

COGITO

System

Architecture

v1

 D2.4 COGITO System Architecture v1 1

COGITO – GA ID. 958310

Construction phase

dIgital Twin mOdel

D2.4 – COGITO System Architecture v1

Dissemination Level: Public

Deliverable Type: Report

Lead Partner: Hypertech

Contributing Partners: UCL, AU, UEDIN, CERTH, UPM, BOC, QUE, NT

Due date: 31-07-2021

Actual submission date: 31-07-2021

Authors

Name Beneficiary Email

Giannakis, Giorgos Hypertech g.giannakis@hypertech.gr

Valalaki, Katerina Hypertech k.valalaki@hypertech.gr

Vassiliadis, Michalis Hypertech m.vassiliadis@hypertech.gr

Rovas, Dimitrios UCL d.rovas@ucl.ac.uk
Lilis, Georgios UCL g.lilis@ucl.ac.uk

Katsigarakis, Kyriakos UCL k.katsigarakis@ucl.ac.uk

Teizer, Jochen AU teizer@eng.au.dk

Esterle, Lukas AU lukas.esterle@eng.au.dk
Schultz, Carl AU cschultz@eng.au.dk

Chronopoulos, Christos AU chrichr@cae.au.dk

Bosché, Frédéric UEDIN f.bosche@ed.ac.uk

Bueno Esposito, Martín UEDIN martin.bueno@ed.ac.uk
Valero, Enrique UEDIN e.valero@ed.ac.uk

Robertson, Gail UEDIN gail.robertson@ed.ac.uk

Dent, Chris UEDIN chris.dent@ed.ac.uk

Wilson, Amy UEDIN Amy.L.Wilson@ed.ac.uk
Kaheh, Zohreh UEDIN zkaheh@exseed.ed.ac.uk

Tsakiris, Thanos CERTH atsakir@iti.gr

Gounaridou, Apostolia CERTH agounaridou@iti.gr

Karkanis, Vasilios CERTH vkarkanis@iti.gr
Chatzakis, Michael CERTH mchatzak@iti.gr

García-Castro, Raúl UPM rgarcia@fi.upm.es

Fernández Izquierdo, Alba UPM albafernandez@fi.upm.es

Chávez, Serge UPM serge.chavez.feria@upm.es
González-Gerpe, Salvador UPM salvador.gonzalez.gerpe@upm.es

Bernardos, Socorro UPM sbernardos@fi.upm.es

Woitsch, Robert BOC robert.woitsch@boc-eu.com

Falcioni, Damiano BOC damiano.falcioni@boc-eu.com
Andriopoulos, Panos QUE panos@que-tech.com

Zografou, Chara QUE c.zografou@que-tech.com

Varga, Ján NT varga@novitechgroup.sk

Straka, Martin NT straka@novitechgroup.sk
Baňas, Vladislav NT banas@novitechgroup.sk

Fedor, Jozef NT fedor@novitechgroup.sk

Lofaj, Stanislav NT lofaj@novitechgroup.sk

mailto:g.giannakis@hypertech.gr
mailto:k.valalaki@hypertech.gr
mailto:m.vassiliadis@hypertech.gr
mailto:d.rovas@ucl.ac.uk
mailto:g.lilis@ucl.ac.uk
mailto:k.katsigarakis@ucl.ac.uk
mailto:teizer@eng.au.dk
mailto:lukas.esterle@eng.au.dk
mailto:cschultz@eng.au.dk
mailto:chrichr@cae.au.dk
mailto:f.bosche@ed.ac.uk
mailto:martin.bueno@ed.ac.uk
mailto:e.valero@ed.ac.uk
mailto:gail.robertson@ed.ac.uk
mailto:chris.dent@ed.ac.uk
mailto:Amy.L.Wilson@ed.ac.uk
mailto:zkaheh@exseed.ed.ac.uk
mailto:atsakir@iti.gr
mailto:agounaridou@iti.gr
mailto:vkarkanis@iti.gr
mailto:mchatzak@iti.gr
mailto:rgarcia@fi.upm.es
mailto:albafernandez@fi.upm.es
mailto:serge.chavez.feria@upm.es
mailto:salvador.gonzalez.gerpe@upm.es
mailto:sbernardos@fi.upm.es
mailto:robert.woitsch@boc-eu.com
mailto:damiano.falcioni@boc-eu.com
mailto:panos@que-tech.com
mailto:c.zografou@que-tech.com
mailto:varga@novitechgroup.sk
mailto:straka@novitechgroup.sk
mailto:banas@novitechgroup.sk
mailto:fedor@novitechgroup.sk
mailto:lofaj@novitechgroup.sk

 D2.4 COGITO System Architecture v1 2

COGITO – GA ID. 958310

Construction phase

dIgital Twin mOdel

Reviewers

Name Beneficiary Email

Bueno Esposito, Martín UEDIN martin.bueno@ed.ac.uk

Rovas, Dimitrios UCL d.rovas@ucl.ac.uk

Lilis, Georgios UCL g.lilis@ucl.ac.uk
Katsigarakis, Kyriakos UCL k.katsigarakis@ucl.ac.uk

Version History

Version Editors Date Comment

0.1 All contributing partners 13.04.2021 Conceptual Architecture - Revision

0.2 Hypertech 23.04.2021 Sections 1 and 2 drafting

0.3 Hypertech 30.04.2021 UCs sequence diagrams drafting

0.4 All contributing partners 14.05.2021 UCs sequence diagrams review

0.5 Hypertech 21.05.2021 Section 3 drafting

0.6 All contributing partners 07.06.2021 Requirements and Interfaces tables

0.7 Hypertech 30.06.2021 Component Diagrams

0.8 All contributing partners 20.07.2021 Sections 4, 5 and 6 drafting

0.9 UCL, UEDIN 28.07.2021 Deliverable internal review

1.0 Hypertech 31.07.2021 Submission to the EC

Disclaimer

©COGITO Consortium Partners. All right reserved. COGITO is a HORIZON2020 Project supported by the
European Commission under Grant Agreement No. 958310. The document is proprietary of the COGITO
consortium members. No copying or distributing, in any form or by any means, is allowed without the prior
written agreement of the owner of the property rights. The information in this document is subject to
change without notice. Company or product names mentioned in this document may be trademarks or
registered trademarks of their respective companies. The information and views set out in this publication
are those of the author(s) and do not necessarily reflect the official opinion of the European Communities.
Neither the European Union institutions and bodies nor any person acting on their behalf may be held
responsible for the use, which may be made, of the information contained therein.

mailto:martin.bueno@ed.ac.uk
mailto:d.rovas@ucl.ac.uk
mailto:g.lilis@ucl.ac.uk
mailto:k.katsigarakis@ucl.ac.uk

 D2.4 COGITO System Architecture v1 3

COGITO – GA ID. 958310

Construction phase

dIgital Twin mOdel

Executive Summary

This deliverable defines the overall COGITO software architecture, including the specification of core

components along with their functionalities. It provides information about the first version of the

architecture [1], detailing the outcomes of work performed thus far and including:

1. Definition of the Conceptual Architecture: The Conceptual Architecture constitutes a high-level

illustration of the COGITO solution with the various components involved, as have been reviewed

and refined in the deliverable “D2.1 – Stakeholder requirements for the COGITO system” [2]. It also

provides a high-level description of the components with their main functionalities that

complements the conceptual architecture design.

2. Use Case Sequence Diagrams: We developed UML sequence diagrams for each COGITO Use Cases

(UCs) to convey high-level information about the relationships among the different components.

We gave special attention to identifying and defining the relationships of each component with the

Digital Twin Platform – the core interoperability component.

3. Component requirements and specifications: A high-level sketch of dependencies among

different parts of the COGITO system (e.g., individual components interfaces, etc.) is delivered,

including information about the functional and non-functional requirements, the constraints of the

different elements in terms of software and hardware resources, compatibility with standards, etc.

4. The internal design of individual components: We provide UML component diagrams with

information about each COGITO component's sub-components.

This first version of the deliverable provides a solid basis for the further detailed specification and

development of individual components. These developments will undoubtedly lead to necessary

adaptations to the overall architecture that will be documented in the second version of this deliverable to

be delivered on M18 of the project.

 D2.4 COGITO System Architecture v1 4

COGITO – GA ID. 958310

Construction phase

dIgital Twin mOdel

Table of contents

Executive Summary ... 3

Table of contents ... 4

List of Figures ... 6

List of Tables ... 7

List of Acronyms .. 8

1 Introduction ... 10

1.1 Scope and Objectives of the Deliverable .. 11

1.2 Relation to other Tasks and Deliverables .. 11

1.3 Structure of the Deliverable .. 12

2 COGITO Conceptual Architecture ... 13

2.1 Multi-Source Data Pre-Processing .. 14

2.2 Digital Twin Platform ... 14

2.3 Adaptive Process Modelling and Workflow Management ... 14

2.4 Quality Control .. 15

2.5 Health and Safety.. 15

2.6 On-site and Off-Site Data Visualisation ... 16

2.7 Revised Conceptual Architecture and Information Flow ... 16

3 COGITO Use Cases – Sequence Diagrams .. 19

3.1 UC-1.1 – Efficient and Detailed project workflow planning using the project's construction

schedule and as-planned BIM model ... 19

3.2 UC-1.2 – Systematic and secure execution, monitoring and updating of the project workflow ... 20

3.3 UC-2.1 – Automated geometric tolerance compliance checking in 3D point cloud data and

allocation to DT building component .. 21

3.4 UC-2.2 – (Semi-)Automated detection of construction defects from visual input captured using

AR and drones .. 22

3.5 UC-3.1 – BIM-based safety planning and hazard prevention before construction starts 24

3.6 UC-3.2 – Monitoring, reporting, and proactive alarming of safety risks on outdoor construction

sites 24

3.7 UC-3.3 – Safety-augmented Digital Twin is used for construction safety training 25

3.8 UC-4.1 – Remote visualisation of DT model information (Data Acquisition, Workflow, Safety,

Quality) using the Digital Command Centre ... 26

3.9 UC-4.2 – On-site visualisation of QC and Safety Planning information using AR/mobile device . 27

4 COGITO Components – Requirements and Specifications ... 29

4.1 Visual Data Pre-Processing .. 29

4.2 IoT Data Pre-Processing .. 30

4.3 Digital Twin Platform – DT Platform ... 31

4.4 Work Order Definition and Monitoring – WODM .. 33

 D2.4 COGITO System Architecture v1 5

COGITO – GA ID. 958310

Construction phase

dIgital Twin mOdel

4.5 Work Order Execution Assistance – WOEA .. 35

4.6 Process Modelling and Simulation – PMS .. 36

4.7 Service-Level Agreement Manager – SLAM .. 37

4.8 BlockChain Platform – BCSC .. 38

4.9 Geometric Quality Control – GeometricQC ... 39

4.10 Visual Quality Control – VisualQC ... 40

4.11 SafeConAI ... 41

4.12 ProActiveSafety ... 42

4.13 VirtualSafety ... 43

4.14 Digital Command Centre – DCC .. 43

4.15 Digital Twin visualisation with Augmented Reality – DigiTAR ... 45

5 Deployment and Data Protection .. 47

5.1 Components diagrams ... 47

5.1.1 Visual Data Pre-Processing ... 47

5.1.2 IoT Data Pre-Processing .. 47

5.1.3 Digital Twin Platform .. 48

5.1.4 Work Order Definition and Monitoring – WODM ... 49

5.1.5 Work Order Execution Assistance – WOEA .. 49

5.1.6 Process Modelling and Simulation tool – PMS ... 50

5.1.7 Service-Level Agreement Manager – SLAM .. 50

5.1.8 BlockChain Platform – BCSC .. 51

5.1.9 Geometric Quality Control – GeometricQC .. 51

5.1.10 Visual Quality Control – VisualQC .. 52

5.1.11 SafeConAI .. 53

5.1.12 ProActiveSafety .. 53

5.1.13 VirtualSafety .. 54

5.1.14 Digital Command Centre – DCC ... 54

5.1.15 Digital Twin visualisation with Augmented Reality – DigiTAR... 55

5.2 Data Protection ... 56

6 Conclusions ... 58

References ... 59

Annex A – Component Functional, Non-Functional Requirements and Interfaces Template 60

 D2.4 COGITO System Architecture v1 6

COGITO – GA ID. 958310

Construction phase

dIgital Twin mOdel

List of Figures

Figure 1 – Methodology for the definition COGITO system architecture - version 1 .. 11
Figure 2 – Dependencies on other tasks of the COGITO work plan ... 12
Figure 3 – COGITO system architecture [1] ... 13
Figure 4 – Revised Conceptual Architecture: Before Construction Starts .. 16
Figure 5 – Revised Conceptual Architecture: Construction Phase... 17
Figure 6 – Sequence diagram of UC-1.1 ... 19
Figure 7 – Sequence diagram of UC-1.2 ... 21
Figure 8 – Sequence diagram of UC-2.1 ... 22
Figure 9 – Sequence diagram of UC-2.2 ... 23
Figure 10 – Sequence diagram of UC-3.1 ... 24
Figure 11 – Sequence diagram of UC-3.2 ... 25
Figure 12 – Sequence diagram of UC-3.3 ... 26
Figure 13 – Sequence diagram of UC-4.1 ... 27
Figure 14 – Sequence diagram of UC-4.2 ... 28
Figure 15 – Component diagram of the visual data pre-processing tool .. 47
Figure 16 – Component diagram of the IoT data pre-processing tool ... 48
Figure 17 – Component diagram of the Digital Twin platform ... 48
Figure 18 – Component diagram of the WODM tool .. 49
Figure 19 – Component diagram of the WOEA tool ... 50
Figure 20 – Component diagram of the PMS tool .. 50
Figure 21 - Component diagram of the SLA Manager .. 51
Figure 22 – Component diagram of the BCSC tool .. 51
Figure 23 – Component diagram of the GeometricQC tool ... 52
Figure 24 – Component diagram of the VisualQC tool .. 53
Figure 25 – Component diagram of the SafeConAI tool ... 53
Figure 26 – Component diagram of the ProactiveSafety tool .. 54
Figure 27 – Component diagram of the VirtualSafety tool .. 54
Figure 28 – Component diagram of the DCC.. 55
Figure 29 – Component diagram of the DigiTAR tool in (a) QC mode and (b) safety mode 56

 D2.4 COGITO System Architecture v1 7

COGITO – GA ID. 958310

Construction phase

dIgital Twin mOdel

List of Tables

Table 1 – Visual Data Pre-Processing: Functional, Non-Functional Requirements and Interfaces 29
Table 2 – IoT Data Pre-Processing: Functional, Non-Functional Requirements and Interfaces 30
Table 3 – DT Platform: Functional, Non-Functional Requirements and Interfaces ... 31
Table 4 – WODM: Functional, Non-Functional Requirements and Interfaces .. 33
Table 5 – WOEA tool: Functional, Non-Functional Requirements and Interfaces .. 35
Table 6 – PMS: Functional, Non-Functional Requirements and Interfaces.. 36
Table 7 – SLAM: Functional, Non-Functional Requirements and Interfaces ... 37
Table 8 – BlockChain Platform: Functional, Non-Functional Requirements and Interfaces 38
Table 9 – GeometricQC tool: Functional, Non-Functional Requirements and Interfaces 39
Table 10 – VisualQC tool: Functional, Non-Functional Requirements and Interfaces .. 40
Table 11 – SafeConAI: Functional, Non-Functional Requirements and Interfaces ... 41
Table 12 – ProActiveSafety: Functional, Non-Functional Requirements and Interfaces 42
Table 13 – VirtualSafety: Functional, Non-Functional Requirements and Interfaces ... 43
Table 14 – DCC: Functional, Non-Functional Requirements and Interfaces ... 43
Table 15 – DCC: Functional, Non-Functional Requirements and Interfaces .. 45
Table 16 – Technical measures to ensure data protection and privacy throughout the COGITO system 57
Table 17 – <Component Name>: Functional, Non-Functional Requirements and Interfaces 60

 D2.4 COGITO System Architecture v1 8

COGITO – GA ID. 958310

Construction phase

dIgital Twin mOdel

List of Acronyms

Term Description

AI Artificial Intelligence

API Application Programming Interface

AR Augmented Reality

BCSC BlockChain Smart Contract

BIM Building Information Model

BPMN Business Process Model and Notation

COGITO Construction Phase diGItal Twin mOdel

DB DataBase

DCC Digital Command Centre

DigiTAR Digital Twin visualisation with AR

DoA Description of Action

DT Digital Twin

GDPR General Data Protection Regulation

H&S Health and Safety

HMD Head Mounted Display

HSE Health, Safety and Environment

HSEM Health, Safety and Environment Manager

HSES Health, Safety and Environment Supervisor

HSET Health, Safety and Environment Trainer

IoT Internet of Things

KPI Key Performance Indicator

POPD Protection Of Personal Data

PM Project Manager

PMS Process Modelling and Simulation

QC Quality Control

QM Quality Manager

QS Quantity Surveyor

REST Representational State Transfer

SDK Software Development Kit

SLAs Service Level Agreements

SLAM Service Level Agreements Manager

SM Site Manager

T Task

UAV Unmanned Aerial Vehicle

UC Use Case

UDI User-Driven Innovation

UI User Interface

UML Unified Modelling Language

UR User Requirement

 D2.4 COGITO System Architecture v1 9

COGITO – GA ID. 958310

Construction phase

dIgital Twin mOdel

VR Virtual Reality

WODM Work Order Definition and Monitoring tool

WOEA Work Order Execution Assistance tool

WP Work package

 D2.4 COGITO System Architecture v1 10

COGITO – GA ID. 958310

Construction phase

dIgital Twin mOdel

1 Introduction

This deliverable reports on the first version of COGITO system architecture, and it constitutes the first

outcome of “T2.4 – COGITO System Architecture Design”. This work delivers the overall COGITO architecture

and the specifications of core components along with their functionalities. The COGITO partners followed a

specific methodology to design the software architecture that will act as the backbone of all the subsequent

developments foreseen in the project.

To deliver the architectural definitions and to materialise the conceptual architecture design, well-known

and well-established software engineering tools have been used (e.g. sequence diagrams, deployment

views). The Unified Modelling Language (UML) has been used [3], a modelling standard that facilitates the

creation of standardised diagrams towards improving communication and increasing project stakeholders’

engagement. In general, increased engagement is likely to contribute to:

• improved quality during the design and development of the software;

• reduction of errors; and

• improvement of the end-user acceptance of the solution.

UML dramatically facilitates the design process: diagrams and specifications can be created, studied,

reviewed, and modified collaboratively, promoting common understanding. The UML is assumed as the de

facto standard for software modelling [3], and, thus, it is adopted in the COGITO architectural design.

The methodology has been based on agile principles with multiple iterations and continuous and interactive

communication with the COGITO partners, as illustrated in Figure 1. The process consists of six (6) steps as

defined below:

• Step 1: Revision of the DoA conceptual architecture updating the COGITO components to align with

the most recent work detailed in the D2.1 “Stakeholder requirements for the COGITO system”;

• Step 2: Definition of the conceptual data flow and high-level building blocks’ dependencies;

• Step 3: Creation of UML sequence diagrams of all the Use Cases (UCs) defined in the D2.1;

• Step 4: Identification of components requirements in terms of software / hardware, programming

language (s), etc. as well as functional & non-functional specifications and internal/external

dependencies; a clear definition of interfaces required for their operation (input/output data,

format, method, endpoint, and protocol) – see Annex A for the template created to support this

activity;

• Step 5: Creation of UML component diagrams aligned with the components’ requirements and

interfaces table (step 4) and the UML sequence diagrams (step 3);

• Step 6: Finalisation of the conceptual architecture and drafting the current document, including

the most recent version of all UML diagrams and the respective components’ tables.

Online collaborative tools involving all partners were extensively used to ensure alignment, consistency,

and shared understanding among the consortium members. Key meetings where critical decisions were

taken regarding the definition of the architecture were:

• The Work Package (WP) targeted online meetings, organised with the participation of all

involved partners and aimed at defining components requirements aligned with the WPs / Tasks

description. Inter-dependencies, as regards the work and time plan were also identified during

these telcos;

• Two (2) technical workshops, organised with the participation of all partners and aimed at

discussing, fine-tuning, and agreeing on the UML sequence diagrams of all the COGITO UCs.

 D2.4 COGITO System Architecture v1 11

COGITO – GA ID. 958310

Construction phase

dIgital Twin mOdel

Figure 1 – Methodology for the definition COGITO system architecture - version 1

1.1 Scope and Objectives of the Deliverable

Based on the COGITO DoA, the scope of the current document is to deliver the overall architecture of the

COGITO solution and the specifications of the key components along with their functionalities. The objective

is to provide an appropriate decomposition of the COGITO solution without detailing the interface

specifications, to be elaborated in “WP3 – COGITO Data Model and Reality Capture Data Tools”. To this end,

critical architectural elements were identified, including components and their relationships, as well as

relevant architectural mechanisms to address cross-cutting relationships (i.e., those not localized within a

single component but affecting the design and operation of other parts of the architecture). One of the core

outcomes of this work is the updated conceptual architecture diagram, presented in this document, that

identifies the system components and interconnections (data flows) amongst them.

Aspects pertaining to deployment and the implementation technologies/platforms of the various COGITO

tools are also investigated as part of this deliverable. This is to ensure operational capacity in the various

environments where the tools will be deployed – from cloud-based ICT tools to Augmented Reality (AR)

glasses and construction site Internet of Things (IoT) components. Finally, the mechanisms defined as part

of COGITO architecture design that will guarantee data protection and privacy throughout the COGITO

system are discussed in alignment with the “D10.2 – POPD - Requirement No. 2” [4] and the “D1.2 – Data

Management Plan” [5].

1.2 Relation to other Tasks and Deliverables

This document is the first tangible outcome of the “T2.4 – COGITO System Architecture Design”, which – based

on the DoA – falls under the activities of “WP2 – Stakeholders Requirements, Evaluation Planning and

Architecture Design”. The work performed strongly depends on various tasks and deliverables within the

WP2 and beyond as depicted in Figure 2. More specifically:

• Architecture design is primarily based on the work performed in “T2.1 – Elicitation of Stakeholder

Requirements” and its primary outcome i.e., “D2.1 – Analysis of digital tools market and prevailing

regulatory frameworks”. More specifically, the COGITO components and their involvement in the

various UCs were essential for developing this version of COGITO system architecture.

• Another important input was the work performed within “T3.1 – Survey of Existing Data Models &

Ontologies & Associated Standardization Efforts” and its deliverable “D3.1 – Survey of Existing Models

& Ontologies & Associated Standardization Efforts” [6] including a comprehensive review of the

relevant data models, ontologies, and standardisation initiatives.

• “D2.3 – COGITO evaluation methodology” (output of “T2.3 – Development of an Evaluation

Methodology for the Impact of COGITO Tools”) provided the methodology for the evaluation of the

COGITO solution and tools, from both functional and usability viewpoints supporting the

consortium to ensure alignment with the overall solution design;

 D2.4 COGITO System Architecture v1 12

COGITO – GA ID. 958310

Construction phase

dIgital Twin mOdel

• From a market viewpoint, “T2.2 – Analysis of Regulations & Markets for Digitalization in Construction

Industry" provided the analysis of the regulatory and market conditions within which the COGITO

digital twin tools will be called upon to make an impact. This supported consortium members to

guide architectural decisions, taking into account business opportunities as well.

Figure 2 – Dependencies on other tasks of the COGITO work plan

Apart from the abovementioned tasks/deliverables that were valuable inputs for this work, this document

(along with its next version) will act as the backbone of all sub-sequent developments foreseen in the

project. Thus, D2.4 will guide the activities to be performed in all WPs / Tasks dealing with the design and

development of the various COGITO components, namely:

• “WP3 – COGITO Data Model and Reality Capture Data Tools”;

• “WP4 – On-site Workers’ Health & Safety Assurance Tools”;

• “WP5 – Geometric and Visual Quality Control Tools”;

• “WP6 – Adaptive Workflow Modelling and Workflow Management Automation Tools”;

• “WP7 – COGITO Digital Twin Platform”; and

• “T8.1 – End-to-end ICT System Integration, Testing and Refinement”.

1.3 Structure of the Deliverable

The deliverable is structured as follows:

• Section 1 introduces the document;

• Section 2 describes the COGITO conceptual architecture, the updates made as regards the relevant

diagram provided in the COGITO DoA and the core building blocks of the solution;

• Section 3 provides the UML sequence diagrams of all COGITO UCs along with a brief description of

the interactions that are taking place in each of them;

• Section 4 provides the requirements and specifications of all the components of COGITO

architecture following the template in Annex A;

• Section 5 provides the UML component diagrams of all the components of COGITO architecture

accompanied by a description of their main sub-elements. In the same section the main technical

data protection mechanisms already identified are presented; and

• Finally, Section 6 concludes the document.

T2.1 Stakeholder requirements

✓ Analysis of the end-user requirements to

create the necessary inputs for defining

the different components;

✓ Business scenarios and Use cases.

T3.1 Data models & ontologies survey

✓ Survey on data models, ontologies and

standardization initiatives related to the

construction phase

T2.3 Evaluation Methodology

✓ Identification of KPIs and baselines for

the objective and quantified estimation of

the benefits of COGITO tools

T2.2 Market Analysis

✓ Analysis of digital tools market and

prevailing regulatory frameworks in the

construction sector

T2.4 COGITO system architecture (v1)

 D2.4 COGITO System Architecture v1 13

COGITO – GA ID. 958310

Construction phase

dIgital Twin mOdel

2 COGITO Conceptual Architecture

This section provides information about the role of each high-level key component, as appeared in the initial

conceptual architecture diagram of the project, introduced in the Description of Action (DoA) [1]. The

COGITO system architecture comprises:

• the COGITO Digital Twin (DT) Platform, a data integration middleware that supports the complex

requirements of each of the applications;

• the Multi-source Visual and IoT Data Pre-processing components to pre-process raw visual and IoT

data respectively;

• the Health & Safety (H&S) components to generate rules for hazard detection based on design &

planning, and issue preventive warnings or alerts to construction workers and operating

suggestions for equipment operators to mitigate dangerous situations leveraging real-time

information from the site;

• the Quality Control components to retrieve as-designed and as-is data from the DT Platform and

detect defects and areas out of tolerance using advanced algorithms;

• the Workflow modelling, simulation and management components to monitor and optimise the

construction processes in terms of cost and time; and

• applications (apps) for AEC stakeholders, that retrieve metrics and messages populated by the

health & safety, Quality Control and workflow management services from the DT Platform to

support off-site and on-site crew activities and training.

Common ground of all above is the COGITO data models and ontologies, which organise data elements and

standardise their relations, to the extent possible.

Figure 3 – COGITO system architecture [1]

These component groups, reviewed and refined in the context of “T2.1 – Elicitation of the Stakeholders

requirements” activities [2], are introduced below.

 D2.4 COGITO System Architecture v1 14

COGITO – GA ID. 958310

Construction phase

dIgital Twin mOdel

This section aims to briefly present each component’s scope before illustrating the revised conceptual

architecture and the information flow among them.

2.1 Multi-Source Data Pre-Processing

The Visual and IoT Data Pre-processing components will be responsible for filtering and processing raw

data acquired on-site and serving data requested for real-time resources tracking (personnel and heavy

machinery) and objects detection and recognition.

The Visual Data Pre-processing component, designed, developed, and delivered in “T3.5 – Visual Data Pre-

processing Module”, will be in charge of smoothing, denoising and enhancing raw data acquired by laser

scanners and photogrammetry on the ground or mounted on Unmanned Aerial Vehicles (UAVs).

In “T3.3 – IoT solution in Construction Phase” we investigate the sensors and relevant communication

protocols capable of capturing construction site as-is data. The survey mentioned above will conclude to

the IoT sensor network that will feed the IoT Data Pre-processing component, developed in “T3.4 – IoT

Data Pre-Processing Module”. The IoT Data Pre-processing component will filter raw data from IoT devices

installed on the construction field and generate datasets stored in the COGITO DT Platform. This component

will apply advanced data cleansing techniques, focusing on detecting and removing potential errors and

inconsistencies in the raw datasets. Α seamless communication with the DT Platform will be achieved using

RESTful Application Programming Interfaces (APIs).

2.2 Digital Twin Platform

The Digital Twin platform (DT Platform), to be designed and specified in “T7.1 – Digital Twin Platform

Design & Interface Specification” and developed within “T7.2 – Extraction, Transformation & Loading Tools

and Model Checking”, is a semantically-enabled data integration middleware. The core functionalities to be

provided by the DT platform include Master Data Management services, which include operational support

for storing, versioning, routing and consistent updating of the data that comprise the virtual representation

of the construction site.

The DT Platform will support the COGITO services and applications by providing a central repository for all

types of data available before construction (e.g., 3D BIM models, schedules, and resources), during

construction (point clouds, images, sensor tracking data and videos), and derived quantities like

performance data Visual and Geometric Quality Control results, or even Health and Safety Rules.

The proposed central repository will be supported by an ontology framework that will be capable to capture

all data requirements for the digital representation of the COGITO environment, to integrate the data

provided by the different COGITO components and to respond efficiently to various data needs of the

COGITO services and applications. The COGITO ontology framework will be also aligned with well-known

standards such as SAREF1, which is supported by the European Telecommunications Standards Institute,

and W3C Thing Description2.

2.3 Adaptive Process Modelling and Workflow Management

For the Adaptive Process Modelling and Workflow Management, five components will be deployed.

1. The Process Modelling and Simulation (PMS) tool, developed in “T6.2 – Adaptive

Processes/Workflow Modelling and Simulation-based Optimisation”, will be used in the planning

phase (before the actual construction starts) to develop process and workflow models of all

interactions between the various tasks, building components and resources that a construction

project entails. In the construction phase, the PMS will provide functionalities for (a) simulation

and formal verification of the process of the designed construction project to allow the project

managers to identify process steps or interactions that are critical for the successful

implementation of the project, (b) optimisation opportunities to minimise time and/or cost.

1 https://saref.etsi.org/
2 https://www.w3.org/2019/wot/td

https://saref.etsi.org/
https://www.w3.org/2019/wot/td

 D2.4 COGITO System Architecture v1 15

COGITO – GA ID. 958310

Construction phase

dIgital Twin mOdel

2. The Work Order Definition and Monitoring (WODM) tool, developed in “T6.3 – Adaptive Workflow

Management and Automation”, will be used to define work order templates, generate work orders

and executing/monitoring the defined workflow. Adaptiveness is necessary to account for

unexpected effects leading to updates of the work orders and assignments to personnel, such as:

weather patterns that may prohibit specific works, equipment availability shortness, etc. The

WODM User Interface (UI) will be designed and delivered in the context of “T6.4 – Personalised On-

site Works Support and Relevant Apps Development”.

3. The Work Order Execution Assistance (WOEA) is an application for on-site workers, that will

provide functionalities to assist them in reporting work progress and alert them for hazardous

components and areas. This component will be another outcome of T6.4 activities.

4. Blockchain-enabled smart contracts will interact with the WODM tool to provide trusted means to

verify the completion of construction tasks. To this direction two main components are designed,

developed and delivered within “T6.1 – Blockchain & Smart Contracts on the Workflow Modelling

and Management”, the Service Level Agreements Manager (SLAM) and the BlockChain-enabled

Smart Contracts (BCSC) platform.

2.4 Quality Control

For the as-built Quality Control management, within COGITO, two main components are being developed:

the Scan-vs-BIM–based Geometric Quality Control (GeometricQC) and the Deep Learning-based Visual

Quality Control (VisualQC) components.

GeometricQC, to be designed, developed, and delivered within “T5.1 – Scan-vs-BIM Geometric Quality

Control” and “T5.3 – BIM-based Standard Test Methods for Geometric Quality Control”, aims to automatically

control the geometric quality of the executed works against the specified geometric dimensions and

tolerances, given the as-built 3D data acquired on-site. The as-built 3D data consist of (dense laser scanned)

point clouds acquired on-site. The specified dimensions are obtained from the as-planned 4D BIM data,

whereas the specified tolerances are obtained from ISO/CEN standards used by industry (and translated

digitally to enable the automated process). The QC results are modelled and semantically linked to the

BIM/DT model.

The VisualQC tool will automatically detect common visible defects of constructed/erected concrete

components and their severity in colour images (visual spectrum). The QC results are modelled and

semantically linked to the BIM/DT data models. The VisualQC will result from “T5.2 – Deep Learning Image

Processing for Visual Quality Control”.

2.5 Health and Safety

Health and safety measures can be taken during the design and planning phase to prevent accidents on the

construction site. In this direction, within COGITO, the SafeConAI component is being developed in “T4.1 –

Health & Safety Prevention through Design and Planning”. SafeConAI aims to process the as planned 4D BIM

data of a construction project and based on a health and safety rule checking prototype, propose mitigation

measures, enhancing the 4D BIM data with relevant information.

ProActiveSafety will be the solution to accidents prevention in the construction phase. This component,

main outcome of “T4.2 – Proactive Real-time Risk Monitoring and Detection” and “T4.3 – Tools for

Personalized Alerts, Prediction and Feedback” will utilise behavioural data of resources (equipment and

personnel) on the construction site to avoid close-calls, accidents, and collateral damage. The location data,

acquired by the IoT Data Pre-processing component will be utilised to analyse and predict trajectories of

resources with a focus on four primary areas that reflect detection, avoidance, tracking, prediction, and

learning. Estimated paths will be cross-checked with potential hazards based on previous

experiences/observations, rules, and the probability of hazards given the dynamic nature of the work

environment. Functionalities for performing timely data processing using cloud-based artificial intelligence,

and issuing preventive warnings or alerts to construction workers will be supported by this component.

 D2.4 COGITO System Architecture v1 16

COGITO – GA ID. 958310

Construction phase

dIgital Twin mOdel

2.6 On-site and Off-Site Data Visualisation

The Digital Command Centre (DCC) will be the off-site data visualisation solution, that will help the Project

Manager to monitor through visualisation the construction progress, detected QC defects and H&S issues.

It will be used to visualise, navigate and walkthrough the 3D BIM model, focusing on the geometric data,

construction resources data and other data and annotations generated by the QC, H&S and Workflow tools

(available through the DT platform). The DCC will be the main output of “T7.3 – Data Transformation for 3D

BIM Rendering” and “T7.4 – 3D Mesh Data Quality and Consistency Checker and 3D Data Transformation

Testing”.

The Digital Twin visualisation with Augmented Reality (DigiTAR) tool, a software package for commercial

AR head mounted displays, prototyped, developed and delivered in “T5.4 – User Interface for Construction

Quality Control”, will provide on-site visualisation of useful information such as geometric and visual quality

control results (defects) as well as safety hazards using AR/mobile device.

Apart from the on-site and off-site data visualisation solutions mentioned above and intended to be used in

the construction phase, VirtualSafety is another application planned for Health and Safety educational and

training purposes. It will be developed within “T4.4 – Personalised Safety Education and Learning”.

2.7 Revised Conceptual Architecture and Information Flow

Having concluded a list of fifteen COGITO main components, introduced above, the conceptual COGITO

system architecture of Figure 3 has been reviewed and refined to illustrate the high-level interactions and

information flow among these components. To reflect the information flow on the system architecture and

improve its readability, we decided to split the overall solution into two diagrams. The first diagram depicts

the revised conceptual architecture that involves all COGITO components that are used in the planning

phase, before the actual construction works start (see Figure 4). In contrast, the second diagram represents

the information flow between the COGITO components that are applied in the construction phase (see

Figure 5). In both Figures, information about the partner leading each component development is provided.

Figure 4 – Revised Conceptual Architecture: Before Construction Starts

As can be seen in Figure 4, before the construction works of a project start, the as-planned data of the project

are uploaded to the DT platform. As-planned data includes the 3D BIM model, scheduling data that could be

the fourth dimension of the BIM model, and the resources (workers and their roles and heavy machinery).

Then, the information flows as follows:

1. The PMS tool requests and receives a subset of the 4D BIM data (as-planned schedule including

construction elements IDs) from the DT Platform. Using process and workflow templates, that have

 D2.4 COGITO System Architecture v1 17

COGITO – GA ID. 958310

Construction phase

dIgital Twin mOdel

been designed and store in its local Database (DB), it generates an optimised business process and

workflow model that is sent to the WODM tool. In parallel, SafeConAI requests and receives (a) the

4D BIM data from the DT Platform, and (b) formalised safety code rules from its local DB, to enhance

the 4D BIM data with health and safety information. The enhanced 4D BIM model is forwarded to

the DT Platform.

2. The WODM tool requests and receives (a) the as-planned resources data from the DT Platform and

(b) the SLAs templates from SLAM, and after the user input to define the work orders and their

assignments to personnel, it sends the associated SLAs along with involved personnel and tasks

back to SLAM (this information might also be sent to the DT Platform).

In the construction phase (see Figure 5), groups of components are collaborating to provide support for the

Worflow, QC and H&S management.

1. The IoT and Visual Data Pre-processing component feed the DT Platform with the as-built data

acquired on-site.

2. With regards to the worfklow management, the WODM tool sends notifications to workers about

tasks that have been assigned to them through the WOEA application. This application is also used

by the workers to report their tasks progress back to WODM. The PMS tool requests and received

resources tracking data from the DT platform, combines it with the reported tasks progress data,

runs scenarios simulation and optimisation, resulting to updates of the process and workflow

model. The updated model is received by WODM, which in turn sends that tasks progress and the

updated work orders (workflow) to the DT Platform.

3. Concerning the prevention of the construction on-site accidents, ProactiveSafety receives the

resources tracking data from the DT platform and processes it in combination with the 4D BIM

model enhanced with health and safety information, to generate alarms for H&S risks that are sent

as notifications to WOEA. Further information is populated by ProactiveSafety to update the H&S

parameters and rules of the SafeConAI’s local DB.

4. For the Quality Control checking, the GeometricQC tool requests and receives the 4D BIM model

and point cloud data from the DT platform to produce the geometric QC results that are forwarded

to the DT Platform. In a similar manner, the VisualQC tool requests and receives the 4D BIM model

and visual (imagery) data from the DT platform to produce the visual QC results that are forwarded

to the DT Platform.

5. DCC, DigiTAR and VirtualSafety are mainly used for visualisation purposes, as described in Section

2.6.

Figure 5 – Revised Conceptual Architecture: Construction Phase

 D2.4 COGITO System Architecture v1 18

COGITO – GA ID. 958310

Construction phase

dIgital Twin mOdel

As mentioned earlier, each of the steps entails significant complexity that a high-level conceptual

architecture cannot capture. In the following sections, delving deeper into the sequence diagrams of the

UCs, the components requirements, specifications, and diagrams (including all sub-components), these

steps should become more evident.

 D2.4 COGITO System Architecture v1 19

COGITO – GA ID. 958310

Construction phase

dIgital Twin mOdel

3 COGITO Use Cases – Sequence Diagrams

In this section, high-level information about the relationships among the different components, required for

the realisation of the COGITO UCs, is provided in the form of UML sequence diagrams. Although a detailed

description of all the UCs can be found in the D2.1, a concise summary is provided in each of the following

sections for clarity and consistency purposes.

3.1 UC-1.1 – Efficient and Detailed project workflow planning using the

project's construction schedule and as-planned BIM model

In this UC, a detailed construction project workflow is derived from the as-planned 4D BIM model using a

data-driven approach. In particular, as shown in Figure 6, the UC is initiated by its stakeholder (actor).

Figure 6 – Sequence diagram of UC-1.1

 D2.4 COGITO System Architecture v1 20

COGITO – GA ID. 958310

Construction phase

dIgital Twin mOdel

After the login is processed (credentials provided centrally by the DT platform), the simulation part of the

UC to extract the BMPN file is followed. In order to guarantee the execution of this part, the following

steps/communications between components should take place:

1. PMS requests and receives from the DT platform the as-planned 4D BIM model of the project;

2. Pre-defined workflow templates are loaded and visualised in the PMS UI;

3. The actor (PM/SM) defines the workflows that are required for the specific project and associates

them with the already received as-planned data;

4. The PMS start the processing of productivity / climate / etc. historical data (already available in a

local database);

5. The actor (PM/SM) triggers the simulation initiation;

6. The PMS runs the simulations and visualise the simulated workflows for the project;

7. The actor (PM/SM) selects the simulated workflows that s/he prefers;

8. The PMS creates the BMPN file that is sent to the WODM for further processing.

Having the simulation part finalised, the workflow process for defining the relevant work orders can be

initiated. The workflow is secured using blockchain technology. For this to be executed, the following

steps/communications between components should take place (Figure 6):

1. The actor (PM/SM) logs in the WODM UI (the credentials are provided centrally by the DT

platform);

2. WODM requests and receives the as-planned resources of the project from the DT platform;

3. WODM requests and receives relevant SLAs and KPIs from the SLAM;

4. As planned resources along with SLAs and KPIs are visualised in the WODM UI;

5. The actor (PM/SM) defines the work orders and associates them with SLAs and KPIs;

6. WODM sends the work orders with associated SLAs and KPIs to the SLAM;

7. SLAM sends the work orders with associated SLAs and KPIs to the BC-SC;

8. BC-SC creates a decentralised network for enabling blockchain realisation;

9. WODM sends the work orders to the DT platform where they are centrally stored.

3.2 UC-1.2 – Systematic and secure execution, monitoring and updating of

the project workflow

In this UC, it is assessed whether the project is executed according to the planned workflow (see UC-1.1)

and is continuously monitored, keeping the workflow updated. As shown in Figure 7, for this to be executed,

the following steps / communications between components should take place:

1. The actor (Worker/Foreman/QS/Surveyor/HSE) logs in the WOEA (the credentials are provided

centrally by the DT platform);

2. The actor (Worker/Foreman/QS/Surveyor/HSE) requests through WOEA the assigned tasks that

s/he wants to be displayed;

3. WOEA requests and receives from the WODM the assigned tasks and displays them;

4. The actor (Worker/Foreman/QS/Surveyor/HSE) reports through WOEA the progress made on the

assigned tasks;

5. WOEA sends the tasks’ progress to WODM;

6. WODM send the tasks’ progress to PMS;

7. PMS requests and receives from the DT platform the (a) location tracking data of the involved

resources, (b) quality control and (c) health and safety issues relevant to the ongoing tasks;

8. PMS estimates the progress already made and runs an optimisation for optimal workflow

management;

9. PMS extracts an updated optimised BPMN that is sent to WODM;

10. WODM updates the relevant progress-related KPIs and sends them to BC-SC;

11. BC-SC assesses the performance of the relevant SLAs and sends this information back to WODM.

Having the simulation part finalised and the updated KPIs and SLAs performance, the workflow process for

updating the relevant work orders can be re-initiated. The following steps / communications between

components should take place in order to achieve this task (Figure 7):

 D2.4 COGITO System Architecture v1 21

COGITO – GA ID. 958310

Construction phase

dIgital Twin mOdel

1. The actor (PM/SM/QM) logs in the WODM UI (the credentials are provided centrally by the DT

platform);

2. The actor (PM/SM) updates the work orders and re-associates them with SLAs and KPIs;

3. WODM sends the updated work orders with associated SLAs and KPIs to the BC-SC;

4. BC-SC assesses the performance of the relevant SLAs and sends this information back to WODM;

5. WODM sends updated work orders and task progress to the DT platform for being centrally stored.

Each time an actor (SM/PM/QM) wants to visualise performance and work progress data:

1. The actor (SM/PM/QM) makes a request to WODM UI;

2. WODM visualises this information.

Figure 7 – Sequence diagram of UC-1.2

3.3 UC-2.1 – Automated geometric tolerance compliance checking in 3D

point cloud data and allocation to DT building component

In this UC, accurate geometric data are acquired, and the geometric tolerance specifications are checked

automatically by matching that data to the BIM model and apply standard tolerance control methods. As

shown in Figure 8, for this to be executed, the following steps/communications between components should

take place:

1. The actor (Surveyor) performs a 3D scanning of the site of interest to acquire a 3D point cloud;

 D2.4 COGITO System Architecture v1 22

COGITO – GA ID. 958310

Construction phase

dIgital Twin mOdel

2. The actor (Surveyor) logs in the Visual Data Pre-processing UI (the credentials are provided

centrally by the DT platform);

3. The actor (Surveyor) starts the visual data collection job (incl. capture/send on-site visual data,

provide information about camera orientation/location);

4. The Visual Data Pre-processing requests and receives from the DT platform the building

components and the relevant tasks that are visualised in its UI;

5. The actor (Surveyor) attributes components/tasks to the 3D point cloud data;

6. The Visual Data Pre-processing processes the 3D point cloud data linked with components/tasks;

7. The processed 3D point cloud data along with its metadata are sent and centrally stored in the DT

platform;

8. The processed 3D point cloud data along with its metadata are sent to the GeometricQC;

9. The GeometricQC performs the geometric QC check;

10. The QC results and relevant metadata are sent and centrally stored in the DT platform.

Figure 8 – Sequence diagram of UC-2.1

3.4 UC-2.2 – (Semi-)Automated detection of construction defects from

visual input captured using AR and drones

In this UC, visual data from the site are captured and regions of risk in infrastructure (i.e. concrete defects,

cracks, material displacements) are detected while their severity is estimated.

 D2.4 COGITO System Architecture v1 23

COGITO – GA ID. 958310

Construction phase

dIgital Twin mOdel

Figure 9 – Sequence diagram of UC-2.2

As shown in Figure 9, for this to be executed, the following steps / communications between components

should take place:

1. The actor (Surveyor) logs in the Visual Data Pre-processing UI (the credentials are provided

centrally by the DT platform);

2. The actor (Surveyor) starts the visual data collection job (incl. capture/send on site visual data,

provide information about camera orientation / location);

3. The Visual Data Pre-processing requests and receives from the DT platform the building

components and the relevant tasks that are visualised in its UI;

4. The actor (Surveyor) attributes components / tasks to the visual data;

5. The visual data linked with components / tasks are processed by the Visual Data Pre-processing;

6. The processed multi-source visual data along with its metadata are sent and centrally stored in the

DT platform;

7. DT platform sends a notification to the VisualQC that new visual data are available;

8. VisualQC requests and receives from the DT platform the new visual data along with its metadata;

9. VisualQC processes the new visual data and detects defects;

10. VisualQC sends defects with relevant metadata to DT platform to be centrally stored;

11. DT platform sends defects with relevant metadata to Visual Data Pre-Processing, which are

visualised in the Visual Data Pre-Processing UI;

12. The actor (Surveyor) confirms defects detected through the Visual Data Pre-Processing UI;

13. Visual Data Pre-Processing sends confirmed defects and relevant metadata to the DT platform to

be centrally stored.

 D2.4 COGITO System Architecture v1 24

COGITO – GA ID. 958310

Construction phase

dIgital Twin mOdel

3.5 UC-3.1 – BIM-based safety planning and hazard prevention before

construction starts

In this UC, the regions of the construction site where specific hazards exist are identified and mitigation

measures are proposed and linked to the BIM model. As shown in Figure 10, for this to be executed, the

following steps/communications between components should take place:

1. The actor (HSE Manager/HSE Supervisor) logs in the SafeConAI UI (the credentials are provided

centrally by the DT platform);

2. The actor (HSE Manager/HSE Supervisor) selects the safety code rules to be applied;

3. SafeConAI requests and receives from the DT platform the as-panned 4D BIM;

4. SafeConAI analyses the 4D BIM as opposed to the selected safety code rules and produces a 4D BIM

model enhanced with safety information;

5. The 4D BIM model enhanced with safety information is sent and stored centrally in the DT

platform;

6. 4D BIM model enhanced with safety information is visualised in the SafeConAI UI.

Figure 10 – Sequence diagram of UC-3.1

3.6 UC-3.2 – Monitoring, reporting, and proactive alarming of safety risks on

outdoor construction sites

In this UC, location data of resources (equipment and personnel) on the construction site are monitored to

avoid collision close-calls and accidents, and collateral damage. As shown in Figure 11, for this to be

executed, the following steps/communications between components should take place:

1. ProactiveSafety request and receives from the DT platform the as-built 4D BIM model enhanced

with safety information;

2. DT platform is continuously feeding ProactiveSafety with the real-time IoT location tracking data

of the involved resources;

3. ProactiveSafety analyses location tracking data against the 4D BIM model enhanced with safety

information and estimates potential hazards;

4. ProactiveSafety sends hazards’ alarms to WOEA;

5. WOEA notifies the concerned actor (worker) about these alarms;

6. ProactiveSafety runs statistical models and updates the safety parameters which are then sent to

the SafeConAI;

 D2.4 COGITO System Architecture v1 25

COGITO – GA ID. 958310

Construction phase

dIgital Twin mOdel

Once the safety parameters are updated, part of the sequence of UC3.1 is executed again towards updating

the 4D BIM model enhanced with safety information. In particular:

1. The actor (HSE Manager/HSE Supervisor) logs in the SafeConAI UI (the credentials are provided

centrally by the DT platform);

2. SafeConAI requests and receives the as-built 4D BIM from the DT platform;

3. SafeConAI analyses the as-built 4D BIM and the updated safety parameters and produces an

updated 4D BIM model enhanced with safety information;

4. The updated 4D BIM model enhanced with safety information is sent and stored centrally in the DT

platform;

5. The updated 4D BIM model enhanced with safety information is visualised in the SafeConAI UI.

Figure 11 – Sequence diagram of UC-3.2

3.7 UC-3.3 – Safety-augmented Digital Twin is used for construction safety

training

In this UC, personalised construction safety education and training is provided. As shown in Figure 12, for

this to be executed, the following steps / communications between components should take place:

1. The actor (HSE Trainer) introduces the training platform to another actor (worker);

2. The actor (Worker) logs in the VirtualSafety (the credentials are provided centrally by the DT

platform);

3. VirtualSafety requests and receives from the DT platform information about the construction site

and the relevant hazard types;

4. The actor (HSE Trainer) selects a training scenario;

5. VirtualSafety generates a game including questionnaires;

6. The actor (Worker) fills in a pre-game questionnaire and starts the training experience;

 D2.4 COGITO System Architecture v1 26

COGITO – GA ID. 958310

Construction phase

dIgital Twin mOdel

7. VirtualSafety collects and analyses the data from the training experience and creates personalised

feedback for this specific actor;

8. The actor (Worker) fills in a post-game questionnaire;

9. VirtualSafety collects and analyses the data from the post-game questionnaire and creates

personalised feedback that is visualised to the actor (worker);

10. The overall training feedback is sent and centrally stored in the DT platform;

11. Performance data from the training are visualised to the actor (HSE trainer).

Figure 12 – Sequence diagram of UC-3.3

3.8 UC-4.1 – Remote visualisation of DT model information (Data

Acquisition, Workflow, Safety, Quality) using the Digital Command

Centre

In this UC, the 3D BIM model, IoT data and annotations generated by the QC, HSE and Workflow tools are

rendered and visualised in different layers to the concerned actors. As shown in Figure 13, for this to be

executed, the following steps/communications between components should take place:

1. The actor (PM/SM/HSEM/QM) logs in the DCC (the credentials are provided centrally by the DT

platform);

2. DT platform offers a list of available projects;

3. The actor (PM/SM/HSEM/QM) selects the project of interest;

4. DCC requests and receives from the DT platform:

• the 3D BIM data;

• the workflow progress;

 D2.4 COGITO System Architecture v1 27

COGITO – GA ID. 958310

Construction phase

dIgital Twin mOdel

• the QC results;

• the H&S results;

• resources’ tracking data;

5. DCC visualises the 3D BIM;

6. Once the actor (PM/SM/HSEM/QM) selects the layers of information to be displayed, the relevant

information is also displayed based on this selection.

Figure 13 – Sequence diagram of UC-4.1

3.9 UC-4.2 – On-site visualisation of QC and Safety Planning information

using AR/mobile device

In this UC, during the construction phase, the QC/safety information is displayed in an AR/mobile device to
help effectively define the required remedy activities/mitigation measures. As shown in Figure 14, for this
to be executed, the following steps / communications between components should take place:

1. The actor (PM/SM/HSEM/QM) logs in the DigiTAR (the credentials are provided centrally by the

DT platform);

2. DT platform provides a list of available projects;

 D2.4 COGITO System Architecture v1 28

COGITO – GA ID. 958310

Construction phase

dIgital Twin mOdel

3. The actor (PM/SM/HSEM/QM) selects the project of interest and the mode of operation;

Figure 14 – Sequence diagram of UC-4.2

If QC mode is selected:

4a. DigiTAR requests and receives from the DT platform the 3D BIM model and the QC data for the

selected project;

5a. The actor (PM/SM/QM) confirms the defects identified and organise remedial works in the

DigiTAR;

6a. The DigiTAR sends the defects’ confirmation and the remedial works to the DT platform to be

centrally stored.

If Safety mode is selected:

4b. DigiTAR requests and receives from the DT platform the 3D BIM model and the safety data for the

selected project;

5b. The actor (PM/SM/HSEM) confirms the hazards identified and organise hazard mitigation works

in the DigiTAR;

6b. The DigiTAR sends the hazards’ confirmation, and the mitigation works to the DT platform to be

centrally stored.

 D2.4 COGITO System Architecture v1 29

COGITO – GA ID. 958310

Construction phase

dIgital Twin mOdel

4 COGITO Components – Requirements and Specifications

A high-level representation of data exchange requirements among the COGITO components per use case

has been introduced in Section 3. In this section, all these requirements are consolidated in input and output

requirements per COGITO component, using a “Functional, Non-Functional Requirements and Interfaces”

table template. Initially, the template aims to collect information about the hardware and software

requirements of each component, the programming language(s), and the status of its development.

Furthermore, it provides a draft version of each component’s functional and non-functional requirements.

In the second version of the COGITO system architecture, these requirements will be analysed in

conjunction with the stakeholder requirements that have been reported in D2.1 to come up with a set of

stakeholder requirements that each COGITO component must meet. Finally, in the table template, inputs

and outputs of each component are listed, providing details about the format, method, endpoint and

protocol for each data type and interface.

4.1 Visual Data Pre-Processing

Table 1 presents the functional, non-functional requirements and the interfaces of the Visual Data Pre-

Processing tool with other components of COGITO. It is a tool that is being developed from scratch, deployed

on a Physical or Virtual Machine Linux server, and programmed utilising the Node.js, Angular, JavaScript,

Python and C++ programming languages. Concerning the functional requirements of the tool, it must

provide methods for storing and filtering raw data by smoothing, denoising and enhancing raw

videogrammetry data. These data can be acquired using laser scanners and photogrammetry, from ground

positions, mounted on Unmanned Aerial Vehicles (UAVs) or captured from satellites (Visual Data

Acquisition tools). Another functional requirement of the tool is to register the processed data to structural

and geometric data (building components). The sequence diagrams of UC-2.1 and UC-2.2, presented in

Sections 3.3 and 3.4, respectively, reveal that the Visual Data Pre-processing tool interacts only with the DT

Platform and the Visual Data Acquisition tools. User credentials and authorisation, building components

data and work orders are received from the DT platform, while processed visual data and point cloud data

constitute the outputs of the tool.

Table 1 – Visual Data Pre-Processing: Functional, Non-Functional Requirements and Interfaces

General Information

Programming Language(s) Node.js, Angular, JavaScript, Python, C++

Hardware Requirements Physical or VM Server (Linux)

Software Requirements Web Server (Apache), Browser (Chrome, Firefox, Edge)

Development Status Developed from scratch

Functional and Non-Functional Requirements

Functional

Req-1.1 Stores the raw data in a local database

Req-1.2 Filters the raw data input (Smoothing, de-noising, enhancing)

Req-1.3 Registers the visual inputs to location, direction, and time series data

Req-1.4 Sends Images and associated data to DT platform

Non-
Functional

Req-2.1 Web based App

Req-2.2 Offers efficiently structured database to store and retrieve data

Req-2.3 Reliability

Req-2.4 Scalability

Req-2.5 Performance

Req-2.6 Security

Req-2.7 Data Integrity

Component Dependencies

Internal
Dependencies

Dep-1.1 Visual Data Acquisition Tools

Dep-1.2 DT Platform

External
Dependencies

Dep-2.1 Image Processing libraries

Interfaces

 D2.4 COGITO System Architecture v1 30

COGITO – GA ID. 958310

Construction phase

dIgital Twin mOdel

Input Data

Input-1 Received from:
Data Acquisition Tools (raw
data)

Format TBD
Method TBD
Endpoint TBD
Protocol TBD

Input-2 Received from:
DT Platform (user credentials
and authorisation)

Format JSON
Method GET/POST
Endpoint REST API
Protocol HTTPS

Input-3 Received from:
DT Platform (building
components)

Format IFC
Method GET/POST
Endpoint REST API
Protocol HTTPS

Input-4 Received from:
DT Platform (work
orders/tasks reported by
WODM)

Format JSON
Method GET/POST
Endpoint REST API
Protocol HTTPS

Output Data

Output-
1

Sent to:
DT Platform (processed visual
data & metadata)

Format Image file data & JSON
Method GET/POST
Endpoint REST API
Protocol HTTPS

Output-
2

Sent to:
DT Platform (processed point
cloud data & metadata)

Format E57, PLY, MTL & JSON
Method GET/POST
Endpoint REST API
Protocol HTTPS

4.2 IoT Data Pre-Processing

The IoT Dara Pre-Processing tool (see Table 2) will gather raw IoT data that are coming from sensorial

devices installed or worn on the construction site and generate datasets that can be directly stored in the

COGITO Digital Twin platform. Currently, resources tracking (location) data have been requested as IoT

data input to other COGITO components.

Table 2 – IoT Data Pre-Processing: Functional, Non-Functional Requirements and Interfaces

General Information

Programming Language(s) Java

Hardware Requirements IoT equipment; Physical or VM server (Linux)

Software Requirements Apache Tomcat, Spark, Kafka, PostgreSQL

Development Status Developed from scratch

Functional and Non-Functional Requirements

Functional

Req-1.1 Data management (Cleansing, Grouping, etc.)

Req-1.2 Backup

Req-1.3 Role based authorisation and encryption, pseudo-anonymisation

Non-
Functional

Req-2.1 Interoperability

Req-2.2 Security

Req-2.3 Performance

Req-2.4 Scalability

Component Dependencies

Internal
Dependencies

Dep-1.1 IoT Solution

Dep-1.2 DT Platform

External
Dependencies

Dep-2.1 Apache Tomcat, Spark (libraries)

Interfaces

Input Data

Input-1 Received from: IoT Solution
(raw IoT data)

Format TBD
Method TBD

 D2.4 COGITO System Architecture v1 31

COGITO – GA ID. 958310

Construction phase

dIgital Twin mOdel

Endpoint TBD
Protocol TBD

Output Data

Output-1 Sent to: DT Platform
(Resources tracking (location)
data)

Format JSON
Method GET/POST
Endpoint REST APIs
Protocol HTTPS

4.3 Digital Twin Platform – DT Platform

The Service-Oriented Architecture (SOA) design pattern will be used in the design of the DT platform in

“T7.1 - Digital Twin Platform Design & Interface Specification.” We envisage a layered structure of the DT

platform with five layers:

1 Based on the Keycloak identity provider, the authentication layer handles user access requests

based on specific rules and user profiles.

2 The application layer provides the routing and the endpoints for the synchronous and

asynchronous communication between the DT platform and the various COGITO components. The

application layer is based on the use of the W3C Web of Things standard that allows a seamless

discovery and retrieval of information and resources form the DT platform. The DT platform is

deployed on the cloud and implemented in Java EE utilising Apache Karaf, Apache Camel and the

Spring Framework Ecosystem.

3 The data ingestion layer provides services to load and semantically link new datasets into the

platform. This component is deployed on the cloud and implemented in Java EE utilising Apache

Jena and the Spring Framework Ecosystem.

4 The data persistence layer provides a shared storage data repository including graph and time-

series databases deployed on a cloud infrastructure and implemented in Java EE unitizing Apache

Fuseki, InfluxDB and the Spring Framework Ecosystem.

5 The data modelling and integration layer supports ingestion and use of openBIM data, and provides

version control capabilities, enrichment and model-checking services. This component is partly

developed but will be extended to support the project's needs and integrated with the other DT

components. This component is deployed on the cloud and implemented in Java EE and C++.

Table 3 – DT Platform: Functional, Non-Functional Requirements and Interfaces

General Information

Programming Language(s) Java EE, C++, JavaScript

Hardware Requirements Cloud Infrastructure

Software Requirements Docker, Kubernetes

Development Status Partially developed

Function and Non-Functional Requirements

Functional

Req-1.1 Authenticate users and applications

Req-1.2 Data upload 4D(3D BIM+schedules) IoT stream (tracking, video, images,
point-clouds)

Req-1.3 ETL operations

Req-1.4 Semantic linkage

Non-
Functional

Req-2.1 Scalability

Req-2.2 Responsiveness

Req-2.3 Security

Req-2.4 High availability

Component Dependencies

External
Dependencies

Dep-2.1 JBoss Fuse

Dep-2.2 Apache Karaf, Apache Camel, Apache Fuseki

Dep-2.3 Spring Framework, Spring Boot, InfluxDB, Keycloak

Interfaces
Input Data Input-1 Received from: Format Image file data & JSON

 D2.4 COGITO System Architecture v1 32

COGITO – GA ID. 958310

Construction phase

dIgital Twin mOdel

 Visual Data Pre-processing
(processed visual data &
metadata)

Method GET/POST
Endpoint REST API
Protocol HTTP

Input-2 Received from:
Visual Data Pre-processing
(processed point cloud data &
metadata)

Format E57, PLY, MTL & JSON
Method GET/POST
Endpoint REST API
Protocol HTTP

Input-3 Received from:
IoT Data Pre-Processing
(Resources tracking location
data)

Format JSON
Method GET/POST
Endpoint REST APIs
Protocol HTTPS

Input-4 Received from:
WODM (work orders and
metadata)

Format JSON
Method GET/POST
Endpoint REST API
Protocol HTTPS

Input-5 Received from:
WODM (tasks’ progress and
metadata)

Format JSON
Method GET/POST
Endpoint REST API
Protocol HTTPS

Input-6 Received from:
GeometricQC (QC results and
relevant metadata)

Format JSON
Method GET/POST
Endpoint REST API
Protocol HTTPS

Input-7 Received from:
VisualQC (Defects and
metadata)

Format JSON
Method GET/POST
Endpoint REST API
Protocol HTTPS

Input-8 Received from:
SafeConAI (4D BIM data
enhanced with safety
information)

Format IFC/XML/JSON/PLY
Method GET/POST
Endpoint REST API
Protocol HTTPS

Input-9 Received from:
VirtualSafety (Training
feedback)

Format PLY/JSON/XML
Method POST/GET
Endpoint REST API
Protocol HTTPS

Input-10 Received from:
DigiTAR (Defect confirmation
& remedial works)

Format JSON
Method GET/POST
Endpoint REST API
Protocol HTTPS

Input-11 Received from:
DigiTAR (Hazard
confirmation & mitigation
works)

Format JSON
Method GET/POST
Endpoint REST API
Protocol HTTPS

Output Data

Output-1 Sent to:
Visual Data Pre-processing,
WODM, WOEA, PMS,
SafeConAI, DCC, DigiTAR
(user credentials and
authorisation)

Format JSON
Method GET/POST
Endpoint REST API
Protocol HTTPS

Output -2 Sent to:
Visual Data Pre-processing
(building components)

Format IFC
Method GET/POST
Endpoint REST API
Protocol HTTPS

Output -3 Sent to: Format JSON
Method GET/POST
Endpoint REST API

 D2.4 COGITO System Architecture v1 33

COGITO – GA ID. 958310

Construction phase

dIgital Twin mOdel

Visual Data Pre-processing,
DCC (work orders/tasks
reported by WODM)

Protocol HTTPS

Output-4 Sent to:
WODM, PMS (as-planned
resources)

Format JSON
Method GET/POST
Endpoint REST API
Protocol HTTPS

Output-5 Sent to:
PMS, GeometricQC,
SafeConAI, ProActiveSafety,
VirtualSafety, DCC, DigiTAR
(3D/4D BIM data)

Format JSON, IFC
Method GET/POST
Endpoint REST API
Protocol HTTPS

Output-6 Sent to:
PMS, ProActiveSafety, DCC
(resources location - tracking
data)

Format JSON
Method GET/POST
Endpoint REST API
Protocol HTTPS

Output-7 Sent to:
PMS, DCC, DigiTAR (quality
control and H&S issues
relevant to the ongoing tasks)

Format JSON
Method GET/POST
Endpoint REST API
Protocol HTTPS

Output-8 Sent to:
Geometric QC (point cloud)

Format E57, PLY
Method GET/POST
Endpoint REST API
Protocol HTTPS

Output-9 Sent to:
VisualQC (Notification for
visual data availability)

Format JSON
Method GET/POST
Endpoint REST API
Protocol HTTPS

Output-
10

Sent to:
VisualQC (Visual data and
metadata)

Format Image file data & JSON
Method GET/POST
Endpoint REST API
Protocol HTTPS

4.4 Work Order Definition and Monitoring – WODM

As presented in Table 4, the WODM tool is a partly developed solution (i3D platform) for work orders

definition and monitoring, programmed in Angular 6. This solution will be extended and properly adapted

to be compatible with the DT platform and interact with the DT Platform, PMS, SLAM, BCSC and WOEA

components. These interactions have been realised based on the UC-1.1 and UC-1.2 sequence diagrams,

illustrated in Sections 3.1 and 3.2 respectively. Primary inputs to the tool are the process model(s), the

Service Level Agreements (SLAs) and their performance, the as-planned resources (number of workers,

their roles, and appropriate equipment), the tasks’ progress reported by the on-site crew, and user

credentials and authorisation. The tasks assignment and progress, and the work orders with associated

SLAs & KPIs, both enriched with relevant metadata, constitute the main outputs of the WODM tool.

Table 4 – WODM: Functional, Non-Functional Requirements and Interfaces

General Information
Programming Language(s) Angular 6

Hardware Requirements A device with a web browser

Software Requirements Web browser

Development Status Partly developed

Function and Non-Functional Requirements

Functional
Req-1.1 Connect and Authenticate to the DT platform (User login)

Req-1.2 Create work orders from workflows

 D2.4 COGITO System Architecture v1 34

COGITO – GA ID. 958310

Construction phase

dIgital Twin mOdel

Req-1.3 Assign multiple workers, allocate resources and associate SLAs to work
orders and tasks

Req-1.4 Monitor and report the work order progress

Req-1.5 Update work orders and tasks details

Non-

Functional

Req-2.1 User-friendly UI

Req-2.2 Scalability

Req-2.3 Responsiveness

Req-2.4 Stability

Req-2.5 Security

Component Dependencies

Internal

Dependencies

Dep-1.1 DT Platform

Dep-1.2 PMS

Dep-1.3 SLAM

Dep-1.4 BCSC

Dep-1.5 WOEA

External

Dependencies

Dep-2.1 Postgre database

Dep-2-2 I3D platform

Interfaces

Input Data

Input-1 Received from:
PMS (process model)

Format BPMN
Method GET/POST
Endpoint REST API
Protocol HTTPS

Input-2 Received from:
SLAM (SLAs and KPIs)

Format JSON
Method GET/POST
Endpoint REST API
Protocol HTTPS

Input-3 Received from:
BCSC (SLAs performance)

Format JSON
Method GET/POST
Endpoint REST API
Protocol HTTPS

Input-4 Received from:
DT Platform (as-planned
resources)

Format JSON
Method GET/POST
Endpoint REST API
Protocol HTTPS

Input-5 Received from:
WOEA (tasks’ progress)

Format JSON
Method GET/POST
Endpoint REST API
Protocol HTTPS

Input-6 Received from:
DT Platform (user credentials
and authorisation)

Format JSON
Method GET/POST
Endpoint REST API
Protocol HTTPS

Output Data

Output-1 Sent to:
SLAM (work orders with
associated SLAs and KPIs)

Format JSON
Method GET/POST
Endpoint REST API
Protocol HTTPS

Output-2 Sent to:
PMS (tasks’ progress)

Format JSON
Method GET/POST
Endpoint REST API
Protocol HTTPS

Output-3 Sent to:
BCSC (tasks’ progress)

Format JSON
Method GET/POST
Endpoint REST API
Protocol HTTPS

 D2.4 COGITO System Architecture v1 35

COGITO – GA ID. 958310

Construction phase

dIgital Twin mOdel

Output-4 Sent to:
DT Platform (work orders and
metadata)

Format JSON
Method GET/POST
Endpoint REST API
Protocol HTTPS

Output-5 Sent to:
DT Platform (tasks’ progress
and metadata)

Format JSON
Method GET/POST
Endpoint REST API
Protocol HTTPS

Output-6 Sent to:
WOEA (assigned tasks)

Format JSON
Method GET/POST
Endpoint REST API
Protocol HTTPS

4.5 Work Order Execution Assistance – WOEA

Table 5 summarises the functional, non-functional requirements and interfaces of the WOEA application

with other components of COGITO. It is a Unity3D application that is partially developed to work in

collaboration with the WODM tool. The application is planned to be running on Android smart or Windows

platform devices. It is designed to interact with the WODM tool, to exchange information about tasks’

assignments and tasks’ progress reports, and the DT platform (user credentials and access control).

Table 5 – WOEA tool: Functional, Non-Functional Requirements and Interfaces

General Information

Programming Language(s) C# (Unity3D)

Hardware Requirements Android smart device or Windows platform device (smart glasses, AR
glasses, smart phone, tablet)

Software Requirements Android 8.0, API 26 or higher

Development Status Partially developed

Functional and Non-Functional Requirements

Functional

Req-1.1 Connect and Authenticate to the DT platform (User login)

Req-1.2 Display assigned tasks

Req-1.2 Report progress of assigned tasks

Non-

Functional

Req-2.1 User-friendly

Req-2.2 Scalability

Req-2.3 Stability

Req-2.4 Multiplatform

Req-2.5 Security

Component Dependencies

Internal

Dependencies

Dep-1.1 WODM

Dep-1.2 DT Platform

External

Dependencies

Dep-2.1 Unity 2018.4.29f1

Interfaces

Input Data

Input-1 Received from:
WODM (assigned tasks)

Format JSON

Method GET/POST

Endpoint REST API
Protocol HTTPS

Input-2 Received from:
DT Platform (user credentials
and authorisation)

Format JSON
Method GET/POST
Endpoint REST API
Protocol HTTPS

Sent to: Format JSON

 D2.4 COGITO System Architecture v1 36

COGITO – GA ID. 958310

Construction phase

dIgital Twin mOdel

Output Data
Output-1 WODM (tasks’ progress) Method GET/POST

Endpoint REST API
Protocol HTTPS

4.6 Process Modelling and Simulation – PMS

The PMS tool will be used to define and simulate both the construction business process model and the

operative workflow model. It will allow the users to identify process steps critical for successfully

implementing the project, exposing optimisation opportunities to minimise time and/or cost. The

simulation models will be combined with real-world data and are supported by data mining algorithms and

statistical methods that allow the calibration of the simulation model to the actual process occurring on the

construction site. For the modelling and simulation functionalities of the tool, the ADOxx meta-model

platform will be used.

Table 6 presents the functional and non-functional requirements, and the interactions of the PMS tool with

other components of the COGITO solution. Apart from the ADOxx meta-model platform, Java, JavaScript, R,

Python and Hugin programming languages will be used to develop additional simulation and optimisation

functionalities from scratch. Concerning the data exchange of the PMS tool with other components, in the

planning phase, the PMS tool will be used to populate the process/workflow model for the construction

project in BPMN format, based on the 4D BIM data that will be received from the DT platform. This

process/workflow model will be sent to the WODM tool. During the construction phase, resources’ location

(acquired by the IoT Data Pre-processing module), quality control and H&S issues relevant to the ongoing

tasks constitute additional information that will be queried from the DT platform. The tasks’ progress is

also required as input, received from the WODM tool.

Table 6 – PMS: Functional, Non-Functional Requirements and Interfaces

General Information

Programming Language(s) Java, JavaScript, R, Python, Hugin

Hardware Requirements Physical or VM Server

Software Requirements Web Server (Apache), Browser (Chrome, Firefox, Edge)

Development Status Partially developed

Functional and Non-Functional Requirements

Functional

Req-1.1 Construct workflow and simulation model and populate with historical
data

Req-1.2 Update simulation model using real-time data from WODM

Req-1.3 Connect and Authenticate to the DT platform

Req-1.4 Estimates project progress

Req-1.5 Receive task progress from WODM

Req-1.6 Output updated estimates of project progress to WODM according to real-
time data and performed optimisation

Non-

Functional

Req-1.7 Web-based app

Req-2.1 User-friendly

Req-2.2 Scalability

Req-2.3 Security

Component Dependencies

Internal

Dependencies

Dep-1.1 DT platform

Dep-1.2 WODM

External

Dependencies

Dep-2.1 ADOxx meta-model platform

Dep-2.2 Data analytics and statistical methods libraries

Interfaces

Input Data
Input-1 Received from: Format JSON, IFC

Method GET/POST

 D2.4 COGITO System Architecture v1 37

COGITO – GA ID. 958310

Construction phase

dIgital Twin mOdel

 DT Platform (As planned 4D
BIM data)

Endpoint REST API
Protocol HTTPS

Input-2 Received from:
DT Platform (user credentials
and authorisation)

Format JSON
Method GET/POST
Endpoint REST API
Protocol HTTPS

Input-3 Received from:
WODM (tasks’ progress)

Format JSON
Method GET/POST
Endpoint REST API
Protocol HTTPS

Input-3 Received from:
DT Platform (resources
location data)

Format JSON
Method GET/POST
Endpoint REST API
Protocol HTTPS

Input-4 Received from:
DT Platform (quality control
and H&S issues relevant to the
ongoing tasks)

Format JSON
Method GET/POST
Endpoint REST API
Protocol HTTPS

Output Data

Output-

1

Sent to:
WODM (process models)

Format BPMN
Method GET/POST
Endpoint REST API
Protocol HTTPS

4.7 Service-Level Agreement Manager – SLAM

The SLAM component (see Table 7) will provide a database with already designed SLAs that include

predefined rules and KPIs. WODM will fetch the SLAs through the SLAM to bind work orders with associated

SLAs and KPIs. Then WODM informs the SLAM of the results and SLAM saves the SLAs with the respective

Stakeholders on those mentioned above. The BCSC can fetch the saved work orders with associated SLAs

and KPIs to initiate and instantiate the Smart Contract operation. These interactions have been obtained

based on the UC-1.1 sequence diagram (see Section 3.1). The SLAM component is developed from scratch.

Table 7 – SLAM: Functional, Non-Functional Requirements and Interfaces

General Information

Programming Language(s) Go, Rust

Hardware Requirements Physical or VM Server

Software Requirements Linux Operating System

Development Status Developed from scratch

Functional and Non-Functional Requirements

Functional

Req-1.1 Provide Smart Contracts with predefined SLAs and KPI description

Req-1.2 Provide SLAs to authorized users of WODM UI

Req-1.3 Create SLA - Stakeholder bundles

Req-1.4 Save complete SLAs

Non-

Functional

Req-2.1 Reusability

Req-2.2 Scalability

Req-2.3 Security

Component Dependencies

Internal

Dependencies

Dep-1.1 WODM

Dep-1.2 BCSC

External

Dependencies

Dep-2.1 Candidates Database (under investigation the usage of Postgres)

Dep-2.2 CosmWasm, Rust, Cargo, Docker, Starport

Interfaces

 D2.4 COGITO System Architecture v1 38

COGITO – GA ID. 958310

Construction phase

dIgital Twin mOdel

Input Data

Input-1 Received from:
WODM (work orders with
associated SLAs and KPIs)

Format JSON
Method GET/POST
Endpoint REST API
Protocol HTTPS

Output Data

Output-

1

Sent to:
WODM (SLAs and KPIs)

Format JSON
Method GET/POST
Endpoint REST API
Protocol HTTPS

Output-

2

Sent to:
BCSC (work orders with
associated SLAs and KPIs)

Format JSON
Method GET/POST
Endpoint REST API
Protocol HTTPS

4.8 BlockChain Platform – BCSC

The Blockchain Platform is an immutable database system that can execute smart contracts. It will allow

the deployment of smart contracts, through the SLAM component (see Table 8). It will interact with the

WODM tool and based on the operative workflow model. It will provide the blockchain based smart

contracts to enhance transparency and provide trusted means to verify the completion of construction

tasks. To deliver its scope, it will receive the work orders with associated SLAs and KPIs from SLAM, the

calculated KPIs from WODM, and it will send the SLAs performance to WODM. These input and output

requirements have been extracted from the sequence diagrams of UC-2.1 and UC-2.2, presented in Sections

3.3 and 3.4 respectively.

Table 8 – BlockChain Platform: Functional, Non-Functional Requirements and Interfaces

General Information

Programming Language(s) Go (with Java Plugins)

Hardware Requirements Physical or VM Server

Software Requirements Linux Operating System

Development Status Developed from scratch

Functional and Non-Functional Requirements

Functional

Req-1.1 Blockchain-Smart Contract Network will instantiate depending on SLA
– Stakeholder bundle

Req-1.2 Store transaction data

Req-1.3 Receive Smart Contract inputs from SLA Manager

Req-1.4 Update Smart Contracts

Req-1.5 Receive Task Related Inputs from WODM

Req-1.6 Send Smart Contract Result to WODM

Non-Functional

Req-2.1 Scalability

Req-2.2 Stability

Req-2.3 Security

Component Dependencies

Internal

Dependencies

Dep-1.1 SLA Manager

Dep-1.2 WODM

External

Dependencies

Dep-2.1 Cosmos SDK

Dep-2.2 Terndermind Starport, CosmWasm, IBC, Go, Docker

Interfaces

Input Data

Input-1 Received from:
SLAM (work orders with
associated SLAs and KPIs)

Format JSON
Method GET/POST
Endpoint REST API
Protocol HTTP

Received from: Format JSON

 D2.4 COGITO System Architecture v1 39

COGITO – GA ID. 958310

Construction phase

dIgital Twin mOdel

Input-2 WODM (updated KPIs) Method GET/POST
Endpoint REST API
Protocol HTTP

Output Data

Output-1 Sent to:
WODM (SLA performance)

Format JSON
Method GET/POST
Endpoint REST API
Protocol HTTP

4.9 Geometric Quality Control – GeometricQC

As Table 9 indicates, the GeomtricQC tool is developed from scratch, planned to be deployed on a Physical

or Virtual Machine Linux server, and programmed utilising the C++, Python and C# programming languages.

Widely used BIM, Point Cloud, and 3D Data Processing libraries will constitute the technology stack of the

tool. Regarding its functional requirements, it must provide methods for loading 4D BIM and point cloud

data, detecting objects in the point cloud, detecting defects on digitalised dimensional quality control

specifications, and communicating with the DT platform. As depicted in the sequence diagram of UC-2.1

(see Figure 8), the GeometricQC tool interacts only with the DT Platform. It receives the as-planned 4D BIM

data and the processed point cloud data from the DT platform, and it sends geometric quality control results,

and relevant metadata, back to the DT platform.

Table 9 – GeometricQC tool: Functional, Non-Functional Requirements and Interfaces

General Information

Programming Language(s) C++
C#
Python

Hardware Requirements Physical or VM Server (Windows/Linux)

Software Requirements Multiple C++ libraries (Boost, Eigen, Open3D, IfcOpenShell)

Development Status Developed from scratch

Functional and Non-Functional Requirements

Functional

Req-1.1 Loading as planned 4D BIM and point cloud data

Req-1.2 Object detection in point cloud

Req-1.3 Defects’ detection based on digitalised dimensional QC specifications

Req-1.4 DT platform/NS notification to execute QC

Non-Functional

Req-2.1 Scalability

Req-2.2 Reusability

Req-2.3 Interoperability

Component Dependencies

Internal

Dependencies

Dep-1.1 DT Platform

Dep-1.2 Geometric Data Acquisition Tools

External

Dependencies

Dep-2.1 Visual Studio 2019

Dep-2.2 C++ 14

Dep-2.3 Boost

Dep-2.4 Open3D

Dep-2.5 Eigen

Dep-2.6 IfcOpenShell

Interfaces

Input Data

Input-1 Received from:
DT Platform (as planned 4D
BIM data)

Format IFC, OBJ, JSON
Method GET/POST
Endpoint REST API
Protocol HTTPS

Input-2 Received from:
DT Platform (point cloud)

Format E57, PLY
Method GET/POST

 D2.4 COGITO System Architecture v1 40

COGITO – GA ID. 958310

Construction phase

dIgital Twin mOdel

Endpoint REST API
Protocol HTTPS

Output-1 Sent to:
DT Platform (QC results and
relevant metadata)

Format JSON
Method GET/POST
Endpoint REST API
Protocol HTTPS

4.10 Visual Quality Control – VisualQC

Following the sequence diagram of UC-2.2 (see Figure 9), the DT platform constitutes the unique COGITO

component that the VisualQC tool interacts with. The VisualQC tool receives notifications for visual data

availability, visual data and metadata from the DT platform and sends detected defects and relevant

metadata back to the DT platform.

As Table 10 presents, the VisualQC tool is being developed from scratch, planned to be deployed on a

Physical or Virtual Machine Linux server, and programmed utilising the Node.js, Angular, JavaScript, Python,

and C++ programming languages. Deep learning and image processing libraries will constitute the main

external dependencies of the tool.

Table 10 – VisualQC tool: Functional, Non-Functional Requirements and Interfaces

General Information

Programming Language(s) Node.js, Angular, JavaScript, Python, C++

Hardware Requirements Physical or VM Server (Linux)

Software Requirements Web Server (Apache), Browser (Chrome, Firefox, Edge)

Development Status Developed from scratch

Functional and Non-Functional Requirements

Functional

Req-1.1 Connect and Authenticate to the DT platform (Application)

Req-1.2 Defects’ detection based on rules

Req-1.3 Defects’ annotation

Req-1.4 Defects’ notification to be used by WODM

Non-

Functional

Req-2.1 Web-based App

Req-2.2 Security

Req-2.3 The component must provide APIs for all expected operations

Req-2.4 The component must have low latency

Req-2.5 Scalability

Req-2.6 Strong CPU is needed for image processing

Component Dependencies

Internal

Dependencies

Dep-1.1 DT Platform

Dep-1.2 Visual Data Pre-processing Tool

External

Dependencies

Dep-2.1 Deep learning libraries

Dep-2.2 Image Processing libraries

Interfaces

Input Data

Input-1 Received from:
DT Platform (Notification for
visual data availability)

Format JSON
Method GET/POST
Endpoint REST API
Protocol HTTPS

Input-2 Received from:
DT Platform (Visual data and
metadata)

Format Image file data & JSON
Method GET/POST
Endpoint REST API
Protocol HTTPS

Output Data
Sent to: Format JSON

Method GET/POST

 D2.4 COGITO System Architecture v1 41

COGITO – GA ID. 958310

Construction phase

dIgital Twin mOdel

Output-

1

DT Platform (Defects and
metadata)

Endpoint REST API
Protocol HTTPS

4.11 SafeConAI

The SafeConAI tool (see Table 11) will be used to identify regions where (specific types of) hazards are,

suggests and "injects" mitigation measures into the model. It will use as input the as planned or as-built 4D

BIM data received from the DT platform, enhance them with safety information and communicate the

enhanced 4D BIM data back to the DT platform. It will also receive updated safety parameters as input from

the ProActiveSafety tool. The aforementioned data exchange requirements have been extracted from the

sequence diagrams of UC-3.1 and UC-3.2 (see Figure 10 and Figure 11, respectively).

Table 11 – SafeConAI: Functional, Non-Functional Requirements and Interfaces

General Information

Programming Language(s) C#
C++
Python

Hardware Requirements TBD

Software Requirements GAMA
PyTorch / Tensorflow

Development Status Partially developed

Functional and Non-Functional Requirements

Functional

Req-1.1 Loading as planned 4D BIM data

Req-1.2 Loading as built 4D BIM data

Req-1.3 Loading of known hazard zones

Req-1.4 Injection of potential mitigation measures

Req-1.5 Exploration of potential changes of hazard zones based on the expected
changes on the construction site (i.e., construction progress or mitigation
measures)

Req-1.6 Provide information about accidents and hazards

Non-

Functional

Req-2.1 Scalability

Req-2.2 Usability

Component Dependencies

Internal

Dependencies

Dep-1.1 DT Platform

Dep-1.2 ProActiveSafety

External

Dependencies

Dep-2.1 GAMA

Interfaces

Input Data

Input-1 Received from:
DT Platform (as planned 4D
BIM data)

Format IFC
Method GET/POST
Endpoint REST API
Protocol HTTPS

Input-2 Received from:
DT Platform (user credentials
and authorisation)

Format JSON
Method GET/POST
Endpoint REST API
Protocol HTTPS

Input-3 Received from:
ProactiveSafety (updated
safety parameters)

Format JSON
Method GET/POST
Endpoint REST API
Protocol HTTPS

Output Data
Output-1 Sent to: Format IFC/XML/JSON/PLY

Method GET/POST
Endpoint REST API

 D2.4 COGITO System Architecture v1 42

COGITO – GA ID. 958310

Construction phase

dIgital Twin mOdel

DT Platform (4D BIM data
enhanced with safety
information)

Protocol HTTPS

4.12 ProActiveSafety

The ProActiveSafety tool (see Table 12) will utilise behavioural data of resources (equipment and

personnel) on the construction site to avoid close-calls, accidents, and collateral damage. It will also run

statistics and update the safety parameters. Based on the sequence diagram of UC-3.2 (see Figure 11), to

fulfil its requirements, the ProActiveSafety tool will receive near real-time resources tracking data and the

4D BIM data enhanced with safety information from the DT platform, and it will send hazards alarms to the

WOEA application and updated safety parameters to the SafeConAI tool.

Table 12 – ProActiveSafety: Functional, Non-Functional Requirements and Interfaces

General Information

Programming Language(s) C#

C++

Python

Proprietary (GAMA)

Hardware Requirements Potentially high-end graphics card for prediction algorithms relying on

deep learning.

Software Requirements (GAMA)

PyTorch / Tensorflow

Development Status Developed from scratch

Functional and Non-Functional Requirements

Functional

Req-1.1 Loading as planned 4D BIM data

Req-1.2 Loading as performed 4D BIM data

Req-1.3 Interfacing with location data from DT platform

Req-1.4 Extrapolation and estimation of future trajectories

Req-1.5 Warning issued in expected close-calls

Non-
Functional

Req-2.1 Scalability

Req-2.2 Usability

Component Dependencies

Internal
Dependencies

Dep-1.1 DT Platform

External
Dependencies

Dep-2.1 PyTorch / Tensorflow (Python)

Interfaces

Input Data

Input-1 Received from:

DT Platform (resources

tracking data)

Format PLY/JSON/XML
Method GET/POST
Endpoint REST API
Protocol HTTP

Input-2 Received from:

DT Platform (4D BIM data

enhanced with safety

information)

Format IFC
Method GET/POST
Endpoint REST API
Protocol HTTP

Output Data

Output-1 Sent to:
SafeConAI (Updated safety
parameters/hazard zones)

Format PLY / JSON / XML
Method POST/GET
Endpoint REST API
Protocol HTTP

Output-2 Sent to:
WOEA (hazards alarms)

Format TBD
Method TBD
Endpoint TBD

 D2.4 COGITO System Architecture v1 43

COGITO – GA ID. 958310

Construction phase

dIgital Twin mOdel

Protocol TBD

4.13 VirtualSafety

The VirtualSafety application will provide personalised construction safety education and training, focusing

on the 'Top 4' hazards: Slips/trips/falls from height, caught-in between, struck-by, and electrocution. The

VR provides an easy-to-use, reliable safe learning environment and technology that assists advanced HSE

decision making and provide personalized feedback in a safe learning environment. It will be a Unity3D

application running on Windows PCs or VR headsets. It will be a standalone application for training

purposes. It will interact with the DT platform only to receive the 4D BIM data enhanced with safety

information of a construction project and send the training feedback.

Table 13 – VirtualSafety: Functional, Non-Functional Requirements and Interfaces

General Information

Programming Language(s) Java / C# / C++

Hardware Requirements Standard PC, VR headset (e.g., Oculus Rift or Quest, HTC Vive)

Software Requirements Unity

Development Status Proof of concept implemented

Functional and Non-Functional Requirements

Functional

Req-1.1 Loading as-planned / as-performed 4D BIM model

Req-1.2 Loading of safety issues

Req-1.3 Definition and permanent storage of safety scenarios

Req-1.4 Loading of predefined safety scenarios

Non-
Functional

Req-2.1 Performance

Req-2.2 Usability

Component Dependencies

Internal
Dependencies

Dep-1.1 DT platform

External
Dependencies

Dep-2.1 Unity3D

Interfaces

Input Data

Input-1 Received from:
DT Platform (4D BIM data
enhanced with safety
information)

Format IFC/XML/JSON
Method POST/GET
Endpoint REST API
Protocol HTTPS

Output Data

Output-1 Sent to:
DT Platform (Training
feedback)

Format PLY/JSON/XML
Method POST/GET
Endpoint REST API
Protocol HTTPS

4.14 Digital Command Centre – DCC

The DCC (see Table 14) will be a Unity application for the PMs to visualise and navigate the digital twin data.

It will render the 4D BIM model, resources tracking data and other annotations generated by the QC, H&S

and Workflow tools. Prerequisites for visualising such data will be the as-planned (4D BIM) and as-built

(resources tracking, images and QC, H&S and Workflow tools’ annotation) data to be compliant to the

COGITO data models and available through the DT Platform’s endpoints. There are no outputs planned to

be exported from this tool.

Table 14 – DCC: Functional, Non-Functional Requirements and Interfaces

General Information

Programming Language(s) C#

 D2.4 COGITO System Architecture v1 44

COGITO – GA ID. 958310

Construction phase

dIgital Twin mOdel

Hardware Requirements Physical or VM Server (Linux)

Software Requirements Web Server (Apache), Browser (Chrome, Firefox, Edge), Unity

Development Status Developed from scratch

Functional and Non-Functional Requirements

Functional

Req-1.1 Connect and Authenticate to the DT platform (User login)

Req-1.2 Browse and select project from the list of available projects of the DT
platform

Req-1.3 3D visualisation of the infrastructure’s geometry (panning, rotation,
camera movement and placement, walkthrough) (layer-0)

Req-1.4 BIM-elements tree-view and element’s selection (layer-0)

Req-1.5 Resources tracking data display (layer-1)

Req-1.6 QC defects display (layer-2)

Req-1.7 H&S issues display (layer-3)

Req-1.8 tasks progress display (layer-4)

Non-

Functional

Req-2.1 Web-based App

Req-2.2 Scalability

Req-2.3 Reusability

Req-2.4 Interoperability

Req-2.5 Security

Req-2.6 User-friendly

Req-2.7 Performance

Component Dependencies

Internal

Dependencies

Dep-1.1 DT Platform

External

Dependencies

Dep-2.1 IfcOpenShell IfcConvert 0.6.0b0

Dep-2.2 Unity (v2020.2)

Dep-2.3 New UI Widgets (unity AssetStore)

Interfaces

Input Data

Input-1 Received from:
DT Platform (4D BIM data)

Format IFC
Method GET/POST
Endpoint REST API
Protocol HTTPS

Input-2 Received from:
DT Platform (resources
tracking data)

Format JSON
Method GET/POST
Endpoint REST API
Protocol HTTPS

Input-3 Received from:
DT Platform (QC results)

Format JSON
Method GET/POST
Endpoint REST API
Protocol HTTPS

Input-4 Received from:
DT Platform (H&S results)

Format JSON
Method GET/POST
Endpoint REST API
Protocol HTTPS

Received from:
DT Platform (workflow
progress)

Format JSON
Method GET/POST
Endpoint REST API
Protocol HTTPS

Output Data

Output-1 Sent to:
Not Applicable (N/A)

Format N/A
Method N/A
Endpoint N/A
Protocol N/A

 D2.4 COGITO System Architecture v1 45

COGITO – GA ID. 958310

Construction phase

dIgital Twin mOdel

4.15 Digital Twin visualisation with Augmented Reality – DigiTAR

DigiTAR will be a Unity application for commercial AR head mounted displays (HMDs) to help to visualise

and interact in situ with the output of the QC tools (location, type and severity of geometric and visual

defects) and Safety tools (location and type of safety hazards and expected mitigation measures).

Table 15 – DCC: Functional, Non-Functional Requirements and Interfaces

General Information

Programming Language(s) C#

Hardware Requirements Augmented-Reality Smart Glasses with RGB-D camera and all the
necessary sensors

Software Requirements Unity

Development Status Developed from scratch

Functional and Non-Functional Requirements

Functional

Req-1.1 Maps the BIM 3D model enriched with defects and safety information, to
the site.

Req-1.2 Tracks every building component, defect and safety hazard that has been
registered.

Req-1.3 Determines user's position and orientation.

Req-1.4 Confirms annotations about defects and safety hazards.

Req-1.5 Creates annotations about safety hazards.

Req-1.6 Creates task annotations for remedial work and safety hazard mitigation
work.

Req-1.7 Sends relevant information about annotations to DT platform.

Non-

Functional

Req-2.1 User friendly interface

Req-2.2 WiFi connection on site

Req-2.3 Menu to discern the different functionalities

Req-2.4 AR Application

Req-2.5 Scalability

Req-2.6 Reusability

Req-2.7 Security

Component Dependencies

Internal

Dependencies

Dep-1.1 DT Platform

Dep-1.2 Visual Data Pre-processing tool

External

Dependencies

Dep-2.1 Unity (v2020.2)

Dep-2.2 Xbim

Dep-2.3 IfcOpenShell IfcConvert 0.6.0b0

Dep-2.4 Mixed Reality Toolkit

Interfaces

Input Data

Input-1 Received from:
DT Platform (User Credentials
and Authorisation)

Format JSON
Method GET/POST
Endpoint REST API
Protocol HTTPS

Input-2 Received from:
DT Platform (3D BIM data)

Format IFC
Method GET/POST
Endpoint REST API
Protocol HTTPS

Input-2 Received from:
DT Platform (QC data)

Format JSON
Method GET/POST
Endpoint REST API
Protocol HTTPS

Input-3 Received from:
DT Platform (Safety data)

Format JSON
Method GET/POST

 D2.4 COGITO System Architecture v1 46

COGITO – GA ID. 958310

Construction phase

dIgital Twin mOdel

Endpoint REST API
Protocol HTTPS

Output Data

Output-1 Sent to:
DT Platform (Defect
confirmation & remedial
works)

Format JSON
Method GET/POST
Endpoint REST API
Protocol HTTPS

Output-2 Sent to:
DT Platform (Hazard
confirmation & mitigation
works)

Format JSON
Method GET/POST
Endpoint REST API
Protocol HTTPS

 D2.4 COGITO System Architecture v1 47

COGITO – GA ID. 958310

Construction phase

dIgital Twin mOdel

5 Deployment and Data Protection

5.1 Components diagrams

In UML, a component diagram depicts how components are linked together to form larger entities. In

general, they are used to illustrate the structure of arbitrarily complex systems. In alignment with Section

4 and to verify that COGITO components’ required functionalities are acceptable, the relevant diagrams are

provided in the sub-sections below. These diagrams are also aimed to be used as a communication tool

between the developers of the components and the relevant stakeholders involved in each UC that

incorporates the components under investigation.

5.1.1 Visual Data Pre-Processing

Figure 15 illustrates the UML component diagram of the visual data pre-processing tool. As shown below,

the tool is composed of:

• the application layer responsible for multi-source visual data filtering and metadata processing;

the processed visual data along with the relevant metadata are provided and stored in the DT

platform for further usage by other components involved mainly in UC2.1 and UC2.2; and

• the frontend layer that that provides a User Interface (UI) so as the user to be able to upload visual

raw data and assign tasks and building components (retrieved from the DT platform) to it; and

• a local database (DB) adapter responsible for accessing the local storage of the visual data.

Figure 15 – Component diagram of the visual data pre-processing tool

5.1.2 IoT Data Pre-Processing

Figure 16 illustrates the UML component diagram of the IoT data pre-processing tool. As shown below, the

tool is composed of:

• the security layer responsible for preserving data security in the local IoT ecosystem. Various data

privacy and security features will be incorporated in this layer like (pseudo)-anonymization, role-

based authorization (e.g. Oauth), encryption (e.g. TLS / HTTPS), etc.;

• the application layer that will perform data management (data cleansing, data grouping and

binning, etc.) and back up and will be responsible for exposing REST APIs and building wrappers

for standards- based communication with the DT Platform; and

• the communication layer responsible for the intercommunication with smart IoT devices (e.g.

location sensors) that are installed in the construction site for resources’ tracking.

https://en.wikipedia.org/wiki/Component_(UML)

 D2.4 COGITO System Architecture v1 48

COGITO – GA ID. 958310

Construction phase

dIgital Twin mOdel

Figure 16 – Component diagram of the IoT data pre-processing tool

5.1.3 Digital Twin Platform

The design of the DT platform delivered in “T7.1 - Digital Twin Platform Design & Interface Specification”

will be performed adopting the SOA design pattern, following a layer architecture.

Figure 17 – Component diagram of the Digital Twin platform

The structure of DT platform will consist of five layers (see Figure 17):

 D2.4 COGITO System Architecture v1 49

COGITO – GA ID. 958310

Construction phase

dIgital Twin mOdel

• the authentication layer, using Keycloak identity provider, implementing user access rules based

on user profiles and roles;

• the application layer, using the W3C Web of Things standard, to the extent possible, and providing

the routing and the endpoints for the synchronous and asynchronous communication between the

DT platform and the various COGITO components; this layer will use common data exchange

formats like JSON, XML, IFC and BCF to meet the various data requirements of the interfaced

COGITO components;

• the data ingestion layer, for loading and semantically linking new datasets into the platform;

• the data management layer, providing a common storage cloud infrastructure, accommodating

data repositories including graph and timeseries databases; and

• the data modelling integration layer, hosting the openBIM implementation, providing version

control, enrichment and checking services.

5.1.4 Work Order Definition and Monitoring – WODM

Figure 18 illustrates the UML component diagram of the WODM tool. As shown below, the tool is composed

of:

• the security layer responsible for user authentication and authorisation;

• the frontend layer that provides an interactive and responsive GUI allowing to create work orders,

to assign workers, resources, and SLAs, to monitor progress, and to present reports;

• the backend layer that processes all information needed to create work orders, to assign workers,

resources and SLAs, to monitor progress and to present reports; and

• the communication layer that orchestrates the communication with DT Platform, PMS, SLA

Manager, BCSC and WOEA.

Figure 18 – Component diagram of the WODM tool

5.1.5 Work Order Execution Assistance – WOEA

Figure 19 illustrates the UML component diagram of the WOEA tool. As shown below, the tool is composed

of:

• the security layer responsible for user authentication and authorisation;

• the application layer that displays and processes all information needed to perform work and to

report work progress; and

• the communication layer that orchestrates communication with DT Platform and WODM.

 D2.4 COGITO System Architecture v1 50

COGITO – GA ID. 958310

Construction phase

dIgital Twin mOdel

Figure 19 – Component diagram of the WOEA tool

5.1.6 Process Modelling and Simulation tool – PMS

Figure 20 illustrates the UML component diagram of the PMS tool. As shown below, the tool is composed of:

• the modelling component that provides a modelling environment for the construction processes,

workflows and KPIs;

• the simulation component that will simulate a construction process estimating costs and times;

• the optimisation component that provides a mechanism to optimise the construction process

during its execution; and

• the integration component that allows the integration of the modelling, simulation and

optimisation with the DT platform and the WODM.

Figure 20 – Component diagram of the PMS tool

5.1.7 Service-Level Agreement Manager – SLAM

Figure 21 illustrates the UML component diagram of the SLA Manager tool. As shown below, the tool is

composed of:

• the Smart Contract Manager which is the component responsible for establishing communication

with WODM in order to retrieve information regarding tasks and stakeholders; it is also responsible

for providing to WODM predefined KPIs; this information is then combined to create smart contract

enabled SLAs;

• the Smart Contract Orchestrator that selects the appropriate nodes on the BS-SC to initiate the

deployment of Smart Contracts;

 D2.4 COGITO System Architecture v1 51

COGITO – GA ID. 958310

Construction phase

dIgital Twin mOdel

• the Security subcomponent that provides the means for user authentication and authorisation;

Figure 21 - Component diagram of the SLA Manager

5.1.8 BlockChain Platform – BCSC

Figure 22 illustrates the UML component diagram of the BlockChain – Smart Contract (BC-SC) Platform tool.

As shown below, the tool is composed of:

• the KPI Checker which is the component that communicates with WODM in order to receive

updated KPIs that will be used for the execution of the respective smart contracts;

• the Smart Contract Initiator that receives smart contracts from the SLA Manager and initiates

them on the appropriate nodes; and

• the Smart Contracts is the Blockchain plugin that is used to deploy and execute smart contracts.

Smart Contract execution results, such as KPIs and predefined actions, will be communicated to

authorized parties (i.e., WODM) upon request.

Figure 22 – Component diagram of the BCSC tool

5.1.9 Geometric Quality Control – GeometricQC

Figure 23 illustrates the UML component diagram of the GeometricQC tool. As shown below, the tool is

composed of two main sub-components: (i) the BIM file pre-processing and (ii) the GeomQC, each one

further de-composed to internal modules as follows:

• The BIM file pre-processing sub-component analyses the relationships between the building

elements (adjacency, location, connections, etc.) to obtain and provide to the GeomQC – the main

 D2.4 COGITO System Architecture v1 52

COGITO – GA ID. 958310

Construction phase

dIgital Twin mOdel

sub-component of the tool – the list of QC checks that is needed to be performed for each element.

More specifically, the BIM file pre-processing includes:

o the building elements relationships’ analyser that extracts the elements from the as

planned BIM file and generates a relationships network between them;

o the QC regulation dictionary providing a dictionary with the quality control checks that

are needed according to the standards, regulations and client controls;

o the Elements QC listing that generates the list of QC needed for each element utilising the

elements’ relationships and the QC regulation dictionary provided by the building

elements relationships’ analyser and the QC regulation dictionary respectively.

• The GeomQC provides the main functionality of the tool through:

o the point cloud matching and segmentation sub-component that matches the as-built

data with the as-designed elements and stores them into objects to be analysed by the

Quality control check (described below);

o the QC work order generator that creates a list of QC checks that are needed for each

element using the as-planned elements that are already built and the information

extracted by the BIM file pre-processing;

o the quality control check that carries out the geometric QC using the segmented as-built

data, the as-planned data, and the QC work order generator info;

o the QC report generator that generates the QC reports that are going to be delivered to

the DTP, DCC, and the client in an appropriate format.

Figure 23 – Component diagram of the GeometricQC tool

5.1.10 Visual Quality Control – VisualQC

Figure 24 illustrates the UML component diagram of the VisualQC tool. As shown below, the tool is

composed of:

 D2.4 COGITO System Architecture v1 53

COGITO – GA ID. 958310

Construction phase

dIgital Twin mOdel

• the communication layer responsible for receiving notifications from the DT Platform when new

visual data are available; and

• the application layer responsible for processing visual data and detecting defects with the use of

deep learning algorithms from.

Figure 24 – Component diagram of the VisualQC tool

5.1.11 SafeConAI

Figure 25 illustrates the UML component diagram of the SafeConAI tool. As shown below, the tool is

composed of:

• the rule-based safety analyser responsible for analysing the imported 4D as-planned model

against a set of predefined rules inserted / selected by the user i.e. HSE Manager / HSE Supervisor;

• the hazard zone identification sub-component that identifies regions where specific types of

hazards are (so-called hazard zones); and

• the mitigation measures generator that generates and "injects" mitigation measures into the

model.

Figure 25 – Component diagram of the SafeConAI tool

5.1.12 ProActiveSafety

Figure 26 illustrates the UML component diagram of the ProActiveSafety tool. As shown below, the tool is

composed of:

• the data analyser responsible for analysing the location tracking data of the resources coming

from the IoT solution deployed on site;

• the trajectory predictor that performs short-term location prediction based on location tracking

data;

 D2.4 COGITO System Architecture v1 54

COGITO – GA ID. 958310

Construction phase

dIgital Twin mOdel

• the hazard zones checker that cross-checks: (i) the paths estimated by the trajectory predictor

with (ii) the identified hazards extracted by the SafeConAI and stored in the DT platform as a safety-

enhanced 4D BIM model; and

• the risk analyser that assesses the probability of hazards to result on an accident and issues

relevant warnings (alarms) that are sent as notifications to the concerned workers through WOEA.

Figure 26 – Component diagram of the ProactiveSafety tool

5.1.13 VirtualSafety

Figure 27 illustrates the UML component diagram of the VirtualSafety tool. As shown below, the tool is

composed of:

• the game generator responsible for creating a game based on the selected scenario by the user

(i.e., HSE trainer) and the updated input from the DT platform as regards hazards’ type,

construction site information, etc.;

• the data collector and analyser that collects, processes and analyses the in-game performance

data (data gathered throughout the game experience provided to the worker); and

• the personalized feedback generator that constructs a personalised feedback and shares it with

the game participant (i.e., worker) and the HSE trainer for further evaluation and feedback.

Figure 27 – Component diagram of the VirtualSafety tool

5.1.14 Digital Command Centre – DCC

Figure 28 illustrates the UML component diagram of the DCC tool. As shown below, the tool is composed of:

• the DCC backend that includes:

o the DT platform connector enabling the communication with the DT platform;

 D2.4 COGITO System Architecture v1 55

COGITO – GA ID. 958310

Construction phase

dIgital Twin mOdel

o the IFC converter responsible for obtaining the IFC file and converting it to a mesh-type

file (OBJ, DAE) with the accompanying metadata (XML);

o the HTTP endpoint enabling the inter-communication of the DCC backend with the DCC

unity application; and

• the DCC Unity application that includes:

o the Software Development Kit (SDK) that will be packaged as a unity package and will

be a reusable component for any Unity-based COGITO project; it: (i) connects to the DT

Platform for receiving near-real-time data; (ii) obtains the mesh and metadata files from

the DCC backend and generates a Unity scene; (iii) communicates with the DCC backend

and allows the selection of the desired project and the retrieval of the mesh and metadata

files;

o the real-time data overlay that uses the SDK and converts and renders the data in the 3D

view; it also allows the user to select which data he wants to visualise;

o the element browser that displays a tree-like view of the building and allows the user to

select, filter and manipulate the elements. It also shows element details and properties;

and

o the 3D viewer, a Unity3D scene, that visualises the as-planned and as-built elements as

well as the sensor data.

Figure 28 – Component diagram of the DCC

5.1.15 Digital Twin visualisation with Augmented Reality – DigiTAR

Figure 29 illustrates the UML component diagram of the DigiTAR tool in the two different modes of

operation: (a) QC mode and (b) safety mode3. As shown below, the tool is composed of:

• the security layer responsible for user's login to the application;

3 Although the decomposition of DigiTAR in its sub-components remains the same, two diagrams are
provided mainly in order to distinguish the interfaces required from/provided to other COGITO tools in
each mode of operation.

 D2.4 COGITO System Architecture v1 56

COGITO – GA ID. 958310

Construction phase

dIgital Twin mOdel

• the application layer responsible for the registration and indoor localization. Also, it visualizes the

3D BIM with:

o (a) the identified defects and presents UI elements to the user (PM/SM/QM) in order to

confirm them and send remedial works while in QC mode;

o (b) the hazards and presents UI elements to the user (HSEM) in order to confirm them and

send hazard mitigation works while in safety mode; and

• the communication layer responsible for requesting QC and safety data and the 3D BIM for the

project selected by the user (PM/SM/QM/HSEM); in addition, it sends the defects/hazards

confirmation and remedial/mitigation works defined by the user.

(a)

(b)

Figure 29 – Component diagram of the DigiTAR tool in (a) QC mode and (b) safety mode

5.2 Data Protection

To innovate ethically and responsibly, following the guidelines and best practices of the European

Commission [7], COGITO applies the concept of ‘privacy by design’, utilising a framework where systems,

databases and processes are designed and developed in way that safeguards the fundamental rights of data

subjects. The broader concept of ‘data protection by design’, now included in the GDPR, requires data

controllers to implement appropriate technical and organisational measures to affect the GDPR’s core data-

protection principles (articles 5 and 25 GDPR). In COGITO, being in the research and development context,

steps to achieve data protection by design will include:

• data minimisation;

• technical and organisation measures description including the usage of data-protection focused service

providers and storage platforms;

 D2.4 COGITO System Architecture v1 57

COGITO – GA ID. 958310

Construction phase

dIgital Twin mOdel

• arrangements that enable data subjects to exercise their fundamental rights (e.g., as regards direct

access to their personal data, consent to its use or transfer, make people aware of any

tracking/profiling, etc.).

• pseudonymisation or anonymisation of personal data;

• detailed description of COGITO data handling including, for instance, description of the applied

cryptography (e.g., encryption).

More details about the “Data protection by design” methodology and its principles adopted in COGITO can

be found in the “D10.2 – POPD - Requirement No. 2”.

In this deliverable, the scope of the section is to provide the technical measures already defined as part of

the COGITO architecture design that can support data protection and privacy throughout the COGITO

system. The initial list of technical security measures is shown in Table 16. This is a preliminary version that

is subject to change while the final list will be provided in the second and final version of the COGITO system

architecture.

 It should also be mentioned that the analysis to identify personal and/or sensitive data and provide the

overall (technical and organisational) measures that will be applied within COGITO to ensure compliance

with GDPR (and other applicable national and EU regulations) will be provided in the various versions of

the Data Management Plan (first version already submitted [5]).

Table 16 – Technical measures to ensure data protection and privacy throughout the COGITO
system

Technical Measure Description COGITO approach
Access control and authentication incl. role-based
authorisation

Keycloak will most probably be used to
allow single sign-in with identity and
access management compliant with
OAuth 2.0 protocol for authorisation

Logging and monitoring enabling the identification and
tracking of user actions (with regard to the processing of
personal data);

This will be supported.

Server and database security configured to run using a
separate account for COGITO related activities;

This will be supported

Network/communication security Whenever access request is performed
through the Internet, communication
should be encrypted through
cryptographic protocols (e.g., TLS/SSL
v3, SHA 256 RSA)

Backup and data restore procedures This will be supported

Irreversibly deletion of personal data so that it cannot be
recovered

This will be supported

Anonymisation/Pseudonymisation of personal data Any personal data (requested in the
informed consent) will be pseudo-
anonymised. More details to be
defined.

 D2.4 COGITO System Architecture v1 58

COGITO – GA ID. 958310

Construction phase

dIgital Twin mOdel

6 Conclusions

The aim of this deliverable has been the documentation of the work carried out within “T2.4 – COGITO

System Architecture Design” that sets the foundation for the design and development of all COGITO

components, taking into account the outcomes of all WP2 tasks activities and predominately the results of

“T2.1 – Elicitation of Stakeholder Requirements”.

In alignment with T2.4 work-planning, it has reported on the intermediate version of the overall

architecture of the COGITO solution, including specifications of its key components and their functionalities,

an overview of the system architecture describing the components and introducing the various sub-

components, and their functional and technical specifications. A revision of the conceptual architecture

diagram has initially been performed concluding to an overview of the system architecture, describing the

different components, and drafting the information flow among them. Additionally, the data exchange

requirements among the COGITO components, per use case, has been represented in sequence diagrams,

followed by the detailed design of each COGITO component. To gather information about the functional and

non-functional, software and hardware requirements, dependencies to external systems, programming

languages, and interactions among the COGITO components, a table template has been used. Finally

component diagrams have been designed, illustrating a high-level decomposition of each component to its

sub-components. For the development of different types of UML diagrams, the diagrams.net software has

been used.

Since this work reflects the activities that have been accomplished for the first version of the COGITO system

architecture, assumptions and restrictions have been considered. With the COGITO components

prototyping and the COGITO data models and ontologies development, anticipated to be completed in the

near future, actions will be taken to overcome those assumptions and restrictions. Due at M17, the first

version of the overall architecture will be regularly updated based on the feedback received from the

technical developers of the COGITO components, during technical workshops that will be organised. Thus,

this report could be considered as a living document to form the final version of the system architecture, to

be released on M18.

 D2.4 COGITO System Architecture v1 59

COGITO – GA ID. 958310

Construction phase

dIgital Twin mOdel

References

[1] COGITO, “Description of Action (DoA),” 2021.

[2] COGITO, “Deliverable D2.1 - Stakeholder requirements for the COGITO system,” 2021.

[3] B. Unhelkar, Software Engineering with UML, Auerbach Publications; CRC, , 2018.

[4] COGITO, “Deliverable D10.2 - POPD Requirements No. 2,” 2021.

[5] COGITO, “Deliverable D1.2 - Data Management Plan,” 2021.

[6] COGITO, “Deliverable D3.1 - Survey of Existing Models & Ontologies & Associated Standardization

Efforts,” 2021.

[7] European Commision, “Ethics and data protection,” 2018.

[8] COGITO, “Deliverable D10.1 - H-Requirements No.1,” 2021.

 D2.4 COGITO System Architecture v1 60

COGITO – GA ID. 958310

Construction phase

dIgital Twin mOdel

Annex A – Component Functional, Non-Functional Requirements and

Interfaces Template

Table 17 – <Component Name>: Functional, Non-Functional Requirements and Interfaces

General Information

Short Description

Programming

Language(s)

Hardware Requirements

Software Requirements

Development Status

Function and Non-Functional Requirements

Functional

Req-1.1

Req-1.2

Req-1.3

Req-1.4

Non-
Functional

Req-2.1

Req-2.2

Req-2.3

Component Dependencies

Internal
Dependencies

Dep-1.1

Dep-1.2

Dep-1.3

External
Dependencies

Dep-2.1
Dep-2.2

Dep-2.3

Interfaces

Input Data

Input-1 Received from: Format
Method
Endpoint
Protocol

Input-2 Received from: Format
Method
Endpoint
Protocol

Input-3 Received from: Format
Method
Endpoint
Protocol

Output Data

Output-
1

Sent to: Format
Method
Endpoint
Protocol

Output-
2

Sent to: Format
Method
Endpoint
Protocol

Output-
3

Sent to: Format
Method
Endpoint
Protocol

This project has received funding from the European Union's Horizon 2020
research and innovation programme under grant agreement No 958310

