receives from the DT platform the 3D BIM model and the safety data for the selected project;
- 5b. The actor (PM/SM/HSEM) confirms the hazards identified and organise hazard mitigation works in the DigiTAR;
- 6b. The DigiTAR sends the hazards' confirmation, and the mitigation works to the DT platform to be centrally stored.

4 COGITO Components – Requirements and Specifications

A high-level representation of data exchange requirements among the COGITO components per use case has been introduced in Section 3. In this section, all these requirements are consolidated in input and output requirements per COGITO component, using a "Functional, Non-Functional Requirements and Interfaces" table template. Initially, the template aims to collect information about the hardware and software requirements of each component, the programming language(s), and the status of its development. Furthermore, it provides a draft version of each component's functional and non-functional requirements. In the second version of the COGITO system architecture, these requirements will be analysed in conjunction with the stakeholder requirements that have been reported in D2.1 to come up with a set of stakeholder requirements are confirmed. Finally, in the table template, inputs and outputs of each component are listed, providing details about the format, method, endpoint and protocol for each data type and interface.

4.1 Visual Data Pre-Processing

Table 1 presents the functional, non-functional requirements and the interfaces of the Visual Data Pre-Processing tool with other components of COGITO. It is a tool that is being developed from scratch, deployed on a Physical or Virtual Machine Linux server, and programmed utilising the Node.js, Angular, JavaScript, Python and C++ programming languages. Concerning the functional requirements of the tool, it must provide methods for storing and filtering raw data by smoothing, denoising and enhancing raw videogrammetry data. These data can be acquired using laser scanners and photogrammetry, from ground positions, mounted on Unmanned Aerial Vehicles (UAVs) or captured from satellites (Visual Data Acquisition tools). Another functional requirement of the tool is to register the processed data to structural and geometric data (building components). The sequence diagrams of UC-2.1 and UC-2.2, presented in Sections 3.3 and 3.4, respectively, reveal that the Visual Data Pre-processing tool interacts only with the DT Platform and the Visual Data Acquisition tools. User credentials and authorisation, building components data and work orders are received from the DT platform, while processed visual data and point cloud data constitute the outputs of the tool.

General Information				
Programming Language(s)		Node.js, Angular, JavaScript, Python, C++		
Hardware Requi	irements	Physical or VM Server (Linux)		
Software Requir	ements	Web Server (Apache), Browser (Chrome, Firefox, Edge)		
Development Sta	atus	Developed from scratch		
		Functional and Non-Functional Requirements		
	Req-1.1	Stores the raw data in a local database		
Functional	Req-1.2	Filters the raw data input (Smoothing, de-noising, enhancing)		
Functional	Req-1.3	Registers the visual inputs to location, direction, and time series data		
	Req-1.4	Sends Images and associated data to DT platform		
	Req-2.1	Web based App		
	Req-2.2	Offers efficiently structured database to store and retrieve data		
Non-	Req-2.3	Reliability		
Functional	Req-2.4	Scalability		
Functional	Req-2.5	Performance		
	Req-2.6	Security		
	Req-2.7	Data Integrity		
		Component Dependencies		
Internal	Dep-1.1	Visual Data Acquisition Tools		
Dependencies	Dep-1.2	DT Platform		
External	External Dep-2.1 Image Processing libraries			
Dependencies				
Interfaces				

Table 1 - Visual Data Pre-Processing: Functional, Non-Functional Requirements and Interfaces

	Immut 1	Dessived from	Formet	TDD
	Input-1	Received from:	Format	TBD
		Data Acquisition Tools (raw	Method	TBD
		data)	Endpoint	TBD
			Protocol	TBD
	Input-2	Received from:	Format	JSON
		DT Platform (user credentials	Method	GET/POST
		and authorisation)	Endpoint	REST API
Input Data			Protocol	HTTPS
	Input-3	Received from:	Format	IFC
		DT Platform (building	Method	GET/POST
		components)	Endpoint	REST API
			Protocol	HTTPS
	Input-4	Received from:	Format	JSON
		DT Platform (work	Method	GET/POST
		orders/tasks reported by	Endpoint	REST API
		WODM)	Protocol	HTTPS
	Output-	Sent to:	Format	Image file data & JSON
	1	DT Platform (processed visual	Method	GET/POST
Output Data		data & metadata)	Endpoint	REST API
			Protocol	HTTPS
	Output-	Sent to:	Format	E57, PLY, MTL & JSON
	2	DT Platform (processed point	Method	GET/POST
		cloud data & metadata)	Endpoint	REST API
			Protocol	HTTPS

4.2 IoT Data Pre-Processing

The IoT Dara Pre-Processing tool (see Table 2) will gather raw IoT data that are coming from sensorial devices installed or worn on the construction site and generate datasets that can be directly stored in the COGITO Digital Twin platform. Currently, resources tracking (location) data have been requested as IoT data input to other COGITO components.

Table 2 - IoT Data Pre-Processing: Functional, Non-Fu	unctional Requirements and Interfaces
---	---------------------------------------

General Information				
Programming L	Programming Language(s) Java			
Hardware Requirements IoT equipment; Physical or VM server (Linux)			x)	
Software Requirements Apache Tomcat, Spark, Kafka, PostgreSQL				
Development Status Developed from scratch				
Functional and Non-Functional Requirements				
	Req-1.1	Data management (Cleansing, G	rouping, etc	.)
Functional	Req-1.2	Backup		
	Req-1.3	Role based authorisation and encryption, pseudo-anonymisation		
	Req-2.1	Interoperability		
Non-	Req-2.2	Security		
Functional	Req-2.3	Performance		
Req-2.4 Scalability				
Component Dependencies				
Internal	Dep-1.1	IoT Solution		
Dependencies	Dep-1.2	DT Platform		
External	Dep-2.1	Apache Tomcat, Spark (libraries)		
Dependencies				
		Interfaces		
Input Data	Input-1	Received from: IoT Solution	Format	TBD
		(raw IoT data)	Method	TBD

			Endpoint	TBD
			Protocol	TBD
	Output-1	Sent to: DT Platform	Format	JSON
Output Data		(Resources tracking (location)	Method	GET/POST
Output Data		data)	Endpoint	REST APIs
			Protocol	HTTPS

4.3 Digital Twin Platform – DT Platform

The Service-Oriented Architecture (SOA) design pattern will be used in the design of the DT platform in *"T7.1 - Digital Twin Platform Design & Interface Specification."* We envisage a layered structure of the DT platform with five layers:

- 1 Based on the Keycloak identity provider, the authentication layer handles user access requests based on specific rules and user profiles.
- 2 The application layer provides the routing and the endpoints for the synchronous and asynchronous communication between the DT platform and the various COGITO components. The application layer is based on the use of the W3C Web of Things standard that allows a seamless discovery and retrieval of information and resources form the DT platform. The DT platform is deployed on the cloud and implemented in Java EE utilising Apache Karaf, Apache Camel and the Spring Framework Ecosystem.
- 3 The data ingestion layer provides services to load and semantically link new datasets into the platform. This component is deployed on the cloud and implemented in Java EE utilising Apache Jena and the Spring Framework Ecosystem.
- 4 The data persistence layer provides a shared storage data repository including graph and timeseries databases deployed on a cloud infrastructure and implemented in Java EE unitizing Apache Fuseki, InfluxDB and the Spring Framework Ecosystem.
- 5 The data modelling and integration layer supports ingestion and use of openBIM data, and provides version control capabilities, enrichment and model-checking services. This component is partly developed but will be extended to support the project's needs and integrated with the other DT components. This component is deployed on the cloud and implemented in Java EE and C++.

General Information					
Programming La	gramming Language(s) Java EE, C++, JavaScript				
Hardware Requirements Cloud Infrastructure					
Software Requirements Docker, Kubernetes					
Development Status Partially developed					
Function and Non-Functional Requirements					
	Req-1.1	Authenticate users and applicat	tions		
	Req-1.2	Data upload 4D(3D BIM+sched	ules) IoT st	ream (tracking, video, images,	
Functional		point-clouds)			
	Req-1.3	ETL operations			
	Req-1.4	Semantic linkage			
	Req-2.1	Scalability			
Non-	Req-2.2	Responsiveness			
Functional	Req-2.3	Security			
	Req-2.4	High availability			
Component Dependencies					
Dep-2.1 JBoss Fuse					
External	Dep-2.2	Apache Karaf, Apache Camel, Apache Fuseki			
Dependencies	Dep-2.3	Spring Framework, Spring Boot	Spring Framework, Spring Boot, InfluxDB, Keycloak		
	Interfaces				
Input Data	Input-1	Received from:	Format	Image file data & JSON	

Table 3 – DT Platform: Functional, Non-Functional Requirements and Interfaces

		Visual Data Pre-processing	Method	GET/POST
		(processed visual data &	Endpoint	REST API
		metadata)	-	HTTP
	Innut 2	· · · · · · · · · · · · · · · · · · ·	Protocol	
	Input-2	Received from:	Format	E57, PLY, MTL & JSON
		Visual Data Pre-processing	Method	GET/POST
		(processed point cloud data &	Endpoint	REST API
		metadata)	Protocol	HTTP
	Input-3	Received from:	Format	JSON
		IoT Data Pre-Processing	Method	GET/POST
		(Resources tracking location	Endpoint	REST APIs
		data)	Protocol	HTTPS
	Input-4	Received from:	Format	JSON
		WODM (work orders and	Method	GET/POST
		metadata)	Endpoint	REST API
		,	Protocol	HTTPS
	Input-5	Received from:	Format	JSON
	input o	WODM (tasks' progress and	Method	GET/POST
		metadata)	Endpoint	REST API
		mountait	Protocol	HTTPS
	Input (Received from:		ISON
	Input-6		Format Mothod	·
		GeometricQC (QC results and	Method	GET/POST
		relevant metadata)	Endpoint	REST API
			Protocol	HTTPS
	Input-7	Received from:	Format	JSON
		VisualQC (Defects and	Method	GET/POST
		metadata)	Endpoint	REST API
			Protocol	HTTPS
	Input-8	Received from:	Format	IFC/XML/JSON/PLY
		SafeConAI (4D BIM data	Method	GET/POST
		enhanced with safety	Endpoint	REST API
		information)	Protocol	HTTPS
	Input-9	Received from:	Format	PLY/JSON/XML
		VirtualSafety (Training	Method	POST/GET
		feedback)	Endpoint	REST API
			Protocol	HTTPS
	Input-10	Received from:	Format	JSON
	inpac 10	DigiTAR (Defect confirmation	Method	GET/POST
		& remedial works)	Endpoint	REST API
			Protocol	HTTPS
	Input-11	Received from:	Format	JSON
	Input-11	DigiTAR (Hazard	Method	GET/POST
		confirmation & mitigation		REST API
		works)	Endpoint	
	Output 1	-	Protocol	HTTPS
	Output-1	Sent to:	Format	JSON CET (DOCT
Output Data		Visual Data Pre-processing,	Method	GET/POST
		WODM, WOEA, PMS,	Endpoint	REST API
		SafeConAI, DCC, DigiTAR	Protocol	HTTPS
		(user credentials and		
	0	authorisation)	Formet	IEC
	Output -2	Sent to:	Format	IFC
		Visual Data Pre-processing	Method	GET/POST
		(building components)	Endpoint	REST API
			Protocol	HTTPS
	Output -3	Sent to:	Format	JSON
			Method	GET/POST
			Endpoint	REST API

		Visual Data Pre-processing,	Protocol	HTTPS
		DCC (work orders/tasks	11000001	111115
		reported by WODM)		
	Output-4	Sent to:	Format	ISON
		WODM, PMS (as-planned	Method	GET/POST
		resources)	Endpoint	REST API
			Protocol	HTTPS
	Output-5	Sent to:	Format	JSON, IFC
		PMS, GeometricQC,	Method	GET/POST
		SafeConAI, ProActiveSafety,	Endpoint	REST API
		VirtualSafety, DCC, DigiTAR (3D/4D BIM data)	Protocol	HTTPS
	Output-6	Sent to:	Format	JSON
		PMS, ProActiveSafety, DCC	Method	GET/POST
		(resources location - tracking	Endpoint	REST API
		data)	Protocol	HTTPS
	Output-7	Sent to:	Format	JSON
		PMS, DCC, DigiTAR (quality	Method	GET/POST
		control and H&S issues	Endpoint	REST API
		relevant to the ongoing tasks)	Protocol	HTTPS
	Output-8	Sent to:	Format	E57, PLY
		Geometric QC (point cloud)	Method	GET/POST
			Endpoint	REST API
			Protocol	HTTPS
	Output-9	Sent to:	Format	JSON
		VisualQC (Notification for	Method	GET/POST
		visual data availability)	Endpoint	REST API
			Protocol	HTTPS
	Output-	Sent to:	Format	Image file data & JSON
	10	VisualQC (Visual data and	Method	GET/POST
		metadata)	Endpoint	REST API
			Protocol	HTTPS

4.4 Work Order Definition and Monitoring – WODM

As presented in Table 4, the WODM tool is a partly developed solution (i3D platform) for work orders definition and monitoring, programmed in Angular 6. This solution will be extended and properly adapted to be compatible with the DT platform and interact with the DT Platform, PMS, SLAM, BCSC and WOEA components. These interactions have been realised based on the UC-1.1 and UC-1.2 sequence diagrams, illustrated in Sections 3.1 and 3.2 respectively. Primary inputs to the tool are the process model(s), the Service Level Agreements (SLAs) and their performance, the as-planned resources (number of workers, their roles, and appropriate equipment), the tasks' progress reported by the on-site crew, and user credentials and authorisation. The tasks assignment and progress, and the work orders with associated SLAs & KPIs, both enriched with relevant metadata, constitute the main outputs of the WODM tool.

General Information			
Programming Language(s)		Angular 6	
Hardware Requirements A device with a web browser		A device with a web browser	
Software Requirements Web browser		Web browser	
Development Status		Partly developed	
		Function and Non-Functional Requirements	
Functional	Req-1.1	Connect and Authenticate to the DT platform (User login)	
FUNCTIONAL	Req-1.2	Create work orders from workflows	

Table 4 - WODM: Functional, Non-Functional Requirements and Interfaces

Input Data Input-2 Received from: Dependencies Input-4 Received from: Dependencies Input-4 Received from: Dependencies Dependencies Input-4 Received from: Dependencies Dependencies Dependencies Input-4 Received from: Dependencies Dependencies Dependencies Dependencies Dependencies Dependencies Dependencies Dependencies Dependencies Input-2 Received from: Dependencies Dependencie		Req-1.3 Assign multiple workers, allocate resources and associate SLAs to work					
Image Req-1.4 Monitor and report the work order progress Req-1.5 Update work orders and tasks details Non- Functional Req-2.2 Scalability Req-2.4 Stability Req-2.5 Security Req-2.6 Stability Req-2.7 Stability Req-2.6 Security Dep-1.3 DT Platform Dep-1.4 DCSC Dep-1.5 WOFA External Dep-1.2 Dep-1.4 RCSC Dep-1.5 WOFA External Dep-2.2 Dep-1.4 RCSC Dep-1.5 WOFA External Dep-2.1 Dependencies Porter database Dependencies Dep-1.4 RCscived from: Format Protocol HTTPS Input-2 Received from: SLAM (SLAs and KPIs) Method Input-3 Received from: SCSC (SLAs performance) Protocol Input-4 Received from: <td></td> <td>Keq-1.5</td> <td>÷ .</td> <td>ale resource</td> <td>s and associate SLAS to work</td>		Keq-1.5	÷ .	ale resource	s and associate SLAS to work		
Req-1.5 Update work orders and tasks details Non- Functional Req-2.1 User-friendly UI Req-2.2 Scalability Req-2.3 Responsiveness Req-2.4 Stability Req-2.5 Security Dep-1.1 DT Plaform Dep-1.2 PMS Dep-1.3 SLAM Dep-1.4 BCSC Dep-1.5 WOEA External Dep-2.2 Ibep-2.1 Postgre database Dep-3 SLAM Dep-1.4 BCSC Dep-1.5 WOEA External Dep-2.2 Isplatform Interfaces Input-1 Received from: SLAM (SLAs and KPIs) Input-2 Received from: SLAM (SLAs and KPIs) Input-3 Received from: SCSC (SLAs performance) Input-4 Received from: DT Platform (as-planned resources) Input-4 Received from: DT Platform (as-planned resources) Input-5 Received from: DT Platform (user credentials and authorisation) Input-6 Received from: DT Platform (user		Reg-1.4					
Non- Functional Req-2.1 User-friendly UI Req-2.2 Scalability Req-2.3 Responsiveness Req-2.4 Stability Req-2.5 Security Dep-1.1 DT Platform Dep-1.2 PMS Dep-1.3 SLAM Dep-1.4 BCSC Dep-1.5 WOEA External Dep-2.1 Postgre database Dep-1.2 PMS (process model) Method GET/POST Input-1 Received from: PMS (process model) Method GET/POST Input-2 Received from: SLAM (SLAs and KPIs) Format ISON Input-3 Received from: DT Platform (as-planned resources) Format ISON Input-4 Received from: DT Platform (user credentials and authorisation) Format ISON Method GET/POST Endpoint REST API Protocol HTTPS Format ISON DT Platform (user c		-	=		·		
Non- Functional Req-2.2 Scalability Req-2.3 Responsiveness Req-2.4 Stability Req-2.5 Security Component Dependencies Dep-1.1 DT Platform Dep-1.2 PMS Dep-1.3 SLAM Dep-1.4 BCSC Dep-1.5 WOEA External Dep-2.2 Dep-1.5 WOEA External Dep-2.2 Dep-1.4 BCSC Dep-1.5 WOEA External Dep-2.2 Input-1 Received from: PMS (process model) Method GET/POST Input-2 Received from: PMS (process model) Input-3 Received from: BCSC (SLAs and KPIs) Input-4 Received from: BCSC (SLAs performance) Input-4 Received from: BCSC (SLAs performance) Input-5 Received from: Protocol Input-6 Received from: Protocol Input-7 Received from: Protocol Input-6 Received from: Protocol			*				
Non- Functional Req-2.3 Responsiveness Req-2.4 Stability Req-2.5 Security Component Dependencies Dep-1.1 DT Platform Dep-1.2 PMS Dep-1.3 SLAM Dep-1.4 BCSC Dep-1.5 WOEA External Dep-2.1 Pop-2.2 I3D platform Interfaces Interfaces Input-1 Received from: PMS (process model) Method GET/POST Input-2 Received from: SLAM (SLAs and KPIs) Portocol HTPS Input-3 Received from: BCSC (SLAs performance) Format JSON BCSC (SLAs performance) Format JSON Input-4 Received from: Protocol Format JSON DT Platform (as-planned resources) Format JSON DT Input-6 Received from: Protocol Format JSON DT Platform (as-planned resources) Format JSON DT Input-6			-				
Functional Req-2.4 Stability Req-2.5 Security Component Dependencies Dep-1.1 DT Platform Dep-1.2 PMS Dep-1.3 SLAM Dep-1.4 BCSC Dep-1.5 WOEA External Dep-2.2 Dep-2.2 I3D platform Interfaces Input-1 Received from: Portact PMS (process model) Method GET/POST Input-1 Received from: Format JSON SLAM (SLAs and KPIs) Method GET/POST Input-3 Received from: Format JSON SLAM (SLAs and KPIs) Method GET/POST Input-4 Received from: Format JSON DT Platform (as-planned resources) Format JSON DT Input-4 Received from: Format JSON DT Input-5 Received from: Format JSON DT DT Platform (as-planned resources) Format JSON DT <	Non-	^	-				
Internal Dep-1.1 DT Platform Dependencies Dep-1.2 PMS Dep-1.3 SLAM Dep-1.3 SLAM Dep-1.4 BCSC Dep-1.4 DSC Dep-2.1 Postgre database Dep-1.5 WOEA Format BPMN External Dep-2.1 Postgre database Format BPMN Dep-2.1 Postgre database Format BPMN Dep-2.1 Postgre database Format BPMN Input-1 Received from: PMS (process model) Format BON Input-2 Received from: SLAM (SLAs and KPIs) Format JSON Input-3 Input-4 Received from: BCSC (SLAs performance) Format JSON Input-4 Received from: DT Platform (as-planned resources) Format JSON Input-5 Received from: DT Platform (as-planned resources) Format JSON Input-6 Received from: DT Platform (user credentials and authorisation) Format JSON Input-6 Received from: DT Platform (user credentials and authorisation) Format JSON Output-1 Sent to: SLAM (work orders with associated SLAs and KPIs) Format JSON Input-6 Received from: DT Platform (user credentials and authorisation) Format J	Functional		•				
Internal Dependencies Pep-1.1 DT Platform Dep-1.2 PMS Dep-1.3 SLAM Dep-1.4 BCSC Dep-1.5 WOEA External Dependencies Dep-2.1 Postgre database Dep-2.1 Postgre database Dep-2.2 I3D platform Interfaces Interfaces Input-1 Received from: PMS (process model) Input-2 Received from: SLAM (SLAs and KPIs) Input-3 Received from: BCSC (SLAs performance) Input-4 Received from: DT Platform (as-planned resources) Input-5 Received from: DT Platform (as-planned resources) Input-5 Input-5 Received from: DT Platform (as-planned resources) Input-6 Received from: DT Platform (user credentials and authorisation) Rest API Protocol HTTPS Format JSON Method GET/POST Endpoint REST API Protocol HTTPS Format JSON Method GET/POST Endpoint REST API Protocol HTTPS Format JSON Method GET/POST Endpoint REST API Protocol HTTPS Format JSON Method GET/POST Endpoint REST API Protocol HTTPS Format JSON Method GET/POST Endpoint REST API Protocol HTTPS Format JSON Method GET/POST Endpoint REST API Protocol HTTPS Format JSON Method GET/POST Endpoint REST API Protocol HTTPS Format JSON Method GET/POST Endpoint REST API Protocol HTTPS Format JSON Method GET/POST Endpoint REST API Protocol HTTPS Format JSON Method GET/POST Endpoint REST API Protocol HTTPS Format JSON Method GET/POST Endpoint REST API Protocol HTTPS Format JSON Method GET/POST Endpoint REST API Protocol HTTPS Format JSON Method GET/POST Endpoint REST API Protocol HTTPS Format SON Method GET/POST Endpoint REST API Protocol HTTPS FORM Format SON Method GET/POST Endpoint REST API Protocol HTTPS FORM Format SON Format		^	<u> </u>				
Internal Dependencies Dep-1.1 Dep-1.2 DT Platform PMS Dep-1.3 SLAM Dep-1.4 BCSC Dep-1.5 WOEA External Dependencies Dep-2.1 Postgre database Dep-2.2 13D platform Interfaces Input-1 Received from: PMS (process model) Format BPMN Input-2 Received from: SLAM (SLAs and KPIs) Format JSON Input-3 Received from: SLAM (SLAs performance) Format JSON Input-4 Received from: BCSC (SLAs performance) Format JSON Input-4 Received from: BCSC (SLAs performance) Format JSON Input-4 Received from: DT Platform (as-planned resources) Format JSON Input-5 Received from: DT Platform (user credentials and authorisation) Format JSON Method GET/POST Endpoint REST API Protocol HTTPS Format JSON Input-5 Received from: DT Platform (user credentials and authorisation) Format JSON		Req-2.5	-				
Internal Dep-1.2Dep-1.2PMSDep-1.4BCSC Dep-1.5WOEAExternal DependenciesDep-2.1Postgre databaseFormatBPMNDependenciesDep-2.2I3D platformFormatBPMNInterfacesFormatBPMNPMS (process model)FormatBPMNPMS (process model)FormatISONInput-1Received from: PMS (process model)FormatISONInput-2Received from: SLAM (SLAs and KPIs)FormatISONInput-1Received from: SLAM (SLAs and KPIs)FormatISONInput-2Received from: BCSC (SLAs performance)FormatISONInput-3Received from: BCSC (SLAs performance)FormatISONInput-4Received from: BCSC (SLAs performance)FormatISONInput-4Received from: resources)FormatISONInput-5Received from: WOEA (tasks' progress)FormatISONInput-6Received from: WOEA (tasks' progress)FormatISONInput-6Received from: DT Platform (user credentials and authorisation)FormatISONInput-6Received from: DT Platform (user credentials and authorisation)FormatISONInput-6Received from: DT Platform (user credentials and authorisation)FormatISONInput-6Received from: DT Platform (user credentials and authorisation)FormatISON<				cies			
Internal Dependencies Dep-1.3 Dep-1.4 BCSC SLAM Dep-1.5 WOEA External Dependencies Dep-2.1 Dep-2.2 Postgre database Input-1 Received from: PMS (process model) Format BPMN Input-2 Received from: PMS (process model) Format BPMN Input-2 Received from: SLAM (SLAs and KPIs) Format JSON Input-3 Received from: SLAM (SLAs and KPIs) Format JSON Input-4 Received from: SLAM (SLAs and KPIs) Format JSON Input-4 Received from: BCSC (SLAs performance) Format JSON Input-4 Received from: BCSC (SLAs performance) Format JSON Input-4 Received from: DT Platform (as-planned resources) Format JSON Input-5 Received from: DT Platform (user credentials and authorisation) Format JSON Method GET/POST Endpoint REST API Protocol HTTPS Format JSON Input-5 Received from: DT Platform (user credentials and authorisation) Format JSON </td <td></td> <td></td> <td></td> <td></td> <td></td>							
Dependencies Dep-1.4 Dep-1.4 Dep-1.5 SLAM Dep-1.4 BCSC Dep-1.5 WOEA External Dependencies Dep-2.2 I3D platform Interfaces Interfaces Input-1 Received from: PMS (process model) Format Endpoint BPMN Method ECT/POST Input-2 Received from: SLAM (SLAs and KPIs) Format Protocol BON Input-3 Received from: SLAM (SLAs and KPIs) Format Protocol ISON Input-4 Received from: SLAM (SLAs and KPIs) Format Protocol ISON Input-4 Received from: BCSC (SLAs performance) Format Protocol ISON Input-4 Received from: DT Platform (as-planned resources) Format Protocol ISON Input-5 Received from: DT Platform (as-planned resources) Format Protocol ISON Input-5 Received from: DT Platform (user credentials and authorisation) Format Protocol ISON Input-6 Received from: DT Platform (user credentials and authorisation) Format Protocol ISON Input-6 Received from: DT Platform (user credentials and autho	Internal	_					
Jep-1.4BCSCDep-1.5WOEAExternal DependenciesDep-2.1Postgre databaseDependenciesDep-2.2I3D platformInterfacesInput-1Received from: PMS (process model)FormatBPMN MethodInput-2Received from: SLAM (SLAs and KPIs)FormatBONInput-3Received from: SLAM (SLAs performance)FormatJSONInput-4Received from: BCSC (SLAs performance)FormatJSONInput-4Received from: DT Platform (as-planned resources)FormatJSONInput-5Received from: DT Platform (user credentials and authorisation)FormatJSONInput-6Received from: DT Platform (user credentials and authorisation)FormatJSONMethodGET/POSTEndpointREST API ProtocolProtocolInput-6Received from: DT Platform (user credentials and authorisation)FormatJSONMethodGET/POSTEndpointREST API ProtocolProtocolProtocolHTTPSFormatJSONMethodGET/POSTEndpointREST API ProtocolProtocolHTTPSFormatJSONMethodGET/POSTEndpointREST API ProtocolProtocolHTTPSFormatJSONMethodGET/POSTEndpointREST API ProtocolProtocolHTTPSFormatJSONMethodGET/POSTEndpointMethod <td></td> <td>Dep-1.3</td> <td>SLAM</td> <td></td> <td></td>		Dep-1.3	SLAM				
External DependenciesDep-2.2Postgre databaseDep-2-2I3D platformInterfacesInput-1Received from: PMS (process model)Format Endpoint REST APIInput-2Received from: SLAM (SLAs and KPIs)Format FormatJSONInput-3Received from: SLAM (SLAs and KPIs)Format FormatJSONInput-4Received from: SLAM (SLAs performance)Format FormatJSONInput-4Received from: BCSC (SLAs performance)Format FormatJSONInput-4Received from: DT Platform (as-planned resources)Format FormatJSONInput-4Received from: DT Platform (user credentials and authorisation)Format FormatJSONInput-1Sent to: SLAM (work orders with associated SLAs and KPIs)Format FormatJSONOutput-1Sent to: SLAM (work orders with associated SLAs and KPIs)Format FormatJSONMethodGET/POST Endpoint Endpoint REST API ProtocolFormat FormatInput-5Received from: DT Platform (user credentials and authorisation)Format FormatJSONMethodGET/POST Endpoint Endpoint REST API ProtocolFormat FORTJSONMethodGET/POST Endpoint Endpoint REST API ProtocolFormat FORTJSONMethodGET/POST Endpoint Endpoint REST API ProtocolFormat FORTJSONMethodGET/POST Endpoint Endpoint REST API ProtocolForma	Dependencies	Dep-1.4	BCSC				
Dependencies Dep-2-2 I3D platform Input-1 Received from: PMS (process model) Format BPMN Input-2 Received from: PMS (process model) Format BPMN Input-2 Received from: SLAM (SLAs and KPIs) Format JSON Input-3 Received from: SLAM (SLAs and KPIs) Method GET/POST Input-4 Received from: BCSC (SLAs performance) Format JSON Input-5 Received from: BCSC (SLAs performance) Format JSON Input-6 Received from: DT Platform (as-planned resources) Format JSON Input-6 Received from: DT Platform (user credentials and authorisation) Format JSON		Dep-1.5	WOEA				
Dependencies Dep-2-2 I3D platform Input-1 Received from: PMS (process model) Format BPMN Input-2 Received from: PMS (process model) Format BPMN Input-2 Received from: SLAM (SLAs and KPIs) Format JSON Input-3 Received from: SLAM (SLAs and KPIs) Method GET/POST Input-4 Received from: BCSC (SLAs performance) Format JSON Input-5 Received from: BCSC (SLAs performance) Format JSON Input-6 Received from: DT Platform (as-planned resources) Format JSON Input-6 Received from: DT Platform (user credentials and authorisation) Format JSON	External	Dep-2.1	Postgre database				
Input Data Input-1 Input-2 Input-2 Input-2 Input-2 Input-3 Input-4 Input-4 Received from: DT Platform (as-planned resources) Input-5 Input-5 Input-5 Input-6 Received from: DT Platform (user credentials and authorisation) Input-6 Output-1 Sent to: SLAM (SLAs and KPIs) Input-3 Input-4 Input-4 Input-5 Input-5 Input-5 Input-5 Input-5 Input-5 Input-5 Input-5 Input-6 Input-6 Input-1 Sent to: SLAM (SLAs and KPIs) Input-1 Input-1 Input-1 Input-1 Input-2 Input-2 Input-2 Input-5 Input-6 Input-6 Input-1 Sent to: SLAM (work orders with associated SLAs and KPIs) Input-5 Input-5 Input-1 Input-5 Input-1 Input-5 Input-1 Input-5 Input-6 Input-1 Input-5 Input-6 Input-1 Input-6 Input-1 Input-5 Input-6 Input-1 Input-5 Input-6 Input-1 Input-5 Input-6 Input-1 Input-5 Input-7 Input-6 Input-1 Input-7 In	Dependencies	Dep-2-2	I3D platform				
Input-1 Received from: PMS (process model) Format BPMN Input-2 Received from: SLAM (SLAs and KPIs) Format BPMN Input-2 Received from: SLAM (SLAs and KPIs) Format JSON Input-3 Received from: BCSC (SLAs performance) Format JSON Input-4 Received from: BCSC (SLAs performance) Format JSON Input-5 Received from: BCSC (SLAs performance) Format JSON Input-4 Received from: BCSC (SLAs performance) Format JSON Input-5 Received from: DT Platform (as-planned resources) Format JSON Input-5 Received from: WOEA (tasks' progress) Format JSON Input-6 Received from: DT Platform (user credentials and authorisation) Format JSON Method GET/POST Endpoint REST API Protocol HTTPS Format JSON Input-5 Received from: DT Platform (user credentials and authorisation) Format JSON Method GET/POST Endpoint REST API Protocol <td></td> <td></td> <td>Interfaces</td> <td></td> <td></td>			Interfaces				
Input-2 PMS (process model) Method GET/POST Input-2 Received from: Format JSON SLAM (SLAs and KPIs) Method GET/POST Input-3 Received from: Format JSON Input-4 Received from: Format JSON Input-3 Received from: Format JSON Input-4 Received from: Format JSON BCSC (SLAs performance) Method GET/POST Input-4 Received from: Format JSON DT Platform (as-planned resources) Format JSON Method GET/POST Input-5 Received from: Format JSON Method GET/POST Input-5 Received from: Format JSON Method GET/POST Input-5 Received from: Format JSON Method GET/POST Input-6 Received from: Format JSON Method GET/POST Input-6 Received from: DT Format		Input-1	Received from:	Format	BPMN		
Input-2Received from: SLAM (SLAs and KPIs)EndpointREST API JSONInput-2Received from: SLAM (SLAs and KPIs)FormatJSONInput-3Received from: BCSC (SLAs performance)FormatJSONInput-4Received from: BCSC (SLAs performance)FormatJSONInput-4Received from: BCSC (SLAs performance)FormatJSONInput-4Received from: DT Platform (as-planned resources)FormatJSONInput-5Received from: BCSC (tasks' progress)FormatJSONInput-6Received from: ProtocolHTTPSInput-7Received from: DT Platform (user credentials and authorisation)FormatJSONInput-6Received from: ProtocolFormatJSONMethodGET/POSTEndpointREST APIProtocolHTTPSFormatJSONMoteA (tasks' progress)MethodGET/POSTInput-6Received from: DT Platform (user credentials and authorisation)FormatJSONMethodGET/POSTEndpointREST APIProtocolHTTPSFormatJSONMethodGET/POSTEndpointREST APIProtocolHTTPSFormatJSONMethodGET/POSTEndpointREST APIProtocolHTTPSFormatJSONMethodGET/POSTEndpointREST APIProtocolHTTPSFormatJSONMethodGET/POSTEndpointREST API <td></td> <td></td> <td>PMS (process model)</td> <td></td> <td></td>			PMS (process model)				
Input-2Received from: SLAM (SLAs and KPIs)FormatJSONInput-3Received from: BCSC (SLAs performance)FormatJSONInput-4Received from: BCSC (SLAs performance)FormatJSONInput-4Received from: DT Platform (as-planned resources)FormatJSONInput-5Received from: DT Platform (as-planned resources)FormatJSONInput-6Received from: DT Platform (as-planned resources)FormatJSONInput-7Received from: DT Platform (as-planned resources)FormatJSONInput-5Received from: DT Platform (as-planned resources)FormatJSONInput-6Received from: DT Platform (user credentials and authorisation)FormatJSONInput-6Received from: DT Platform (user credentials and authorisation)FormatJSONOutput-1Sent to: SLAM (work orders with associated SLAs and KPIs)FormatJSONMethodGET/POSTEndpointREST APIProtocolHTTPSFormatJSONMethodGET/POSTEndpointREST APIProtocolHTTPSFormatJSONInput-6Received from: DT Platform (user credentials and authorisation)FormatJSONEndpointREST APIProtocolHTTPSProtocolHTTPSFormatJSONInput-1Sent to: SLAM (work orders with associated SLAs and KPIs)FormatJSONProtocolHTTPSFormat <t< td=""><td></td><td></td><td></td><td>Endpoint</td><td></td></t<>				Endpoint			
Input Data Input-3 Input-3 Received from: BCSC (SLAs performance) Input-4 Received from: DT Platform (as-planned resources) Input-5 Input-5 Received from: DT Platform (as-planned resources) Input-6 Received from: DT Platform (user credentials and authorisation) Input-6 Output-1 Sent to: SLAM (SLAs and KPIs) Method GET/POST Endpoint GE				Protocol	HTTPS		
Input Data Input-3 Received from: BCSC (SLAs performance) BCSC (SLAs performan		Input-2	Received from:	Format	JSON		
Input DataProtocolHTTPSInput-3Received from: BCSC (SLAs performance)FormatJSONMethodGET/POSTEndpointREST APIProtocolHTTPSProtocolHTTPSInput-4Received from: DT Platform (as-planned resources)FormatJSONInput-5Received from: WOEA (tasks' progress)FormatJSONInput-6Received from: WOEA (tasks' progress)FormatJSONInput-6Received from: DT Platform (user credentials and authorisation)FormatJSONInput-6Received from: DT Platform (user credentials and authorisation)FormatJSONOutput-1Sent to: SLAM (work orders with associated SLAs and KPIs)FormatJSONNethodGET/POSTEndpointREST APIProtocolHTTPSFormatJSONMethodGET/POSTEndpointREST APIProtocolHTTPSFormatJSONMethodGET/POSTEndpointREST APIProtocolHTTPSFormatJSONMethodGET/POSTEndpointREST APIProtocolHTTPSFormatJSONMethodGET/POSTEndpointREST APIProtocolHTTPSFormatJSONMethodGET/POSTEndpointREST APIProtocolHTTPSFormatJSONMethodGET/POSTEndpointREST APIProtocolHTTPSFormatJSONM			SLAM (SLAs and KPIs)				
Input DataReceived from: BCSC (SLAs performance)FormatJSONInput-4Received from: DT Platform (as-planned resources)FormatJSONInput-4Received from: DT Platform (as-planned resources)FormatJSONInput-5Received from: resources)FormatJSONInput-5Received from: WOEA (tasks' progress)FormatJSONInput-6Received from: resources)FormatJSONInput-6Received from: DT Platform (user credentials and authorisation)FormatJSONInput-1Sent to: SLAM (work orders with associated SLAs and KPIs)FormatJSONMethodGET/POSTEndpointREST APIProtocolHTTPSFormatJSONMethodGET/POSTEndpointREST APIProtocolHTTPSFormatJSONMethodGET/POSTEndpointREST APIProtocolHTTPSFormatJSONMethodGET/POSTEndpointREST APIProtocolHTTPSFormatJSONMethodGET/POSTEndpointREST APIProtocolHTTPSFormatJSONMethodGET/POSTEndpointREST APIProtocolHTTPSFormatJSONMethodGET/POSTEndpointREST APIProtocolHTTPSFormatJSONMethodGET/POSTEndpointREST APIProtocolHTTPSFormatJSON							
Input DataBCSC (SLAs performance)MethodGET/POSTInput-4Received from: DT Platform (as-planned resources)FormatJSONInput-5Received from: resources)MethodGET/POSTInput-5Received from: WOEA (tasks' progress)FormatJSONInput-6Received from: WOEA (tasks' progress)FormatJSONInput-6Received from: DT Platform (user credentials and authorisation)FormatJSONInput-6Received from: DT Platform (user credentials and authorisation)FormatJSONInput-6Received from: DT Platform (user credentials and authorisation)FormatJSONInput-6Sent to: SLAM (work orders with associated SLAs and KPIs)FormatJSONInput-6Sent to: SLAM (work orders with associated SLAs and KPIs)FormatJSONInput-6SLAM (work orders with associated SLAs and KPIs)MethodGET/POSTInput-6SLAM (work orders with associated SLAs and KPIs)FormatJSON				-			
Input DataEndpointREST APIInput-4Received from: DT Platform (as-planned resources)FormatJSONDT Platform (as-planned resources)MethodGET/POSTInput-5Received from: WOEA (tasks' progress)FormatJSONMethodGET/POSTEndpointREST APIInput-6Received from: WOEA (tasks' progress)FormatJSONInput-6Received from: DT Platform (user credentials and authorisation)MethodGET/POSTInput-6Received from: DT Platform (user credentials and authorisation)FormatJSONInput-6Sent to: SLAM (work orders with associated SLAs and KPIs)FormatJSONInput-7Sent to: SLAM (work orders with associated SLAs and KPIs)FormatJSONInput-8Sent to: SLAM (work orders with associated SLAs and KPIs)FormatJSONInput-1Sent to: SLAM (work orders with associated SLAs and KPIs)FormatJSONInput-1Sent to: SLAM (work orders with associated SLAs and KPIs)FormatJSONInput-1Sent to: SLAM (work orders with associated SLAs and KPIs)MethodGET/POSTInput-1Sent to: SLAM (work orders with associated SLAS and KPIs)FormatJSONInput-1Sent to: SLAM (work orders with associated SLAS and KPIs)FormatJSONInput-1Sent to: SLAM (work orders with associated SLAS and KPIs)FormatJSONInput-1Sent to: SLAM (work orders with associa		Input-3			· · · · · · · · · · · · · · · · · · ·		
Input-4Received from: DT Platform (as-planned resources)Format EndpointJSONInput-4Received from: DT Platform (as-planned resources)Method EndpointGET/POSTInput-5Received from: WOEA (tasks' progress)Format EndpointJSONInput-6Received from: WOEA (tasks' progress)Format ProtocolJSONInput-6Received from: DT Platform (user credentials and authorisation)Format FormatJSONOutput-1Sent to: SLAM (work orders with associated SLAs and KPIs)Format FormatJSONOutput-1Sent to: SLAM (work orders with associated SLAs and KPIs)Format FormatJSONInput-6Rest to: SLAM (work orders with associated SLAs and KPIs)Format FormatJSON	Innut Data		BCSC (SLAs performance)				
Input-4Received from: DT Platform (as-planned resources)FormatJSONInput-5Received from: WOEA (tasks' progress)EndpointREST APIInput-6Received from: WOEA (tasks' progress)FormatJSONInput-6Received from: DT Platform (user credentials and authorisation)FormatJSONInput-1Sent to: SLAM (work orders with associated SLAs and KPIs)FormatJSONInput-1Sent to: SLAM (work orders with associated SLAs and KPIs)FormatJSONInput-6Sent to: SLAM (work orders with associated SLAs and KPIs)FormatJSONInput-1Sent to: SLAMFormatJSONInput-1Sent to: SLAMFormatJSONInput-1Sent to: SLAMFormatJSONInput-1Sent to: SLAMFormatJSONInput-1Sent to: SLAMFormatJSONInput-1Sent to: <td>Input Data</td> <td></td> <td></td> <td>-</td> <td></td>	Input Data			-			
DT Platform (as-planned resources)MethodGET/POSTInput-5Received from: WOEA (tasks' progress)FormatJSONMethodGET/POSTEndpointREST APIProtocolHTTPSProtocolHTTPSInput-6Received from: DT Platform (user credentials 		Input 4	Dessived from.				
resources)EndpointREST APIInput-5Received from: WOEA (tasks' progress)FormatJSONMethodGET/POSTEndpointREST APIProtocolHTTPSFormatJSONInput-6Received from: DT Platform (user credentials and authorisation)FormatJSONOutput-1Sent to: SLAM (work orders with associated SLAs and KPIs)FormatJSONOutput-1Sent to: SLAM (work orders with associated SLAs and KPIs)FormatJSONProtocolHTTPSFormatJSONProtocolHTTPSFormatJSONMethodGET/POSTFormatJSONFormatFormatFormatFormatJSONFormatFormatFormatJSONFormatFormatFormatFormatFormatFormat <t< td=""><td></td><td>input-4</td><td></td><td></td><td>· ·</td></t<>		input-4			· ·		
Input-5Received from: WOEA (tasks' progress)FormatJSONMethodGET/POSTEndpointREST APIProtocolHTTPSInput-6Received from: DT Platform (user credentials and authorisation)FormatOutput-1Sent to: SLAM (work orders with associated SLAs and KPIs)FormatOutput-1Sent to: SLAM (work orders with associated SLAs and KPIs)FormatProtocolHTTPSProtocolHTTPSProtocolHTTPSProtocolHTTPSProtocolHTTPSProtocolHTTPSProtocolHTTPSProtocolHTTPSHethodGET/POSTEndpointREST APIProtocolHTTPSHethodGET/POSTEndpointREST APIProtocolHTTPS					, , , , , , , , , , , , , , , , , , ,		
Input-5Received from: WOEA (tasks' progress)FormatJSONMethodGET/POSTEndpointREST APIProtocolHTTPSInput-6Received from: DT Platform (user credentials and authorisation)FormatJSONMethodGET/POSTEndpointREST APIProtocolHTTPSOutput-1Sent to: SLAM (work orders with associated SLAs and KPIs)FormatJSONMethodGET/POSTEndpointREST APIProtocolHTTPSProtocolHTTPSHethodGET/POSTFormatJSONMethodGET/POSTFormatJSONMethodGET/POSTFormatJSONMethodGET/POSTFormatJSONMethodGET/POSTFormatJSONMethodGET/POSTFormatJSONMethodGET/POSTFormatJSONMethodGET/POSTFormatJSONMethodGET/POSTFormatJSONMethodGET/POSTFormatJSONMethodGET/POSTFormatSent to:FormatJSONMethodGET/POSTFormatProtocolHTTPSFormatMethodGET/POSTFormatProtocolHTTPSFormatFormatFormatFormatFormatFormatFormat <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>							
WOEA (tasks' progress)MethodGET/POSTEndpointREST APIProtocolHTTPSInput-6Received from: DT Platform (user credentials and authorisation)FormatJSONMethodGET/POSTEndpointREST APIProtocolHTTPSOutput-1Sent to: SLAM (work orders with associated SLAs and KPIs)FormatJSONMethodGET/POSTEndpointREST APIProtocolHTTPSProtocolHTTPSProtocolHTTPS		Input-5	Received from:				
Input-6Received from: DT Platform (user credentials and authorisation)Format EndpointISONOutput-1Sent to: SLAM (work orders with associated SLAs and KPIs)Format FormatJSONOutput-1Sent to: SLAM (work orders with associated SLAs and KPIs)Format FormatJSONOutput-1Sent to: SLAM (work orders with associated SLAs and KPIs)Format EndpointJSONOutput-1Sent to: SLAM (work orders with Associated SLAS and KPIs)Format EndpointJSONOutput-1Sent to: SLAM (work orders with Associated SLAS and KPIs)Format EndpointJSON		input o					
Input-6Received from: DT Platform (user credentials and authorisation)FormatJSONOutput-1Sent to: SLAM (work orders with associated SLAs and KPIs)FormatJSONOutput-1Sent to: SLAM (work orders with associated SLAs and KPIs)FormatJSONProtocolHTTPSProtocolHTTPSProtocolHTTPSHethodGET/POSTBendpointREST APIProtocolHTTPSProtocolHTTPS							
Output-1 Sent to: Format JSON SLAM (work orders with associated SLAs and KPIs) Method GET/POST Protocol HTTPS				-			
and authorisation) Endpoint REST API Protocol HTTPS Output-1 Sent to: Format JSON SLAM (work orders with associated SLAs and KPIs) Method GET/POST Protocol HTTPS Protocol HTTPS		Input-6	Received from:	Format	JSON		
Output-1 Sent to: SLAM (work orders with associated SLAs and KPIs) Format JSON Method GET/POST Endpoint REST API Protocol HTTPS				Method	GET/POST		
Output-1 Sent to: SLAM (work orders with associated SLAs and KPIs) Format JSON Endpoint REST API Protocol HTTPS			and authorisation)	•			
SLAM (work orders with associated SLAs and KPIs) Method GET/POST Protocol HTTPS							
associated SLAs and KPIs) Endpoint REST API Protocol HTTPS		Output-1			· ·		
Protocol HTTPS							
			associated SLAs and KPIs)				
VIIIOUICZ Sent to: Format ISUN		0	Contra				
		Output-2					
Output Data PMS (tasks' progress) Method GET/POST Endpoint REST API	Output Data		rms (tasks progress)				
Endpoint REST API Protocol HTTPS							
Output-3 Sent to: Format JSON		Output-3	Sent to:				
BCSC (tasks' progress) Method GET/POST		-output 5					
Endpoint REST API			(
Protocol HTTPS							

Output-4	Sent to:	Format	JSON
	DT Platform (work orders and	Method	GET/POST
	metadata)	Endpoint	REST API
		Protocol	HTTPS
Output-5	Sent to:	Format	JSON
	DT Platform (tasks' progress	Method	GET/POST
	and metadata)	Endpoint	REST API
		Protocol	HTTPS
Output-6	Sent to:	Format	JSON
	WOEA (assigned tasks)	Method	GET/POST
		Endpoint	REST API
		Protocol	HTTPS

4.5 Work Order Execution Assistance – WOEA

Table 5 summarises the functional, non-functional requirements and interfaces of the WOEA application with other components of COGITO. It is a Unity3D application that is partially developed to work in collaboration with the WODM tool. The application is planned to be running on Android smart or Windows platform devices. It is designed to interact with the WODM tool, to exchange information about tasks' assignments and tasks' progress reports, and the DT platform (user credentials and access control).

General Information							
Programming La	Programming Language(s) C# (Unity3D)						
Hardware Requi	irements	Android smart device or Window	ws platform o	levice (smart glasses, AR			
		glasses, smart phone, tablet)	-				
Software Requirements Android 8.0, API 26 or higher							
Development Status Partially developed							
		Functional and Non-Functional F	lequirements	3			
	Req-1.1	Connect and Authenticate to the	DT platform	(User login)			
Functional	Req-1.2	Display assigned tasks					
	Req-1.2	Report progress of assigned task	KS				
	Req-2.1	User-friendly					
Non-	Req-2.2	Scalability					
Functional	Req-2.3	Stability	Stability				
Functional	Req-2.4	Multiplatform					
Req-2.5		Security					
	Component Dependencies						
Internal	Dep-1.1	WODM					
Dependencies	Dep-1.2	DT Platform					
External	Dep-2.1	Unity 2018.4.29f1					
Dependencies							
		Interfaces					
	Input-1	Received from:	Format	JSON			
		WODM (assigned tasks)	Method	GET/POST			
Input Data			Endpoint	REST API			
			Protocol	HTTPS			
	Input-2	Received from:	Format	JSON			
		DT Platform (user credentials	Method	GET/POST			
		and authorisation)	Endpoint	REST API			
		Contto	Protocol Format	HTTPS			
		Sent to:	Format	JSON			

Table 5 - WOEA tool: Functional, Non-Functional Requirements and Interfaces

	Output-1	WODM (tasks' progress)	Method	GET/POST
Output Data			Endpoint	REST API
			Protocol	HTTPS

4.6 Process Modelling and Simulation – PMS

The PMS tool will be used to define and simulate both the construction business process model and the operative workflow model. It will allow the users to identify process steps critical for successfully implementing the project, exposing optimisation opportunities to minimise time and/or cost. The simulation models will be combined with real-world data and are supported by data mining algorithms and statistical methods that allow the calibration of the simulation model to the actual process occurring on the construction site. For the modelling and simulation functionalities of the tool, the ADOxx meta-model platform will be used.

Table 6 presents the functional and non-functional requirements, and the interactions of the PMS tool with other components of the COGITO solution. Apart from the ADOxx meta-model platform, Java, JavaScript, R, Python and Hugin programming languages will be used to develop additional simulation and optimisation functionalities from scratch. Concerning the data exchange of the PMS tool with other components, in the planning phase, the PMS tool will be used to populate the process/workflow model for the construction project in BPMN format, based on the 4D BIM data that will be received from the DT platform. This process/workflow model will be sent to the WODM tool. During the construction phase, resources' location (acquired by the IoT Data Pre-processing module), quality control and H&S issues relevant to the ongoing tasks constitute additional information that will be queried from the DT platform. The tasks' progress is also required as input, received from the WODM tool.

	General Information					
Programming La	Programming Language(s) Java, JavaScript, R, Python, Hugin					
Hardware Requirements Physical or VM Server						
Software Requir	ements	Web Server (Apache), Browser (Chrome, Fir	efox, Edge)		
Development Sta	atus	Partially developed				
		Functional and Non-Functional F	Requirement	ts		
	Req-1.1	Construct workflow and simulat	ion model a	nd populate with historical		
		data				
	Req-1.2	Update simulation model using a	real-time da	ta from WODM		
Functional	Req-1.3	Connect and Authenticate to the	DT platforn	n		
Functional	Req-1.4	Estimates project progress				
	Req-1.5	Receive task progress from WOI	DM			
	Req-1.6	Output updated estimates of project progress to WODM according				
		time data and performed optimisation				
Non-	Req-1.7	Web-based app				
Functional	Req-2.1	User-friendly				
	Req-2.2	Scalability				
	Req-2.3	Security				
		Component Dependene	cies			
Internal	Dep-1.1	DT platform				
Dependencies	Dep-1.2	WODM				
External	Dep-2.1	ADOxx meta-model platform				
Dependencies	Dep-2.2	Data analytics and statistical methods libraries				
		Interfaces				
Input Data	Input-1	Received from:	Format	JSON, IFC		
Input Data			Method	GET/POST		

Table 6 - PMS: Functional	Non-Functional Reg	uirements and Interfaces
Table 0 This Tunctional	, non i unccionai neg	an ements and meetaces

		DT Platform (As planned 4D	Endpoint	REST API
		BIM data)	Protocol	HTTPS
	Input-2	Received from:	Format	JSON
		DT Platform (user credentials	Method	GET/POST
		and authorisation)	Endpoint	REST API
			Protocol	HTTPS
	Input-3	Received from:	Format	JSON
		WODM (tasks' progress)	Method	GET/POST
			Endpoint	REST API
			Protocol	HTTPS
	Input-3	Received from:	Format	JSON
		DT Platform (resources	Method	GET/POST
		location data)	Endpoint	REST API
			Protocol	HTTPS
	Input-4	Received from:	Format	JSON
		DT Platform (quality control	Method	GET/POST
		and H&S issues relevant to the	Endpoint	REST API
		ongoing tasks)	Protocol	HTTPS
	Output-	Sent to:	Format	BPMN
Output Data	1	WODM (process models)	Method	GET/POST
-Output Data			Endpoint	REST API
			Protocol	HTTPS

4.7 Service-Level Agreement Manager – SLAM

The SLAM component (see Table 7) will provide a database with already designed SLAs that include predefined rules and KPIs. WODM will fetch the SLAs through the SLAM to bind work orders with associated SLAs and KPIs. Then WODM informs the SLAM of the results and SLAM saves the SLAs with the respective Stakeholders on those mentioned above. The BCSC can fetch the saved work orders with associated SLAs and KPIs to initiate and instantiate the Smart Contract operation. These interactions have been obtained based on the UC-1.1 sequence diagram (see Section 3.1). The SLAM component is developed from scratch.

		General Information			
Programming Language(s)		Go, Rust			
Hardware Requi	rements	Physical or VM Server			
Software Requir	ements	Linux Operating System			
Development Sta	atus	Developed from scratch			
		Functional and Non-Functional Requirements			
	Req-1.1	Provide Smart Contracts with predefined SLAs and KPI description			
Functional	Req-1.2	Provide SLAs to authorized users of WODM UI			
FUNCTIONAL	Req-1.3	Create SLA - Stakeholder bundles			
	Req-1.4	Save complete SLAs			
Non- Functional Req-2.1 Req-2.2 Req-2.3		Reusability			
		Scalability			
		Security			
		Component Dependencies			
Internal	Dep-1.1	WODM			
Dependencies	Dep-1.2	BCSC			
External	Dep-2.1	Candidates Database (under investigation the usage of Postgres)			
Dependencies	Dependencies Dep-2.2 CosmWasm, Rust, Cargo, Docker, Starport				
		Interfaces			

Table 7 – SLAM: Functional,	Non-Functional Reg	uirements and Interfaces
Table / - SLAM. Functional,	Non-runchonal Key	un ements and miter faces

	Input-1	Received from:	Format	JSON
Input Data		WODM (work orders with	Method	GET/POST
		associated SLAs and KPIs)	Endpoint	REST API
			Protocol	HTTPS
	Output-	Sent to:	Format	JSON
	1	WODM (SLAs and KPIs)	Method	GET/POST
			Endpoint	REST API
Output Data			Protocol	HTTPS
Output Data	Output-	Sent to:	Format	JSON
	2	BCSC (work orders with	Method	GET/POST
		associated SLAs and KPIs)	Endpoint	REST API
			Protocol	HTTPS

4.8 BlockChain Platform – BCSC

The Blockchain Platform is an immutable database system that can execute smart contracts. It will allow the deployment of smart contracts, through the SLAM component (see Table 8). It will interact with the WODM tool and based on the operative workflow model. It will provide the blockchain based smart contracts to enhance transparency and provide trusted means to verify the completion of construction tasks. To deliver its scope, it will receive the work orders with associated SLAs and KPIs from SLAM, the calculated KPIs from WODM, and it will send the SLAs performance to WODM. These input and output requirements have been extracted from the sequence diagrams of UC-2.1 and UC-2.2, presented in Sections 3.3 and 3.4 respectively.

	General Information				
Programming Lang	uage(s)	Go (with Java Plugins)			
Hardware Requirer	nents	Physical or VM Server			
Software Requirem	ents	Linux Operating System			
Development Statu	S	Developed from scratch			
	Fu	inctional and Non-Functional Re	quirements		
	Req-1.1	Blockchain-Smart Contract Net – Stakeholder bundle	work will in	stantiate depending on SLA	
	Req-1.2	Store transaction data			
Functional	Req-1.3	Receive Smart Contract inputs	from SLA M	anager	
	Req-1.4	Update Smart Contracts			
	Req-1.5	Receive Task Related Inputs from WODM			
	Req-1.6	Send Smart Contract Result to WODM			
	Req-2.1	Scalability			
Non-Functional	Req-2.2	Stability			
	Req-2.3	Security			
		Component Dependencie	es		
Internal	Dep-1.1	SLA Manager			
Dependencies	Dep-1.2	WODM			
External	Dep-2.1	Cosmos SDK			
Dependencies	Dep-2.2	Terndermind Starport, CosmWasm, IBC, Go, Docker			
		Interfaces			
	Input-1	Received from:	Format	JSON	
Input Data		SLAM (work orders with	Method	GET/POST	
		associated SLAs and KPIs)	Endpoint	REST API	
			Protocol	HTTP	
		Received from:	Format	JSON	

 Table 8 - BlockChain Platform: Functional, Non-Functional Requirements and Interfaces

	Input-2	WODM (updated KPIs)	Method	GET/POST
			Endpoint	REST API
			Protocol	НТТР
	Output-1	Sent to:	Format	JSON
Output Data		WODM (SLA performance)	Method	GET/POST
Output Data			Endpoint	REST API
			Protocol	HTTP

4.9 Geometric Quality Control – GeometricQC

As Table 9 indicates, the GeomtricQC tool is developed from scratch, planned to be deployed on a Physical or Virtual Machine Linux server, and programmed utilising the C++, Python and C# programming languages. Widely used BIM, Point Cloud, and 3D Data Processing libraries will constitute the technology stack of the tool. Regarding its functional requirements, it must provide methods for loading 4D BIM and point cloud data, detecting objects in the point cloud, detecting defects on digitalised dimensional quality control specifications, and communicating with the DT platform. As depicted in the sequence diagram of UC-2.1 (see Figure 8), the GeometricQC tool interacts only with the DT Platform. It receives the as-planned 4D BIM data and the processed point cloud data from the DT platform, and it sends geometric quality control results, and relevant metadata, back to the DT platform.

Table 9 - GeometricQC tool: Functional, Non-Functional Requirements and Interfac	ces
--	-----

		General Information			
Programming Language(s)		C++			
		C#			
Hardware Require	amonte	Python Physical or VM Server (Window	ws /Linux)		
Software Require		Multiple C++ libraries (Boost, I	, ,	3D IfcOpenShell)	
Development Stat		Developed from scratch	ligen, open.	bb, neopensnenj	
		Inctional and Non-Functional Re	quirements		
	Req-1.1	Loading as planned 4D BIM an			
	Req-1.2	Object detection in point cloud	-		
Functional	Req-1.3	Defects' detection based on dig		ensional OC specifications	
	Req-1.4	DT platform/NS notification to	,		
	Req-2.1	Scalability			
Non-Functional	Req-2.2	Reusability			
Req-2.3		Interoperability			
	Component Dependencies				
Internal	Dep-1.1	DT Platform			
Dependencies	Dep-1.2	Geometric Data Acquisition Tools			
	Dep-2.1	Visual Studio 2019			
	Dep-2.2	C++ 14			
External	Dep-2.3	Boost			
Dependencies	Dep-2.4	Open3D			
	Dep-2.5	Eigen			
	Dep-2.6	IfcOpenShell			
		Interfaces			
	Input-1	Received from:	Format	IFC, OBJ, JSON	
Input Data		DT Platform (as planned 4D BIM data)	Method	GET/POST	
		Dim uataj	Endpoint Protocol	REST API HTTPS	
	Input-2	Received from:	Format	E57, PLY	
		DT Platform (point cloud)	Method	GET/POST	

		Endpoint	REST API
		Protocol	HTTPS
Output-1	Sent to:	Format	JSON
	DT Platform (QC results and	Method	GET/POST
	relevant metadata)	Endpoint	REST API
		Protocol	HTTPS

4.10 Visual Quality Control - VisualQC

Following the sequence diagram of UC-2.2 (see Figure 9), the DT platform constitutes the unique COGITO component that the VisualQC tool interacts with. The VisualQC tool receives notifications for visual data availability, visual data and metadata from the DT platform and sends detected defects and relevant metadata back to the DT platform.

As Table 10 presents, the VisualQC tool is being developed from scratch, planned to be deployed on a Physical or Virtual Machine Linux server, and programmed utilising the Node.js, Angular, JavaScript, Python, and C++ programming languages. Deep learning and image processing libraries will constitute the main external dependencies of the tool.

General Information						
Programming La	anguage(s)	Node.js, Angular, JavaScript, Python, C++				
Hardware Requirements		Physical or VM Server (Linux)				
Software Requir	ements	Web Server (Apache), Browser ([Chrome, Fir	efox, Edge)		
Development Sta	atus	Developed from scratch				
		Functional and Non-Functional F	Requirement	S		
	Req-1.1	Connect and Authenticate to the	•	n (Application)		
Functional	Req-1.2	Defects' detection based on rule	S			
Functional	Req-1.3	Defects' annotation				
	Req-1.4	Defects' notification to be used b	by WODM			
	Req-2.1	Web-based App				
	Req-2.2	Security				
Non-	Req-2.3	The component must provide APIs for all expected operations				
Functional	Req-2.4	The component must have low latency				
	Req-2.5	Scalability				
	Req-2.6	Strong CPU is needed for image processing				
		Component Dependen	cies			
Internal	Dep-1.1	DT Platform				
Dependencies	Dep-1.2	Visual Data Pre-processing Tool				
External	Dep-2.1	Deep learning libraries				
Dependencies	Dep-2.2	Image Processing libraries				
		Interfaces				
	Input-1	Received from:	Format	JSON		
		DT Platform (Notification for	Method	GET/POST		
Input Data		visual data availability)	Endpoint Protocol	REST API HTTPS		
Input Data	Input-2	Received from:	Format	Image file data & JSON		
	input-2	DT Platform (Visual data and	Method	GET/POST		
		metadata)	Endpoint	REST API		
			Protocol	HTTPS		
Output Data		Sent to:	Format	JSON		
outputDutu			Method	GET/POST		

Table 10 - VisualQC tool: Functional, Non-Functional Requirements and Interfaces

Out	out- DT Platform	ו (Defects and	Endpoint	REST API
1	metadata)		Protocol	HTTPS

4.11 SafeConAI

The SafeConAI tool (see Table 11) will be used to identify regions where (specific types of) hazards are, suggests and "injects" mitigation measures into the model. It will use as input the as planned or as-built 4D BIM data received from the DT platform, enhance them with safety information and communicate the enhanced 4D BIM data back to the DT platform. It will also receive updated safety parameters as input from the ProActiveSafety tool. The aforementioned data exchange requirements have been extracted from the sequence diagrams of UC-3.1 and UC-3.2 (see Figure 10 and Figure 11, respectively).

Table 11 - SafeConAI: Functional,	Non-Functional Rec	wirements and Interfaces
Table II - SaleconAl. I unctional,	Non-1 unctional Act	jun cincints and interfaces

		General Information	1			
Programming I	anguage(s)	C#				
		C++				
Hardware Requ	iramonte	Python TBD				
-		GAMA				
Software Requi	rements	PyTorch / Tensorflow				
Development S	tatus	Partially developed				
		Functional and Non-Functional H	Requirement	-S		
	Req-1.1	Loading as planned 4D BIM data	<u> </u>			
	Req-1.2	Loading as built 4D BIM data				
	Req-1.3	Loading of known hazard zones				
Euroption ol	Req-1.4	Injection of potential mitigation	measures			
Functional	Req-1.5			ones based on the expected		
	neq 10	Exploration of potential changes of hazard zones based on the expected changes on the construction site (i.e., construction progress or mitigation measures)				
	Req-1.6	Provide information about accidents and hazards				
Non-	Req-2.1	Scalability				
Functional	Req-2.2	Usability	Usability			
		Component Dependen	cies			
Internal	Dep-1.1	DT Platform				
Dependencies	Dep-1.2	ProActiveSafety				
External	Dep-2.1	GAMA				
Dependencies						
		Interfaces				
	Input-1	Received from:	Format	IFC		
		DT Platform (as planned 4D	Method	GET/POST		
		BIM data)	Endpoint	REST API		
			Protocol	HTTPS		
	Input-2	Received from:	Format	JSON		
Input Data		DT Platform (user credentials	Method	GET/POST		
		and authorisation)	Endpoint	REST API		
			Protocol	HTTPS		
	Input-3	Received from:	Format	JSON		
		ProactiveSafety (updated	Method	GET/POST		
		safety parameters)	Endpoint	REST API		
			Protocol	HTTPS		
	Output-1	Sent to:	Format	IFC/XML/JSON/PLY		
Output Data			Method	GET/POST		
			Endpoint	REST API		

DT Platform (4D BIM data enhanced with safety information)	Protocol	HTTPS
--	----------	-------

4.12 ProActiveSafety

The ProActiveSafety tool (see Table 12) will utilise behavioural data of resources (equipment and personnel) on the construction site to avoid close-calls, accidents, and collateral damage. It will also run statistics and update the safety parameters. Based on the sequence diagram of UC-3.2 (see Figure 11), to fulfil its requirements, the ProActiveSafety tool will receive near real-time resources tracking data and the 4D BIM data enhanced with safety information from the DT platform, and it will send hazards alarms to the WOEA application and updated safety parameters to the SafeConAI tool.

Table 12 - ProActiveSafety: Functional, Non-Functional Requirements and Interfaces

		General Informatior	1				
Programming L	Programming Language(s) C#						
		C++					
		Python					
		Proprietary (GAMA)					
Hardware Requ	iirements	Potentially high-end graphics ca	rd for predi	ction algorithms relying on			
*		deep learning.	1	0 , 0			
Software Requi	rements	(GAMA)					
		PyTorch / Tensorflow					
Development S	tatus	Developed from scratch					
-		Functional and Non-Functional F	Requirement	ts			
	Req-1.1	Loading as planned 4D BIM data					
	Req-1.2	Loading as performed 4D BIM d	ata				
Functional	Req-1.3	Interfacing with location data from					
	Req-1.4	Extrapolation and estimation of	Extrapolation and estimation of future trajectories				
	Req-1.5	Warning issued in expected close-calls					
Non-	Req-2.1	Scalability					
Functional	Req-2.2	Usability					
		Component Dependence	cies				
Internal	Dep-1.1	DT Platform	DT Platform				
Dependencies	D 04						
External Dependencies	Dep-2.1	PyTorch / Tensorflow (Python)					
Dependencies		Interfaces					
	Input-1	Received from:	Format	PLY/JSON/XML			
		DT Platform (resources	Method	GET/POST			
		tracking data)	Endpoint	REST API			
Input Data			Protocol	НТТР			
r · · · · ·	Input-2	Received from:	Format	IFC			
		DT Platform (4D BIM data	Method	GET/POST			
		enhanced with safety	Endpoint	REST API			
		information)	Protocol	НТТР			
	Output-1	Sent to:	Format	PLY / JSON / XML			
		SafeConAI (Updated safety	Method	POST/GET			
		parameters/hazard zones)	Endpoint	REST API			
Output Data			Protocol	HTTP			
	Output-2	Sent to:	Format	TBD			
		WOEA (hazards alarms)	Method	TBD			
			Endpoint	TBD			

Protocol	TBD

4.13 VirtualSafety

The VirtualSafety application will provide personalised construction safety education and training, focusing on the 'Top 4' hazards: Slips/trips/falls from height, caught-in between, struck-by, and electrocution. The VR provides an easy-to-use, reliable safe learning environment and technology that assists advanced HSE decision making and provide personalized feedback in a safe learning environment. It will be a Unity3D application running on Windows PCs or VR headsets. It will be a standalone application for training purposes. It will interact with the DT platform only to receive the 4D BIM data enhanced with safety information of a construction project and send the training feedback.

General Information					
Programming L	anguage(s)	Java / C# / C++			
Hardware Requ	iirements	Standard PC, VR headset (e.g., O	culus Rift or	Quest, HTC Vive)	
Software Requi	rements	Unity			
Development S	tatus	Proof of concept implemented			
		Functional and Non-Functional F	Requirement	S	
	Req-1.1	Loading as-planned / as-perform	ned 4D BIM	model	
Functional	Req-1.2	Loading of safety issues			
Functional	Req-1.3	Definition and permanent storage	ge of safety s	scenarios	
	Req-1.4	Loading of predefined safety scenarios			
Non-	Req-2.1	Performance			
Functional	Req-2.2	Usability			
		Component Dependence	cies		
Internal	Dep-1.1	DT platform			
Dependencies					
External	Dep-2.1	Unity3D			
Dependencies					
	T . A	Interfaces			
T I D I	Input-1	Received from:	Format	IFC/XML/JSON	
Input Data		DT Platform (4D BIM data enhanced with safety	Method	POST/GET REST API	
		information)	Endpoint Protocol	HTTPS	
	Output-1	Sent to:	Format	PLY/JSON/XML	
		DT Platform (Training	Method	POST/GET	
Output Data		feedback)	Endpoint	REST API	
			Protocol	HTTPS	

Table 13 – VirtualSafety: Functional, Non-Functional Requirements and Interfaces

4.14 Digital Command Centre - DCC

The DCC (see Table 14) will be a Unity application for the PMs to visualise and navigate the digital twin data. It will render the 4D BIM model, resources tracking data and other annotations generated by the QC, H&S and Workflow tools. Prerequisites for visualising such data will be the as-planned (4D BIM) and as-built (resources tracking, images and QC, H&S and Workflow tools' annotation) data to be compliant to the COGITO data models and available through the DT Platform's endpoints. There are no outputs planned to be exported from this tool.

Table 14 - DCC: Functional, Non-Functional Requirements and Interfaces

General Information

Programming Language(s) C#

Hardware Req	uiremen <u>ts</u>	Physical or VM Server (Linux)				
Software Requ		Web Server (Apache), Browser (Chrome, Firefox, Edge), Unity				
Development S		Developed from scratch				
*		Functional and Non-Functional Requirements				
	Req-1.1	Connect and Authenticate to th	-			
	Req-1.2	Browse and select project from				
		platform				
	Req-1.3	3D visualisation of the infrastr	ucture's geom	netry (panning, rotation,		
Functional		camera movement and placement, walkthrough) (layer-0)				
	Req-1.4	BIM-elements tree-view and element's selection (layer-0)				
	Req-1.5	Resources tracking data displa	ay (layer-1)			
	Req-1.6	QC defects display (layer-2)				
	Req-1.7	H&S issues display (layer-3)				
	Req-1.8	tasks progress display (layer-4	4)			
	Req-2.1	Web-based App				
Non- Functional	Req-2.2	Scalability				
	Req-2.3	Reusability				
	Req-2.4	Interoperability				
	Req-2.5	Security				
	Req-2.6	User-friendly				
	Req-2.7	Performance				
Component De	ependencies					
Internal	Dep-1.1	DT Platform				
Dependencies						
Pertormal	Dep-2.1	IfcOpenShell IfcConvert 0.6.0b0				
External Dependencies	Dep-2.2	Unity (v2020.2)				
Dependencies	Dep-2.3	New UI Widgets (unity AssetSt	tore)			
Interfaces						
	Input-1	Received from:	Format	IFC		
		DT Platform (4D BIM data)	Method	GET/POST		
			Endpoint	REST API		
	Input 2	Received from:	Protocol Format	HTTPS ISON		
	Input-2	DT Platform (resources	Method	GET/POST		
		tracking data)	Endpoint	REST API		
			Protocol	HTTPS		
	Input-3	Received from:	Format	JSON		
Input Data		DT Platform (QC results)	Method	GET/POST		
			Endpoint	REST API		
	T		Protocol	HTTPS		
	Input-4	Received from: DT Platform (H&S results)	Format	JSON CET/DOST		
			Method Endpoint	GET/POST REST API		
			Protocol	HTTPS		
		Received from:	Format	JSON		
		DT Platform (workflow	Method	GET/POST		
		progress)	Endpoint	REST API		
			Protocol	HTTPS		
	Output-1	Sent to:	Format	N/A		
Output Data		Not Applicable (N/A)	Method	N/A		
			Endpoint	N/A N/A		
			Protocol	N/A		

4.15 Digital Twin visualisation with Augmented Reality – DigiTAR

DigiTAR will be a Unity application for commercial AR head mounted displays (HMDs) to help to visualise and interact in situ with the output of the QC tools (location, type and severity of geometric and visual defects) and Safety tools (location and type of safety hazards and expected mitigation measures).

		General Information	1			
Programming I	anguage(s)	C#				
Hardware Requirements		Augmented-Reality Smart Glasses with RGB-D camera and all the				
		necessary sensors				
Software Requi		Unity				
Development S	tatus	Developed from scratch				
	1	Functional and Non-Functional F				
	Req-1.1	Maps the BIM 3D model enriche the site.				
	Req-1.2	Tracks every building component, defect and safety hazard that has been registered.				
Functional	Req-1.3	Determines user's position and				
Functional	Req-1.4	Confirms annotations about defe	ects and safe	ety hazards.		
	Req-1.5	Creates annotations about safet	y hazards.			
	Req-1.6	Creates task annotations for ren work.	nedial work	and safety hazard mitigation		
	Req-1.7	Sends relevant information about	ut annotatio	ns to DT platform.		
	Req-2.1	User friendly interface				
	Req-2.2	WiFi connection on site				
Non-	Req-2.3	Menu to discern the different functionalities				
	Req-2.4	AR Application				
Functional	Req-2.5	Scalability				
	Req-2.6	Reusability				
	Req-2.7	Security				
		Component Dependen	cies			
Internal	Dep-1.1	DT Platform				
Dependencies	Dep-1.2	Visual Data Pre-processing tool				
	Dep-2.1	Unity (v2020.2)				
External	Dep-2.2	Xbim				
Dependencies	Dep-2.3	IfcOpenShell IfcConvert 0.6.0b0				
	Dep-2.4	Mixed Reality Toolkit				
		Interfaces				
	Input-1	Received from:	Format	JSON		
		DT Platform (User Credentials	Method	GET/POST		
		and Authorisation)	Endpoint	REST API		
			Protocol	HTTPS		
	Input-2	Received from: DT Platform (3D BIM data)	Format	IFC CET (DOST		
Input Data		Di riadoriii (SD Dim data)	Method Endpoint	GET/POST REST API		
Input Data			Protocol	HTTPS		
	Input-2	Received from:	Format	JSON		
		DT Platform (QC data)	Method	GET/POST		
			Endpoint	REST API		
			Protocol	HTTPS		
	Input-3	Received from:	Format	JSON		
		DT Platform (Safety data)	Method	GET/POST		

Table 15 - DCC: Functional, Non-Functional Requirements and Interfaces

			Endpoint	REST API
			Protocol	HTTPS
	Output-1	Sent to:	Format	JSON
		DT Platform (Defect	Method	GET/POST
		confirmation & remedial	Endpoint	REST API
Output Data		works)	Protocol	HTTPS
Output Data	Output-2	Sent to:	Format	JSON
		DT Platform (Hazard	Method	GET/POST
		confirmation & mitigation	Endpoint	REST API
		works)	Protocol	HTTPS

5 Deployment and Data Protection

5.1 Components diagrams

In UML, a component diagram depicts how components are linked together to form larger entities. In general, they are used to illustrate the structure of arbitrarily complex systems. In alignment with Section 4 and to verify that COGITO components' required functionalities are acceptable, the relevant diagrams are provided in the sub-sections below. These diagrams are also aimed to be used as a communication tool between the developers of the components and the relevant stakeholders involved in each UC that incorporates the components under investigation.

5.1.1 Visual Data Pre-Processing

Figure 15 illustrates the UML component diagram of the visual data pre-processing tool. As shown below, the tool is composed of:

- the **application layer** responsible for multi-source visual data filtering and metadata processing; the processed visual data along with the relevant metadata are provided and stored in the DT platform for further usage by other components involved mainly in UC2.1 and UC2.2; and
- the **frontend layer** that that provides a User Interface (UI) so as the user to be able to upload visual raw data and assign tasks and building components (retrieved from the DT platform) to it; and
- a local database (DB) adapter responsible for accessing the local storage of the visual data.

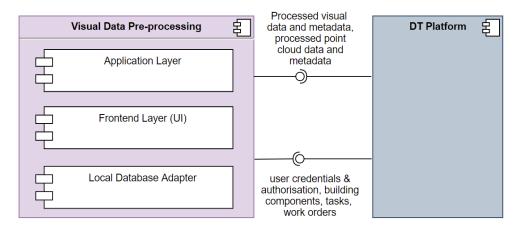


Figure 15 - Component diagram of the visual data pre-processing tool

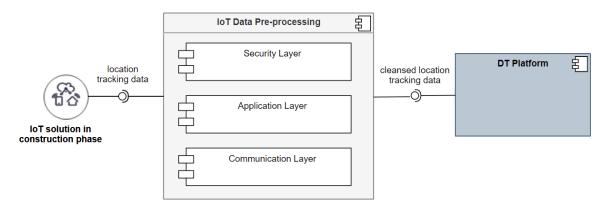

5.1.2 IoT Data Pre-Processing


Figure 16 illustrates the UML component diagram of the IoT data pre-processing tool. As shown below, the tool is composed of:

- the **security layer** responsible for preserving data security in the local IoT ecosystem. Various data privacy and security features will be incorporated in this layer like (pseudo)-anonymization, role-based authorization (e.g. Oauth), encryption (e.g. TLS / HTTPS), etc.;
- the **application layer** that will perform data management (data cleansing, data grouping and binning, etc.) and back up and will be responsible for exposing REST APIs and building wrappers for standards- based communication with the DT Platform; and
- the **communication layer** responsible for the intercommunication with smart IoT devices (e.g. location sensors) that are installed in the construction site for resources' tracking.

5.1.3 Digital Twin Platform

The design of the DT platform delivered in "T7.1 - Digital Twin Platform Design & Interface Specification" will be performed adopting the SOA design pattern, following a layer architecture.

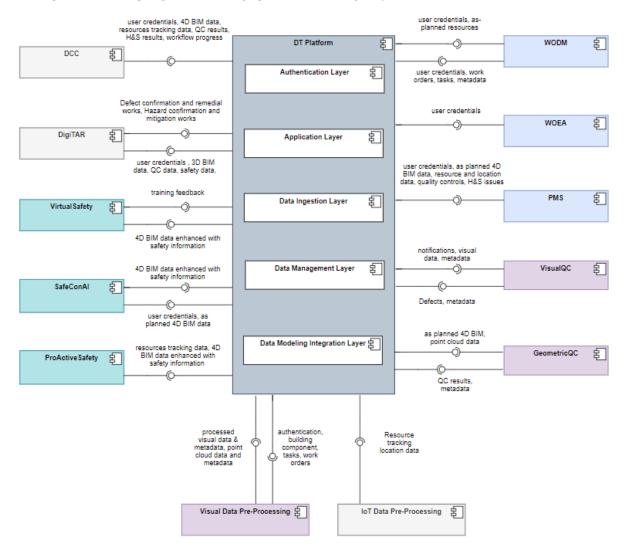


Figure 17 – Component diagram of the Digital Twin platform

The structure of DT platform will consist of five layers (see Figure 17):

- the **authentication layer**, using Keycloak identity provider, implementing user access rules based on user profiles and roles;
- the **application layer**, using the W3C Web of Things standard, to the extent possible, and providing the routing and the endpoints for the synchronous and asynchronous communication between the DT platform and the various COGITO components; this layer will use common data exchange formats like JSON, XML, IFC and BCF to meet the various data requirements of the interfaced COGITO components;
- the data ingestion layer, for loading and semantically linking new datasets into the platform;
- the **data management layer**, providing a common storage cloud infrastructure, accommodating data repositories including graph and timeseries databases; and
- the **data modelling integration layer**, hosting the openBIM implementation, providing version control, enrichment and checking services.

5.1.4 Work Order Definition and Monitoring – WODM

Figure 18 illustrates the UML component diagram of the WODM tool. As shown below, the tool is composed of:

- the **security layer** responsible for user authentication and authorisation;
- the **frontend layer** that provides an interactive and responsive GUI allowing to create work orders, to assign workers, resources, and SLAs, to monitor progress, and to present reports;
- the **backend layer** that processes all information needed to create work orders, to assign workers, resources and SLAs, to monitor progress and to present reports; and
- the **communication layer** that orchestrates the communication with DT Platform, PMS, SLA Manager, BCSC and WOEA.

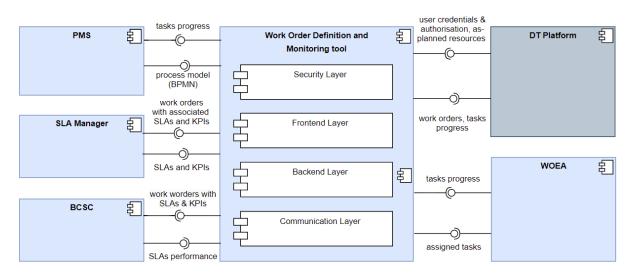


Figure 18 - Component diagram of the WODM tool

5.1.5 Work Order Execution Assistance - WOEA

Figure 19 illustrates the UML component diagram of the WOEA tool. As shown below, the tool is composed of:

- the **security layer** responsible for user authentication and authorisation;
- the **application layer** that displays and processes all information needed to perform work and to report work progress; and
- the **communication layer** that orchestrates communication with DT Platform and WODM.

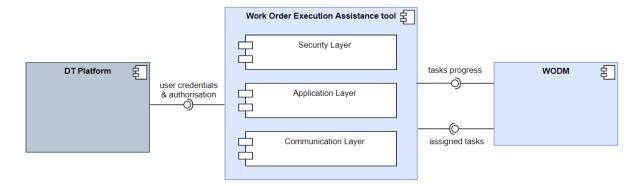


Figure 19 - Component diagram of the WOEA tool

5.1.6 Process Modelling and Simulation tool - PMS

Figure 20 illustrates the UML component diagram of the PMS tool. As shown below, the tool is composed of:

- the **modelling component** that provides a modelling environment for the construction processes, workflows and KPIs;
- the **simulation component** that will simulate a construction process estimating costs and times;
- the **optimisation component** that provides a mechanism to optimise the construction process during its execution; and
- the **integration component** that allows the integration of the modelling, simulation and optimisation with the DT platform and the WODM.

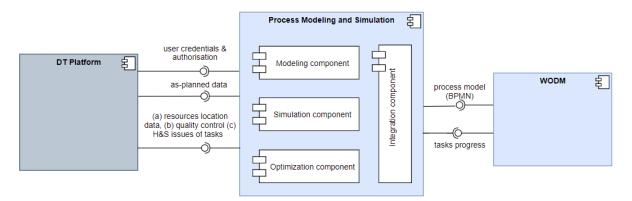


Figure 20 - Component diagram of the PMS tool

5.1.7 Service-Level Agreement Manager – SLAM

Figure 21 illustrates the UML component diagram of the SLA Manager tool. As shown below, the tool is composed of:

- the **Smart Contract Manager** which is the component responsible for establishing communication with WODM in order to retrieve information regarding tasks and stakeholders; it is also responsible for providing to WODM predefined KPIs; this information is then combined to create smart contract enabled SLAs;
- the **Smart Contract Orchestrator** that selects the appropriate nodes on the BS-SC to initiate the deployment of Smart Contracts;

• the Security subcomponent that provides the means for user authentication and authorisation;

		SLA Manager	钌
wodm ع	Work Orders with associated tasks and KPIs	Smart Contract Manager	
		SC Orchestrator	
BC-SC 물	Smart Contracts to be deployed	Security	

Figure 21 - Component diagram of the SLA Manager

5.1.8 BlockChain Platform – BCSC

Figure 22 illustrates the UML component diagram of the BlockChain – Smart Contract (BC-SC) Platform tool. As shown below, the tool is composed of:

- the **KPI Checker** which is the component that communicates with WODM in order to receive updated KPIs that will be used for the execution of the respective smart contracts;
- the **Smart Contract Initiator** that receives smart contracts from the SLA Manager and initiates them on the appropriate nodes; and
- the **Smart Contracts** is the Blockchain plugin that is used to deploy and execute smart contracts. Smart Contract execution results, such as KPIs and predefined actions, will be communicated to authorized parties (i.e., WODM) upon request.

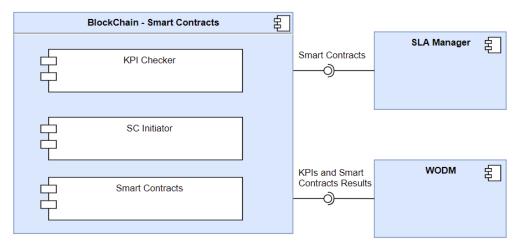


Figure 22 – Component diagram of the BCSC tool

5.1.9 Geometric Quality Control – GeometricQC

Figure 23 illustrates the UML component diagram of the GeometricQC tool. As shown below, the tool is composed of two main sub-components: (i) the **BIM file pre-processing** and (ii) the **GeomQC**, each one further de-composed to internal modules as follows:

• The **BIM file pre-processing** sub-component analyses the relationships between the building elements (adjacency, location, connections, etc.) to obtain and provide to the GeomQC – the main

sub-component of the tool – the list of QC checks that is needed to be performed for each element. More specifically, the BIM file pre-processing includes:

- the **building elements relationships' analyser** that extracts the elements from the as planned BIM file and generates a relationships network between them;
- the **QC regulation dictionary** providing a dictionary with the quality control checks that are needed according to the standards, regulations and client controls;
- the **Elements QC listing** that generates the list of QC needed for each element utilising the elements' relationships and the QC regulation dictionary provided by the building elements relationships' analyser and the QC regulation dictionary respectively.
- The **GeomQC** provides the main functionality of the tool through:
 - the **point cloud matching and segmentation** sub-component that matches the as-built data with the as-designed elements and stores them into objects to be analysed by the *Quality control check* (described below);
 - the **QC work order generator** that creates a list of QC checks that are needed for each element using the as-planned elements that are already built and the information extracted by the BIM file pre-processing;
 - the **quality control check** that carries out the geometric QC using the segmented as-built data, the as-planned data, and the QC work order generator info;
 - the **QC report generator** that generates the QC reports that are going to be delivered to the DTP, DCC, and the client in an appropriate format.

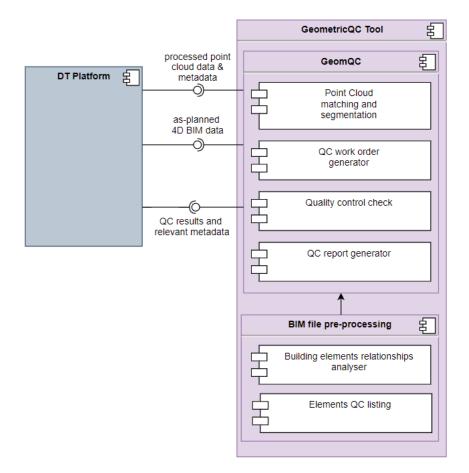


Figure 23 – Component diagram of the GeometricQC tool

5.1.10 Visual Quality Control - VisualQC

Figure 24 illustrates the UML component diagram of the VisualQC tool. As shown below, the tool is composed of:

- the **communication layer** responsible for receiving notifications from the DT Platform when new visual data are available; and
- the **application layer** responsible for processing visual data and detecting defects with the use of deep learning algorithms from.

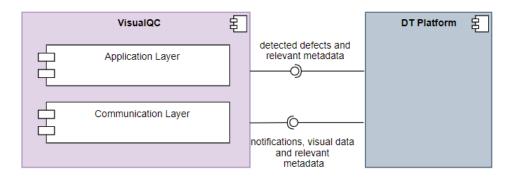


Figure 24 - Component diagram of the VisualQC tool

5.1.11 SafeConAI

Figure 25 illustrates the UML component diagram of the SafeConAI tool. As shown below, the tool is composed of:

- the **rule-based safety analyser** responsible for analysing the imported 4D as-planned model against a set of predefined rules inserted / selected by the user i.e. HSE Manager / HSE Supervisor;
- the **hazard zone identification** sub-component that identifies regions where specific types of hazards are (so-called hazard zones); and
- the **mitigation measures generator** that generates and "injects" mitigation measures into the model.

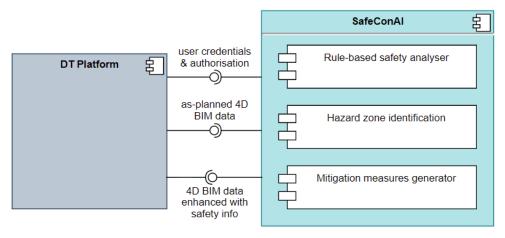


Figure 25 - Component diagram of the SafeConAI tool

5.1.12 ProActiveSafety

Figure 26 illustrates the UML component diagram of the ProActiveSafety tool. As shown below, the tool is composed of:

- the **data analyser** responsible for analysing the location tracking data of the resources coming from the IoT solution deployed on site;
- the **trajectory predictor** that performs short-term location prediction based on location tracking data;

- the **hazard zones checker** that cross-checks: (i) the paths estimated by the trajectory predictor with (ii) the identified hazards extracted by the SafeConAI and stored in the DT platform as a safety-enhanced 4D BIM model; and
- the **risk analyser** that assesses the probability of hazards to result on an accident and issues relevant warnings (alarms) that are sent as notifications to the concerned workers through WOEA.

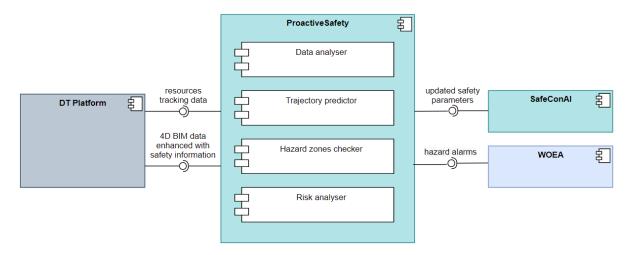


Figure 26 - Component diagram of the ProactiveSafety tool

5.1.13 VirtualSafety

Figure 27 illustrates the UML component diagram of the VirtualSafety tool. As shown below, the tool is composed of:

- the **game generator** responsible for creating a game based on the selected scenario by the user (i.e., HSE trainer) and the updated input from the DT platform as regards hazards' type, construction site information, etc.;
- the **data collector and analyser** that collects, processes and analyses the in-game performance data (data gathered throughout the game experience provided to the worker); and
- the **personalized feedback generator** that constructs a personalised feedback and shares it with the game participant (i.e., worker) and the HSE trainer for further evaluation and feedback.

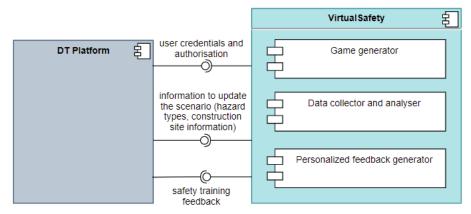


Figure 27 - Component diagram of the VirtualSafety tool

5.1.14 Digital Command Centre – DCC

Figure 28 illustrates the UML component diagram of the DCC tool. As shown below, the tool is composed of:

- the **DCC backend** that includes:
 - the **DT platform connector** enabling the communication with the DT platform;

- the **IFC converter** responsible for obtaining the IFC file and converting it to a mesh-type file (OBJ, DAE) with the accompanying metadata (XML);
- the **HTTP endpoint** enabling the inter-communication of the DCC backend with the DCC unity application; and
- the DCC Unity application that includes:
 - the **Software Development Kit (SDK)** that will be packaged as a unity package and will be a reusable component for any Unity-based COGITO project; it: (i) connects to the DT Platform for receiving near-real-time data; (ii) obtains the mesh and metadata files from the DCC backend and generates a Unity scene; (iii) communicates with the DCC backend and allows the selection of the desired project and the retrieval of the mesh and metadata files;
 - the **real-time data overlay** that uses the SDK and converts and renders the data in the 3D view; it also allows the user to select which data he wants to visualise;
 - the element browser that displays a tree-like view of the building and allows the user to select, filter and manipulate the elements. It also shows element details and properties; and
 - the **3D viewer**, a Unity3D scene, that visualises the as-planned and as-built elements as well as the sensor data.

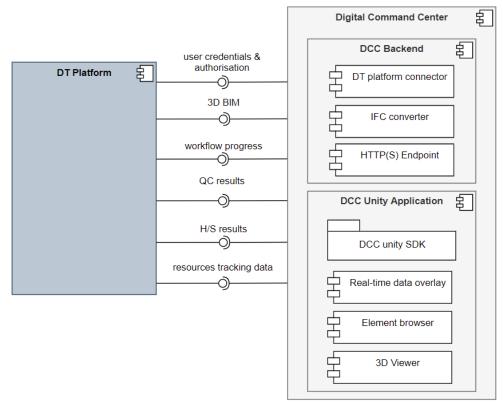
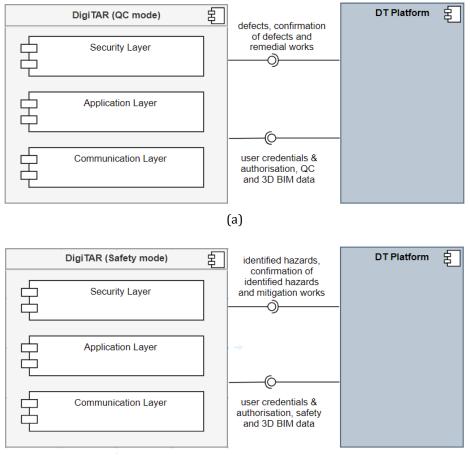


Figure 28 - Component diagram of the DCC

5.1.15 Digital Twin visualisation with Augmented Reality - DigiTAR

Figure 29 illustrates the UML component diagram of the DigiTAR tool in the two different modes of operation: (a) QC mode and (b) safety mode³. As shown below, the tool is composed of:


• the security layer responsible for user's login to the application;

³ Although the decomposition of DigiTAR in its sub-components remains the same, two diagrams are provided mainly in order to distinguish the interfaces required from/provided to other COGITO tools in each mode of operation.

- the **application layer** responsible for the registration and indoor localization. Also, it visualizes the 3D BIM with:
 - (a) the identified defects and presents UI elements to the user (PM/SM/QM) in order to confirm them and send remedial works while in QC mode;
 - (b) the hazards and presents UI elements to the user (HSEM) in order to confirm them and send hazard mitigation works while in safety mode; and
- the **communication layer** responsible for requesting QC and safety data and the 3D BIM for the project selected by the user (PM/SM/QM/HSEM); in addition, it sends the defects/hazards confirmation and remedial/mitigation works defined by the user.

(b)

5.2 Data Protection

To innovate ethically and responsibly, following the guidelines and best practices of the European Commission [7], COGITO applies the concept of 'privacy by design', utilising a framework where systems, databases and processes are designed and developed in way that safeguards the fundamental rights of data subjects. The broader concept of 'data protection by design', now included in the GDPR, requires data controllers to implement appropriate technical and organisational measures to affect the GDPR's core data-protection principles (articles 5 and 25 GDPR). In COGITO, being in the research and development context, steps to achieve data protection by design will include:

- data minimisation;
- technical and organisation measures description including the usage of data-protection focused service providers and storage platforms;

- arrangements that enable data subjects to exercise their fundamental rights (e.g., as regards direct access to their personal data, consent to its use or transfer, make people aware of any tracking/profiling, etc.).
- pseudonymisation or anonymisation of personal data;
- detailed description of COGITO data handling including, for instance, description of the applied cryptography (e.g., encryption).

More details about the "Data protection by design" methodology and its principles adopted in COGITO can be found in the "*D10.2 – POPD - Requirement No. 2*".

In this deliverable, the scope of the section is to provide the technical measures already defined as part of the COGITO architecture design that can support data protection and privacy throughout the COGITO system. The initial list of technical security measures is shown in Table 16. This is a preliminary version that is subject to change while the final list will be provided in the second and final version of the COGITO system architecture.

It should also be mentioned that the analysis to identify personal and/or sensitive data and provide the overall (technical and organisational) measures that will be applied within COGITO to ensure compliance with GDPR (and other applicable national and EU regulations) will be provided in the various versions of the Data Management Plan (first version already submitted [5]).

Technical Measure Description	COGITO approach
Access control and authentication incl. role-based authorisation	Keycloak will most probably be used to allow single sign-in with identity and access management compliant with OAuth 2.0 protocol for authorisation
Logging and monitoring enabling the identification and tracking of user actions (with regard to the processing of personal data);	This will be supported.
Server and database security configured to run using a separate account for COGITO related activities;	This will be supported
Network/communication security	Whenever access request is performed through the Internet, communication should be encrypted through cryptographic protocols (e.g., TLS/SSL v3, SHA 256 RSA)
Backup and data restore procedures	This will be supported
Irreversibly deletion of personal data so that it cannot be recovered	This will be supported
Anonymisation/Pseudonymisation of personal data	Any personal data (requested in the informed consent) will be pseudo- anonymised. More details to be defined.

Table 16 – Technical measures to ensure data protection and privacy throughout the COGITO system

6 Conclusions

The aim of this deliverable has been the documentation of the work carried out within "*T2.4 – COGITO System Architecture Design*" that sets the foundation for the design and development of all COGITO components, taking into account the outcomes of all WP2 tasks activities and predominately the results of "*T2.1 – Elicitation of Stakeholder Requirements*".

In alignment with T2.4 work-planning, it has reported on the intermediate version of the overall architecture of the COGITO solution, including specifications of its key components and their functionalities, an overview of the system architecture describing the components and introducing the various sub-components, and their functional and technical specifications. A revision of the conceptual architecture diagram has initially been performed concluding to an overview of the system architecture, describing the different components, and drafting the information flow among them. Additionally, the data exchange requirements among the COGITO components, per use case, has been represented in sequence diagrams, followed by the detailed design of each COGITO component. To gather information about the functional and non-functional, software and hardware requirements, dependencies to external systems, programming languages, and interactions among the COGITO components, a table template has been used. Finally component diagrams have been designed, illustrating a high-level decomposition of each component to its sub-components. For the development of different types of UML diagrams, the diagrams.net software has been used.

Since this work reflects the activities that have been accomplished for the first version of the COGITO system architecture, assumptions and restrictions have been considered. With the COGITO components prototyping and the COGITO data models and ontologies development, anticipated to be completed in the near future, actions will be taken to overcome those assumptions and restrictions. Due at M17, the first version of the overall architecture will be regularly updated based on the feedback received from the technical developers of the COGITO components, during technical workshops that will be organised. Thus, this report could be considered as a living document to form the final version of the system architecture, to be released on M18.

References

- [1] COGITO, "Description of Action (DoA)," 2021.
- [2] COGITO, "Deliverable D2.1 Stakeholder requirements for the COGITO system," 2021.
- [3] B. Unhelkar, Software Engineering with UML, Auerbach Publications; CRC, , 2018.
- [4] COGITO, "Deliverable D10.2 POPD Requirements No. 2," 2021.
- [5] COGITO, "Deliverable D1.2 Data Management Plan," 2021.
- [6] COGITO, "Deliverable D3.1 Survey of Existing Models & Ontologies & Associated Standardization Efforts," 2021.
- [7] European Commision, "Ethics and data protection," 2018.
- [8] COGITO, "Deliverable D10.1 H-Requirements No.1," 2021.

Annex A – Component Functional, Non-Functional Requirements and Interfaces Template

Table 17 - <Component Name>: Functional, Non-Functional Requirements and Interfaces

General Information				
Short Description				
Programming				
Language(s)				
Hardware Requirements				
Software Requirements				
Development Status				
Function and Non-Functional Requirements				
	Req-1.1	Function and Non-Functional F	Xequil ements	
Functional	Req-1.1 Req-1.2			
	Req-1.2 Req-1.3			
	Req-1.3 Req-1.4			
	Req-2.1			
Non-	Req-2.2			
Functional	Req-2.3			
		Component Depender	ncies	
Internal Dependencies	Dep-1.1			
	Dep-1.2			
	Dep-1.3			
External	Dep-2.1			
External Dependencies	Dep-2.2			
	Dep-2.3			
Interfaces				
	Input-1	Received from:	Format	
			Method	
			Endpoint Protocol	
	Input-2	Received from:	Format	
Input Data	Input-2		Method	
input Data			Endpoint	
			Protocol	
	Input-3	Received from:	Format	
			Method	
			Endpoint	
		2	Protocol	
	Output-	Sent to:	Format	
	1		Method Endpoint	
			Endpoint Protocol	
	Output-	Sent to:	Format	
Output Data	2	Sent to.	Method	
			Endpoint	
			Protocol	
	Output-	Sent to:	Format	
	3		Method	
			Endpoint	
			Protocol	

COGITO

CONSTRUCTION PHASE DIGITAL TWIN MODEL

cogito-project.eu

RAIL

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 958310